www.furthermaths.org.uk The FMSP Wales Is managed by Rheolir FMSP Cymru gan in partnership with mewn partneriaeth â funded by ac fe’i hariannir gan REVISION SHEET – S1 (WJEC) CONTINUOUS RANDOM VARIABLES The main ideas are: • Probability density function f(x) • Expectation (mean) and variance • Cumulative Distribution Function F(x) • Median and quartiles The probability density function of a continuous random variable can be shown on a graph Before the exam you should know: • Continuous random variables are used to create mathematical models to describe and explain data you might find in the real world. • A continuous random variable X takes values in a given interval • Total probability is 1 • Expectation = Mean = E(X) = µ = ∫ xf(x) dx • Variance = Var(X) = σ2 = E(X2) – [E(X)]2 ∫f(x) dx= 1 = E(X2) – µ2 f(x) = ∫ x2 f(x) dx – µ2 x Notation • A continuous random variable is usually denoted by a capital letter (X, Y etc). • The area under the graph of the pdf denotes probability. Total area = ∫f(x) dx= 1 • For a function g(X ) : E(g(X)) = ∫ g(x) f(x) dx • E(aX +b) = aE(X) + b • Var(aX + b) = a2 Var(X) • F(x) = P(X ≤ x) = ∫ f(t) dt • P(a ≤ X ≤ b) = F(b) – F(a) • F(m) = 0.5 when m = median • Disclaimer: Every effort has gone into ensuring the accuracy of this document. However the Further Maths Support Programme Wales can accept no responsibility for its content matching WJEC specifications exactly. Ymwadiad: Mae pob ymdrech wedi mynd mewn i sicrhau cywirdeb y ddogfen hon. Er hyn, ni all y Rhaglen Cymorth Mathemateg Bellach Cymru dderbyn unrhyw gyfrifoldeb am ei chynnwys yn cyfateb yn union gyda manylebau CBAC. 1 www.furthermaths.org.uk The FMSP Wales Is managed by Rheolir FMSP Cymru gan in partnership with mewn partneriaeth â funded by ac fe’i hariannir gan Example: X is a continuous random variable with probability density function f given 1 2 x for 1 ≤ x ≤ 4 by f(x) = 21 (a) Evaluate E(X) (b) Find an expression for F(x), valid for 1 ≤ x ≤ 4, where F(x) denotes the cumulative distribution function of X (c) Calculate P(2 ≤ X ≤ 3) (d) Find the median of X correct to 2d.p. Answer: 4 4 1 x2 (a) E(X) = ∫ xf ( x ) dx = ∫ x dx = 21 1 1 x (b) ∫ F(x) = −∞ x f (t ) dt = ∫ 1 4 4 1 3 256 1 85 1 4 ∫1 21 x dx = 84 x 1 = 84 − 84 = 28 = 3.04 x 1 2 1 1 t dt = t 3 = ( x 3 − 1) 21 63 1 63 (c) P(2 ≤ X ≤ 3) = F(3) – F(2) = (d) F (m) = 1 (m 3 − 1) = 0.5 63 1 19 = 0.3016 ( 26 − 7) = 63 63 m3 − 1 = 31.5 m3 = 32.5 m = 3.19 Example: The continuous random variable X has cumulative distribution function F given by for x < 0 F ( x) = 0 F ( x ) = 4 x 3 − 3x 4 for 0 ≤ x ≤ 1 F ( x) = 1 for x ≥ 1 (a) Show that the lower quartile lies between 0.45 and 0.46 (b) Find an expression for f(x), valid for 0 ≤ x ≤ 1, where f denotes the probability density function of X. Answer: (a) F (0.45) = 4 × 0.45 3 − 3 × 0.45 4 = 0.2415 < 0.25 F (0.46) = 4 × 0.46 3 − 3 × 0.46 4 = 0.2550 (b) f(x) = F′(x) = 12x2 – 12x3 > 0.25 Disclaimer: Every effort has gone into ensuring the accuracy of this document. However the Further Maths Support Programme Wales can accept no responsibility for its content matching WJEC specifications exactly. Ymwadiad: Mae pob ymdrech wedi mynd mewn i sicrhau cywirdeb y ddogfen hon. Er hyn, ni all y Rhaglen Cymorth Mathemateg Bellach Cymru dderbyn unrhyw gyfrifoldeb am ei chynnwys yn cyfateb yn union gyda manylebau CBAC. 2 www.furthermaths.org.uk The FMSP Wales Is managed by Rheolir