Geant4 DNA Physics processes overview and current status Y. Perrot, S. Incerti Centre d'Etudes Nucléaires de Bordeaux - Gradignan IN2P3 / CNRS Université Bordeaux 1 33175 Gradignan France Z. Francis, G. Montarou Laboratoire de Physique Corpusculaire IN2P3 / CNRS Université Blaise Pascal 63177 Aubière France R. Capra, M.G. Pia INFN Sezione di Genova Geant4 DNA meeting Genova - July 13th-19th, 2005 Centre d’Etudes Nucléaires de Bordeaux - Gradignan 1 Aim • Extend Geant4 to simulate electron, proton and alpha electromagnetic interactions in liquid water down to ~7.5 eV • electrons : elastic scattering, excitation, ionization • p, H : excitation (p), ionization (p & H), charge transfer (p), stripping (H) • He++, He+, He : excitation, ionization, charge transfer • validation : two independent computations performed by LPC Clermont & CENBG from litterature • References used for the models : - Dingfelder, Inokuti, Paretzke et al. (2000 for protons, 2005 for He) - Emfietzoglou et al. (2002 for electrons) - Friedland et al. (PARTRAC) Centre d’Etudes Nucléaires de Bordeaux - Gradignan 2 Protons and Hydrogen Centre d’Etudes Nucléaires de Bordeaux - Gradignan 3 List of processes Processes p and H excitation : p + H2O → p + H2O* ionisation : p + H2O → p + e- + H2O+ charge transfer : p + H2O → H* + H2O+ stripping : H + H2O → p + e- + H2O* ionisation : H + H2O → H + e- + H2O+ excitation neglected for H Centre d’Etudes Nucléaires de Bordeaux - Gradignan 4 Excitation by Protons (TXS) Ω ν σ (Z a ) ( t E ) proton 0 k σexc, k (t ) J Ω ν t • function of t No experimental data, but semi-empirical relations with electron excitation cross sections s0 is a constant (s0 = 1E-20 m²) Z = 10 number of electrons in the crossed medium Ek excitation energy. a and represent the energy superior limit so that this relation is in agreement with First Born Approximation (> 500 keV) and J for low energy (FBA not valid) 5 excitation levels Excitations Ek (eV) a (eV) J (eV) Ω ν A B1 8.17 876 19820 0.85 1 B A1 10.13 2084 23490 0.88 1 Ryd A+B 11.31 1373 27770 0.88 1 Ryd C+D 12.91 692 30830 0.78 1 Diffuse bands 14.50 900 33080 0.78 1 Centre d’Etudes Nucléaires de Bordeaux - Gradignan 5 Ionisation by Protons (DXS) • function of E and t, for E>Ij • Nice agreement on TXS by Simpson integration • analytical formula also available for ionisation TCS • reproduces ICRU stopping powers dσ dσ j G j dE dW j j F1 ( ν) w F2 ( ν ) dσ j S 3 dw B j (1 w) [1 exp α (w - w c ) / ν] Rudd model 5 ionisation shells (K included) E is the transfered energy t is the proton kinetic energy Ry = 13.606 eV (1 Ry -> eV) Ij ionisation energy of shell j (liquid) Bj is the binding energy of shell j (vapour) Gj partitioning factor to adjust the shell contributions to the FBA calculations (Gj is 1 for K shell) Shell j Ij (eV) Bj (eV) Nj Gj 1a1 539.00 539.70 2 1.00 2a1 32.30 32.20 2 0.52 1b2 16.05 18.55 2 1.11 3a1 13.39 14.73 2 1.11 1b1 10.79 12.61 2 0.99 W j = E - Ij is the secondary electron kinetic energy w = W j/Bj Nj is the number of electrons on shell j S = 4πα0²Nj(Ry/Bj)² T = (me/mp) t : kinetic energy of an electron traveling at the same speed as the proton ² = T/Bj wc = 4²-2-Ry/(4Bj) C1 ν -D1 α related