MVC
Sample Quiz Solutions
SHOW ALL WORK!!
Calculator allowed – BUT you must show the set up.
NAME:
#1. Let f be a scalar field and F a vector field. Indicate which of the following are scalar fields (S),
vector fields (V), or meaningless (M).
a. div f
b. f
c. F
d. div( f )
e. curl( f )
f. (div F)
g. curl(curl F)
h. div(div F)
i. ( f )
j. div(curl( f ))
k. curl(div( f ))
#2. Let r ( x, y, z ) and let r denote r . Verify that (ln r )
MVC
r
.
r2
#3 Determine whether the path x (t ) (et cos t , et (sin t cos t ), et sin t ) is a flow line for the
vector field F ( x z , 2 x, y ) .
#4
Explain why F x, y, z 2 xy z i x 2 y j x yz 1 k cannot be the gradient of
some scalar field f without mentioning curl. (That is, show that there is no scalar function f
such that F f ?).
MVC
1
#5. Calculate the flow line x (t ) of the vector field F ( x, y ) x 2 , 2 that passes through the point
y
(1,3) at t = 1. (That is, x (1) (1,3) )
MVC
#6
Suppose F x, y, z 2 xy z i x 2 y j x 1 k . Determine whether or not F is a
conservative vector field (i.e. is there a scalar function f such that F f ?). If it is, find
the function f for which F f . If not, explain clearly.
MVC
#7 Find all local extrema and saddle points of f ( x, y) 2 x3 6 xy y 3 2 . Characterize each point
as a local max, local min, or a saddle point.
MVC
#8 Let f ( x, y ) sin x sin y . Find the second order Taylor polynomial for f at
a. (0,0)
b. ,
2 2
MVC
#9 Find the absolute maximum and minimum values of the function f ( x, y) x e y x 2 e y on
the set S {( x, y ) : 0 x 2, 0 y 1} .
MVC
#10 Let f ( x, y, z ) x 2 y y 2 z x z . Estimate the value of f (1.01, 2.01,3.01) using
differentials. Show work!
1
1
2
2
df 2 xy
dx ( x 2 yz )dy y
dz
2 xz
2 xz
So, letting (dx, dy, dz ) (.01,.01,.01) and ( x, y, z ) (1, 2,3) we get:
1
1
f df 4 .01 (1 12).01 4 .01
4
4
.0425 .13 .0425
.215
Thus, f (1.01, 2.01,3.01) f (1, 2,3) .215 16.216
MVC
© Copyright 2026 Paperzz