Electron Transport in Molecules, Nanotubes and Graphene Philip Kim Department of Physics Columbia University Rolling Up Graphene: Periodic Boundary Condition a1 Ch (n, 0) Periodic Boundary Condition r Ch ⋅ k ⊥ = 2π q Ch a2 E(k2D) (n, m) + band ky (n, n) kx - band x Allowed states Semiconducting nanotube E Metallic nanotube E ky ky k1D kx k1D kx Tuning Carrier Density by Electric Field Effect nanotube Atomic force microscope image of nanotube device metal electrode Vsd nanotube SiO ------- metal SiO2 ++++++++++++++++ Doped Si 2 I Vg Si Induced charge: Cg Vg = e n = e (D.O.S) ∆EF Semiconducting nanotube Metallic nanotube E E E E EF EF k1D EF Vg << 0 k1D Vg ~ >0 k1D EF Vg << 0 k1D Vg ~ >0 Electrical Transport in Nanotube Devices Semiconducting nanotube Metallic nanotube Vsd I Vg 4 Vsd = 10 mV Vsd = 10 mV I (nA) I (nA) 100 50 2 ON 0 0 -5 0 -5 5 E EF EF k1D 5 E E E 0 Vg (V) Vg (V) EF OFF k1D EF k1D k1D Controlled Growth of Ultralong Nanotubes B. H. Hong, J. Y. Lee, T. Beetz, Y. Zhu, P. Kim and S. Kim (2005) Extraction of Inner Shells from MWNTs AFM manipulation of long MWNTs 2 µm 2 µm 2 µm 5 µm (Avouris, IBM) 5 µm Hong, et al, PNAS (2005) Intershell and Intrashell Nanotube Devices Hong, et al, PNAS (2005) Extremely Long SWNT Field Effect Transistor gate source FET characteristics drain Vsd = 20 V Isd (nA) 40 30 20 10 15 mm 0 -9 -6 -3 100 µm 0 3 6 Vg (V) 100 µm ρ ~ 10-7 Ω m 9 Electron Transport in Long Single Walled Nanotubes Multi-terminal Device with Pd contact 7 6 T = 250 K R (kΩ) 5 4 3 Resistance (kΩ) 400 2 400 200 T0 = 250 K 0 20 40 60 L (µm) R (kΩ) 100 200 8 ρ = 8 kΩ/µm 7 6 5 R~L 4 30 R ~ RQ 0 2 20 40 60 Length (µm) 10 8 7 6 * Scaling behavior of resistance: R(L) M. Purewall, A. Ravi, and P. Kim (2006) 5 2 0.1 4 6 8 2 4 6 8 1 2 10 L (µm) 4 6 8 Ballistic Transport and Mean Free Path Electron Transport in 1D Channel le : mean free path + - - + - L L Diffusive transport: le << L R(L) = ρ L Ballistic transport: L < le R(L) = h /N e2 = RQ # of channel Resistance of N- 1D Channel: h h L + 2 R ( L) = 2 Ne Ne le For a nanotube, N = 4 ( 2 from spin and 2 from K and K’) Electron Mean Free Path of Nanotube Lines are fit to 7 400 T = 250 K 5 175 K 3 110 K 2 200 R (kΩ) 4 R (kΩ) 60 K 30 K 100 9 8 7 6 0 20 R( L) = Rc + T = 250 K 0 h = 6.45 kΩ 2 4e 110 K Non-ideal contact resistance Rc < 2 kΩ 60 K 40 L (µm) 30 K 5 4 3 2 10 9 8 7 6 5 2 10 6 4 2 1 6 4 le ~ 0.5 µm @ RT !! 2 0.1 2 2 3 4 5 6 2 1 3 h h L + 4e 2 4e 2 le 175 K mean free path (µm) 6 4 5 6 2 10 L (µm) 3 4 5 6 100 1 4 6 8 10 2 4 6 8 100 Temperature (K) 2 4 Extremely Long Mean Free Path: Hidden Symmetry ? Carbon nanotube: Ga[Al]As HEMT: le ~ 10 µm @ 1.6 K le ~ 100 µm @ 1.6 K le ~ 0.5 µm @ 300 K le ~ 0.06 µm @ 300 K •Small momentum transfer backward scattering must be inefficient. E Selection rules by hidden symmetry in graphene? k1D EF right moving left moving T. Ando, JPSJ (1998);McEuen at al, PRL (1999) Electric Field Effect in Mesoscopic Graphite Simple Yet Efficient Mechanical Extraction Using Scotch Tape is Essential!! A Few Layer Graphene on SiO2/Si Substrate Optical microscope images AFM Image 1 µm 1.2 nm 0.4 nm 0.8 nm Transport Single Layer Graphene Field Effect Resistance ~h/4e2 Single layer graphene device 5000 4000 Cleaved graphite crystallite 20 µm Rxx (Ω) < 1 nm 3000 2000 1000 10 nm 0 -80 -60 -40 -20 0 20 Vg (V) Zhang, Tan, Stormer & Kim (2005), see also Novoselov et al (2005). 