to the size of the target molecule L1 ( ν ) Parameters from vapor data LE term HE term F1 ( ν ) L1 ( ν ) H 1 ( ν ) F2 ( ν ) L 2 ( ν ) H 2 ( ν) L 2 ( ν ) H 2 ( ν) 1 E1 ν (D1 4) A ln(1 ν 2 ) H1 ( ν) 1 2 ν B1 /ν 2 L 2 ( ν) C 2 ν D 2 Parameter Valence K-shell A1 1.02 1.25 B1 82.0 0.50 C1 0.45 1.00 D1 -0.80 1.00 E1 0.38 3.00 A2 1.07 1.10 B2 14.6 1.30 C2 0.60 1.00 D2 0.04 0.00 α 0.64 0.66 A B H 2 ( ν) 22 42 ν ν Centre d’Etudes Nucléaires de Bordeaux - Gradignan 6 Ionisation by Protons (TXS) 1 1 σioni ( ) σ low σ high T D F σ low 4 π α C Ry 2 0 1 Ry σ high 4 π α 02 T • function of t Ry A ln 1 B T where T is the kinetic of an electron with the same speed as the proton σioni A 2.98 B 4.42 C 1.48 D 0.75 F (4.80) Centre d’Etudes Nucléaires de Bordeaux - Gradignan 7 Secondary electrons after ionisation Energy E is the transfered energy of an incident electron with kinetic energy T W = E - Ij is the secondary electron kinetic energy Angles if W > 100 eV cos -1 W Wmax where W max = 4Telec and Telec is the kinetic energy of an electron with the same speed as the proton • if W ≤ 100 eV, θ’ is uniformly shot within 0, π uniformly shot within [0, 2π] - • proton scattering neglected (nuclear scattering < 1 keV ?) Centre d’Etudes Nucléaires de Bordeaux - Gradignan 8 Proton charge transfert (TXS) X log10 (t ) t in eV σ10 (t ) 10Y(X) • function of t • plenty of experimental data • dominant at low energy Y(X) a 0 X b0 Y(X) a 0 X b0 - c0 (X - x 0 )d0 Y(X) a1X +b1 a0 , b0 low energy line c0 , d0 intermediate power a1 , b1 high energy line for X<x0 for X<x1 Parameters calculated from vapor data and in order that stopping powers match recommendations for liquid water Parameters a0 -0.180 b0 -18.22 c0 0.215 d0 3.550 a1 -3.600 b1 -1.997 x0 3.450 x1 5.251 Centre d’Etudes Nucléaires de Bordeaux - Gradignan 9 Hydrogen stripping (TXS) 1 1 σ 01 ( ) σ σ high low T D F σ low 4 π α C Ry 2 0 1 Ry σ high 4 π α 02 T • function of t • two contributions Ry A ln 1 B T where T is the kinetic of an electron with the same speed as the proton Parameters adjusted to reproduce Dagnac & Toburen data, as well as stopping powers. σ01 (50) A 2.835 B 0.310 C 2.100 D 0.760 F - Centre d’Etudes Nucléaires de Bordeaux - Gradignan 10 Ionisation by Hydrogen (DCS) dσ dσ g(t ) dE hydrogen dE proton log(t ) - 4.2 g(t ) 0.8 1 exp 0.5 • function of E and t • integration by Simpson 1 0.9 Differ from proton cross sections because of : • screening effect of the H electron • contribution of the stripping to the electron spectrum • interaction of H electron with water electrons • Obtained from proton spectrum taking into account Bolorizadeh and Rudd data, as well as ICRU recommandations for liquid water. t incident particle energy at low energ, g(t) > 1 at high energy, g(t) <1 to take into account the screening effect by the Hydrogen electron Centre d’Etudes Nucléaires de Bordeaux - Gradignan 11 He, + He , Centre d’Etudes Nucléaires de Bordeaux - Gradignan 2+ He 12 List of processes Processes He ionisation : W + He → W+ + He + eexcitation : W + He → W * + He charge transfer σ01 : W + He → W + He+ + echarge transfer σ02 : W + He → W + He++ + e- + eProcesses He+ ionisation : W + He+ → W+ + He+ + eexcitation : W + He+ → W * + He+ charge transfer σ12 : W + He+ → W + He++ + echarge transfer σ10 : W + He+ → W+ + He Processes He++ ionisation : W + He++ → W+ + He++ + eexcitation : W + He++ → W *+ He++ charge transfer σ21 : W + He++ → W+ + He+ charge transfer σ20 : W + He++ → W++ + He Centre d’Etudes Nucléaires de Bordeaux - Gradignan 13 Excitation & Ionisation for He, He+ and He++ (DCS) d σ proton d σ ion 2 (v i ) Z eff (E) (v i ) dE dE • FBA • from p excitation or ionisation DXS • function of E and t Zeff = Z - S(R) Takes into account the screening by the projectile’s electrons R 2 t elec Qeff E n telec me T mHe We have : • Zeff : ion effective charge • S(R) : screening at distance R from nucleus • telec : kinetic energy of an electron with the same speed as the incident particle • E : transfered energy • Qeff : Slater effective charge for an electron on shell n for the considered ion Qeff = 2.0 for 1s electron, Qeff = 1.7 pour 2 electrons on 1s, Qeff = 1.15 for an electron on 2s or 2p S (R)1s 1 - exp(-2R) (1 2R 2R 2 ) S (R)2s 1 - exp(-2R) (1 2R 2R 2 2R 4 ) S (R)2p 1 - exp(-2R) (1 2R 2R 2 +(4/3) R 3 (2/3) R 4 ) He 2 : S(R) 0 He : S(R) 0.70 S(R) 1s 0.15 S(R) 2s 0.15 S(R) 2p He 0 : S(R) 0.50 S(R) 1s 0.25 S(R) 2s 0.25 S(R) 2p Centre d’Etudes Nucléaires de Bordeaux - Gradignan 14 Charge transfer for He, He+ and He++ (TXS) σ01 σ02 σ12 σ21 σ20 σ10 a0 2.25 2.25 2.25 0.95 0.95 0.65 b0 -30.93 -32.61 -32.10 -23.00 -23.73 -21.81 a1 -0.75 -0.75 -0.75 -2.75 -2.75 -2.75 c0 0.590 0.435 0.600 0.215 0.250 0.232 d0 2.35 2.70 2.40 2.95 3.55 2.95 x0 4.29 4.45 4.60 3.50 3.72 3.53 • from p charge transfer XS • function of t σij (t ) 10Y(X) X log10 (t ) Y(X) a 0 X b0 Y(X) a 0 X b0 - c0 (X - x 0 )d0 Y(X) a1X +b1 for X<x0 for X<x1 1/( d0 1) a a x1 0 1 c0 d 0 x0 b1 (a0 a1 ) x1 b0 c0 ( x1 x0 ) d0 Centre d’Etudes Nucléaires de Bordeaux - Gradignan 15 electrons Centre d’Etudes Nucléaires de Bordeaux - Gradignan 16 Oxygen K-shell ionisation (DXS) • Binary Encounter Approximation (BEA) • function of E and T, E and T > 540 eV • E integrated over [T, (T+540)/2] E : energy transfer (energy loss) T = mv 2 / 2 : electron kinetic energy R = 1 Ry N = 0.3343x1023 molecules.cm-3 for liquid H2O B = 537 eV : binding energy of the K-shell n = 2 : electron occupation number U = 809 eV : average kinetic energy of electron in K-shell Contribution not neglected for T above 540 eV (~10% beyond 10 keV) Centre d’Etudes Nucléaires de Bordeaux - Gradignan 17 Valence shells excitation and ionisation (DXS) • function of E and T • E integration over [7.5,max(T,0.5*(T+32.2)] • Differential FBA cross section for a single excitation or ionisation • First Born Approximation • non relativisic limit • Dielectric Response Func ELFj (E,K) Smearing of four outer shells • Corrections at low energies (exchange and higher-order contributions) Yj,exc [1 (E j / T) a ]b if Ej < T < 500 eV Yj,exc [1 (7.5 / T) a ]b if 7.5 eV < T ≤ Ej a 1, b 3 Centre d’Etudes Nucléaires de Bordeaux - Gradignan Y ioniz if cut(j)<T<500 eV 18 Valence shells excitation and ionisation • Real part of the DRF function (K=0) • Dielectric formalism accounts for condensed-phase effects • Superposition of Drude functions : optical model of the