FMSP Cymru gan in partnership with mewn partneriaeth â funded by ac fe’i hariannir gan TAFLEN ADOLYGU – S1 (CBAC) HAPNEWIDYNNAU DI-DOR Y prif syniadau yw: • Ffwythiant dwysedd tebygolrwydd f (x) • Disgwyliant (cymedr) ac amrywiant • Ffwythiant dosraniad cronnus F(x) • Canolrif a chwartelau Cyn yr arholiad mae angen gwybod: • Defnyddir hapnewidynnau di-dor i greu modelau mathemategol i ddisgrifo ac esbonio data gallwch ddarganfod yn y byd iawn bob dydd. • Mae hapnewidyn di-dor X yn cymryd gwerthoedd mewn cyfwng penedol. • Cyfanswm y tebygolrwyddau yw ∫ f (x) dx = 1 • Disgwyliant = Cymedr = E(X) = µ = ∫ x f (x) dx • Amrywiant = Var(X) = σ2 = E(X2) – [E(X)]2 Gellir dangos y ffwythiant dwysedd tebygolrwydd ar gyfer hapnewidyn didor gan graff. = E(X2) – µ2 f (x) = ∫ x2 f (x) dx – µ2 x • Ar gyfer ffywthiant g(X ) : E(g(X)) = ∫ g(x) f (x) dx • E(aX +b) = aE(X) + b • Var(aX + b) = a2 Var(X) • F(x) = P(X ≤ x) = ∫ f (t) dt • P(a ≤ X ≤ b) = F(b) – F(a) • F(m) = 0.5 pan fo m = canolrif Nodiant • Dynodir hapnewidyn di-dor gan brif llythyren ( W,X,Y, Z a.y.b.). • Mae’r arwynebdd o dan graff ff.d.t. yn dynodi’r tebygolrwydd. Cyfanswm arwynebedd = ∫ f (x)dx =1 • Disclaimer: Every effort has gone into ensuring the accuracy of this document. However the Further Maths Support Programme Wales can accept no responsibility for its content matching WJEC specifications exactly. Ymwadiad: Mae pob ymdrech wedi mynd mewn i sicrhau cywirdeb y ddogfen hon. Er hyn, ni all y Rhaglen Cymorth Mathemateg Bellach Cymru dderbyn unrhyw gyfrifoldeb am ei chynnwys yn cyfateb yn union gyda manylebau CBAC. 3 www.furthermaths.org.uk The FMSP Wales Is managed by Rheolir FMSP Cymru gan in partnership with mewn partneriaeth â funded by ac fe’i hariannir gan Enghraifft: Mae X yn hapnewidyn di-dor sydd â ffwythiant dwysedd tebygolrwydd a 1 2 roddir gan f (x) = x for 1 ≤ x ≤ 4 21 (e) Enrhifwch E(X) (f) Darganfyddwch fynegiad ar gyfer F(x), sy’n ddilys ar gyfer 1 ≤ x ≤ 4, lle F(x) sy’n dynodi’r ffwythiant dosraniad cronnus ar gyfer X (g) Cyfrifwch P(2 ≤ X ≤ 3) (h) Darganfyddwch ganolrif X yn gywir i 2 le degol. Ateb: 4 (e) E(X) = 4 ∫ xf ( x)dx = ∫x 1 1 1 x2 dx = 21 4 4 1 3 256 1 85 1 4 ∫1 21 x dx = 84 x 1 = 84 − 84 = 28 = 3.04 x 1 2 1 3 1 3 (f) F(x) = ∫ f (t )dt = ∫ t dt = t = ( x − 1) 21 63 1 63 −∞ 1 x (g) x P(2 ≤ X ≤ 3) = F(3) – F(2) = (h) F ( m) = Enghraifft: 1 ( m 3 − 1) = 0.5 63 1 19 = 0.3016 ( 26 − 7) = 63 63 m 3 − 1 = 31.5 m 3 = 32.5 m = 3.19 Mae gan yr hapnewidyn di-dor Xffwythiant dosraniad cronnus a roddir gan F ( x) = 0 ar gyfer x < 0 F ( x) = 4 x 3 − 3 x 4 ar gyfer 0 ≤ x ≤ 1 F ( x) = 1 ar gyfer x ≥ 1 (c) Dangoswch bod y cwartel isaf yn gorwedd rhwng 0.45 a 0.46 (d) Darganfyddwch fynegiad ar gyfer f (x), sy’n ddilys ar gyfer 0 ≤ x ≤ 1, lle mae f yn dynodi’r ffwythiant dwysedd tebygolrwydd ar gyfer X. Ateb: (a) F (0.45) = 4 × 0.45 3 − 3 × 0.45 4 = 0.2415 < 0.25 F (0.46) = 4 × 0.463 − 3 × 0.464 = 0.2550 > 0.25 (b) f (x) = F′(x) = 12x2 – 12x3 Disclaimer: Every effort has gone into ensuring the accuracy of this document. However the Further Maths Support Programme Wales can accept no responsibility for its content matching WJEC specifications exactly. Ymwadiad: Mae pob ymdrech wedi mynd mewn i sicrhau cywirdeb y ddogfen hon. Er hyn, ni all y Rhaglen Cymorth Mathemateg Bellach Cymru dderbyn unrhyw gyfrifoldeb am ei chynnwys yn cyfateb yn union gyda manylebau CBAC. 4
© Copyright 2025 Paperzz