40 60 80 Graphene : Dirac Particles in 2D Box Band structure of graphene E Energy hole kx' ky' electron ky kx Massless Dirac Particles with effective speed of light vF. r E ≈ hv F k ⊥′ Graphene v.s. Conventional 2D Electron System Band structures Density of States * E me π h2 h 2k 2 E= 2me* Conventional 2D Electron System N2D(E) ~ h/4e2 h 2k 2 E=− 2 mh* mh* π h2 E Graphene • Zero band mass • Strict electron hole symmetry • Electron hole degeneracy N2D(E) 2D Gas in Quantum Limit : Conventional Case Density of States Landau Levels in Magnetic Field Quantum Hall Effect in GaAs 2DEG E hωc = heB / m * me* π h2 EF DOS mh* π h2 s Graphene s • Vanishing carrier mass near Dirac point • Strict electron hole symmetry eB ωc = * • Electron hole degeneracy m Quantum Hall Effect in Graphene 6 4 10 1 __ h __ 6 e2 5 2 1 __ h __ 10 e2 0 0 0 2 4 6 8 B (T) Quantization: 2 1 __ e _ Rxy = 4 (n + 2 ) h -1 T=50 mK Vg=-2 V 1 __ h __ 6 e2 10 Hall Resistance (kΩ) 1 __ h __ 2 e2 Magnetoresistance (kΩ) Hall Resistance (kΩ) 15 1 __ h __ 2 e2 15 1 __ h __ 10 e2 5 1 __ h __ 14 e2 0 1 __ h __ -14 e2 -5 1 __ h __ -10 e2 1 __ h __ -6 e2 -10 1 __ h __ -2 e2 -15 -50 0 50 Vg (V) T= 1.5K, B= 9T Relativistic Landau Level and Half Integer QHE Haldane, PRL (1988) n=3 n=2 + _ Energy Energy Landau Level Landau Level Degeneracy gs = 4 2 for spin and 2 for sublattice n=1 Quantized Condition n=0 σxy DOS n = -1 gse2/h n = -2 EF n = -3 T. Ando et al (2002) Quantum Hall Effect in Graphene Mobility ~ 60,000 cm2/V s T = 1.7 K B=9T Nanotube Electrodes for Molecular Electronics • Nanotubes are inherently small, yet compatible to microfabrication processes • Covalent chemistry between electrode and molecules • Potentially good conduction via π-bonding network Nanotube Nanogaps Nanotube device Narrow (<10nm) trench via e-beam lithography Thin PMMA coating Oxygen Plasma etching creates gaps (0-10 nm) in tubes. Cut ends likely to be carboxyl-terminated Hone, Wind, Nuckolls, and Kim Collaboration Nanotube Nanogaps ~ 5 nm SEM micrograph SEM micrograph AFM micrograph Process are optimized to Yield of cut tubes: 25% of ~2600 devices Columbia NSEC (Hone, Wind, Nuckolls, and Kim) Collaboration Molecular Bridges Bis-oxazole Pyridine, EDCI •Self-assembled •Covalently bonded •Conduction through π-back bone Guo et al., Science (2006) Does It Work? Vsd ~ 10-15% of reconnection out of ~ 100 fully cut tubes Vg Semiconducting Nanotube + Molecular Bridge 14 Metallic Nanotube + Molecular Bridge before cut before cut 50 10 Vsd = 50 mV 8 6 4 2 after reconnection after cut Current (nA) Current (nA) 12 40 30 20 0 0 -5 0 Vg (v) 5 after reconnection 10 after cut -5 0 Vg (v) 5 Control Experiments Pyridine, EDCI Connection with diamine bisoxazole * Pyridine +EDCI without molecules No connection * Bis-oxazole without amines No connection * Bis-oxazole with Monoamine No connection * 1,12 dodecane diamine (insulator) No connection Oligoaniline: PH sensing Pyridine, EDCI Transport Measurement Bis-oxazole + metallic SWNT 40 1.6 K 250 K 20 I (nA) 180 K 120 K 50 I (nA) 50 K 10 K 0 -20 1.6 K 0 -40 -800 -400 0 400 800 Vsd (mV) -50 0 1.0 -2 -4 0.5 -100 -6 -800 -400 0 400 800 0.0 -8 -450 Vsd (mV) -400 -350 -300 150 200 250 300 350 Temperature Dependence Transport Spectroscopy 20 1.6 K 10 0 -600 -400 -200 0 200 400 600 1.6K 10K 20K 50K 3 2 1 10 K 10 0 0 150 -600 -400 -200 0 200 400 20 200 250 300 Vsd (mV) 600 50 K 10 10 0 8 -600 -400 -200 0 200 400 600 20 10 180 K 0 -600 -400 -200 0 200 Vsd (mV) 400 dI/dV (10−8S) dI/dV (10−8S) 20 dI/dV (10−8S) 4 250 K 220 K 180 K 6 4 2 600 120 K 30 K 20 K 80 K 50 K 0 -250 -200 -150 Vsd (mV) Gate Voltage Dependence 0 0.1 dI/dVsd (µS) Vsd (mV) 500 250 0 -250 -500 -6.0 -5.0 -4.0 Vg (V) 225 0.2 Vsd (mV) Vg=-9.25 V -9.23 V -9.21 V -9.19 V -9.17 V 0.1 0.4 200 dI/dV (µS) dI/dV (µS) 0.3 0.2 175 150 0 0 150 160 170 Vsd (mV) 180 200 125 -9.3 -9.25 Vg (V) -9.2 Summary •Transport in long nanotubes: Subshell extraction in MWNTs Extremely long mean-free path in SWNTs •Transport in graphene: Unusual quantum Hall effect Graphene nano ribbon devices Gate dependent Raman spectroscopy •Nanotube electrode for single molecular electronics Acknowledgement Special Thanks to: Yuanbo Zhang Meninder Purewal Byung Hee Hong Josh Small Melinda Han Barbaros Oezyilmaz Collaboration: Stormer, Pinczuk, Heinz, Nuckolls, Brus, Flynne, Hone, Funding: Kim Group 2004 Summer Central Park
© Copyright 2026 Paperzz