liquid • Sum rule constraints • only if E>cut(j) fj : ocillator strength Ej : transition energy gj : damping coefficient Ep = 21.46 eV plasmon energy • Imaginary part of the DRF function (K=0) • Dispersion to non-zero momentum transfers (K>0) Generalized Oscillator Strength functions Impulse approximation Centre d’Etudes Nucléaires de Bordeaux - Gradignan 19 Valence shells excitation and ionisation partitioning The energy loss function is cut just below the shell binding energy and redistributed over the lower shells, to prevent the contribution to the cross section below the binding energy : • if E>=13 eV and E<17 eV, shell 8 is redistributed on shells 6 and 7 • if E>=10 eV and E<13 eV, shells 7-8 are redistributed on shell 6 • if E>=7.5 eV and E<10 eV, shells 6-7-8 are redistributed on shells 1 & 2 E is the transfered energy. Differential IMFP for an incident electron energy T = 1 keV 15 Ionisation Cut (eV) 1 7.5 2 7.5 3 7.5 4 7.5 5 7.5 6 10 7 13 8 17 9 32.2 dSigma(j)/dE (1/µm/eV) Excitation shell excitations 1b1 3a1 1b2 2a1 Total 10 5 0 0 5 10 15 20 25 30 35 40 45 50 Energy Transfer (eV) Centre d’Etudes Nucléaires de Bordeaux - Gradignan 20 Elastic scattering DCS and TCS dσ el (T) R(T) dΩ 1 (T) 2 2 (1 2 (T) - cos ) (1 2g (T) - cos ) R(T) Below 200 eV : Brenner-Zaider 5 g (T) exp γ n T n 1 4 0 2 Z (Z 1) e 4 4 T2 Rutherford term Above 200 eV : Rutherford « screened » dσ el R(T) (T) dΩ 1 2s(T) cosθ2 for 0.35 eV ≤ T ≤ 10 eV n 0 4 g (T) exp γ n 6 T n for 10 eV < T ≤ 100 eV n 0 2 n g (T) γ n 11T for 100 eV < T ≤ 200 eV s(T) s c (T) n 0 4 function of T (T) exp n T n 1.7x10 -5 Z 2/3mc 2 T ( T / mc 2 2) s c (T) 1.64 - 0.0825 ln(T) n 0 4 (T) exp n T n n 0 dσ R(T) sin θ dθ dθ s(Z, T) s(T) 1 0 π σ(T) 2 • function of T • valid over whole enrgy range Centre d’Etudes Nucléaires de Bordeaux - Gradignan 21 Secondary electrons after ionisation Energy E is the transfered energy of an incident electron with kinetic energy T The incident electron energy becomes T-E The secondary electron energy is W = E - Bj where Bj is the binding energy of the ejected electron. Angles if W > 100 eV sin 2 W/T (1 - W / T) (T / 2mc 2 ) 1 if W ≤ 100 eV, θ shot uniformly within shot uniformly within if W > 200 eV 0,2 π sin 2 π 0, 4 1- W / T 1 W / 2mc 2 if 50 ≤ W ≤ 200 eV : 90% , and 10% 4 2 π π if W < 50 eV, θ’ shot uniformly within 0, π 0, π ' Centre d’Etudes Nucléaires de Bordeaux - Gradignan 22 Status : where are we now ? We have all C codes available for the following processes : Process DiffXS TotalXS Electron elastic (Brenner and Rutherford) Electron inelastic on valence Electron inelastic on Oxygen K shell A T A A T T Proton excitation Proton ionisation Proton charge transfer Hydrogen ionisation Hydrogen stripping T (>100keV*) A A - A T or A A T A Helium excitation Helium ionisation Helium charge transfer T (>100keV*) A - A T A All analytical formulas (A) can produce tables (T)… * Tables for proton excitation > 100 keV from Dingfelder’s code Centre d’Etudes Nucléaires de Bordeaux - Gradignan 23 Energy ranges (usual) e- ionisation+ excitation + elastic scattering p ionisation p excitation H ionisation + stripping He excitation + ionisation + charge transfer 10 102 103 Centre d’Etudes Nucléaires de Bordeaux - Gradignan 104 105 106 107 eV 24 Final states kinematics Excitation (5 shells) Ionisation (5 shells + K shell) W + e → W* + e W + p → W* + p W + H → W* + H W + a → W* + a W + a+ → W* + a+ W + a++ → W* + a++ W + e → W+ + e + e W + p → W+ + p + e W + H → W+ + H + e W + a → W+ + a + e W + a+ → W + + a+ + e W + a++ → W + + a++ + e • Outgoing direction same as incoming • E out = E in – E excitation for e, p, H, a • Outgoing electron : analytical (energy, angle) • Outgoing p, H, a : energy + momentum conservation Charge changing and stripping W + a++ → W + + a+ W + a++ → W ++ + a s21 s20 Ea+ = Ea++ - 1/2me(pa++/ma++)2 + C Ea = Ea++ - 2x1/2me(pa++/ma++)2 + C C = Ba+-Bw C = B*a-B*w W + a+ → W + a++ + e W + a+ → W + + a s12 s10 Ea++ = Ea+ - D Ea = Ea+ - 1/2me(pa+/ma+)2 + C D = Ba+ C = Ba-Bw W + a → W + a+ + e W + a → W + a++ + e + e s01 s02 Ea+ = Ea - D Ea++ = Ea - D D = Ba D = B*a W + p → W+ + H W+H→W+p+e s10 s01 EH = Ep – 1/2me(pp/mp)2 + C Ep = E H - D C = BH-Bw D = BH • Outgoing direction same as incoming Centre d’Etudes Nucléaires de Bordeaux - Gradignan 25 Thank you for your attention Centre d’Etudes Nucléaires de Bordeaux - Gradignan 26 Dielectric Response Function at the optical limit 2.5 2 1.5 1 0.5 10 20 30 Centre d’Etudes Nucléaires de Bordeaux - Gradignan 40 50 27 Energy Loss Function (ELF) without dispersion Im 1 epsilon 1 0.8 0.6 0.4 0.2 10 20 30 40 Centre d’Etudes Nucléaires de Bordeaux - Gradignan 50 E eV 28 Energy Loss Function (ELF) with dispersion Centre d’Etudes Nucléaires de Bordeaux - Gradignan 29 Bethe surface : ELF in two dimensions Centre d’Etudes Nucléaires de Bordeaux - Gradignan 30 SP and MFP 25 20 15 10 5 0 10 50 100 500 1000 5000 10000 15 • Born-corrections included 10 • no corrections 7 5 3 2 1.5 1 50 100 500 1000 5000 10000 Centre d’Etudes Nucléaires de Bordeaux - Gradignan 31 Definitions (liquid H2O molecule) • Collision Stopping Power = average energy loss per unit path length dE : energy loss dS / dE : prob. per unit path length that an electron of kinetic energy T will experience an energy loss between E and E+dE T = mv 2 / 2 : electron kinetic energy • Inelastic Mean Free Path = distance between successive energy loss events Emin = 0, Emax = T / 2 • Valence and core (K shell) processes Justified by large difference in binding energy between valence and core shells Centre d’Etudes Nucléaires de Bordeaux - Gradignan 32 Orders of magnitude Partial ionization cross section for each subshell of a water molecule as a function of impact energy for (full curves) electrons and (broken curves) protons. The 1a1 curve for electrons is multiplied by 100. Centre d’Etudes Nucléaires de Bordeaux - Gradignan For electrons, elastic collisions are increasingly the most probable interaction event below about 2 keV, while ionization takes over above that energy. For both protons and electrons (T > 100 eV) ionizations account for 75% of inelastic collisions, the remaining 25% being excitation events. For electron impact and as threshold energies are approached excitations become increasingly important and eventually dominate the inelastic scattering probability. 33
© Copyright 2026 Paperzz