7/25/2013 BINARY OPERATION Section 3.1 Definition of a Group 3.1.1Definition: Abinaryoperation ∗ onasetS isa function∗∶ → fromtheset ofallordered pairsofelementsinS intoS. Theoperation∗ issaidtobeassociative if ∗ ∗ ∗ ∗ forall , , ∈ . Anelement ∈ iscalledanidentity elementfor∗ if ∗ and ∗ forall ∈ . If∗ hasanidentityelement ,and ∈ ,then ∈ issaidtobeaninverse for if ∗ and ∗ . UNIQUENESS OF IDENTITY AND INVERSE 3.1.1Proposition: Let∗ beanassociative binaryoperationonasetS. (a) Theoperation∗ hasatmostone identityelement. (b) If∗ hasanidentityelement,thenany elementofS hasatmostoneinverse. INVERSES 3.1.3Proposition: Let∗ beanassociative binaryoperationonasetS.If∗ hasanidentity elementand , ∈ haveinverses and , respectively,thentheinverseof existsandis equalto ,andtheinverseof ∗ existsandis equalto ∗ . SOME NOTATION • Normally,thebinaryoperationswework withwillbenotatedmultiplicatively;thatis, insteadof ∗ wewilljustwrite ⋅ or simply . • Inthecasewherethebinaryoperationalso satisfiesthecommutativelaw ∗ ∗ , wewilluseadditivenotation;thatis,instead of ∗ wewillwrite . GROUP 3.1.4Definition:Let ,∗ denoteanonemptyset togetherwitha binaryoperation∗ on .Thatis,thefollowingconditionmustbe satisfied. (i) Closure: Forall , elementof . ∈ ,theelement ∗ isawelldefined Then iscalledagroup ifthefollowingpropertieshold. (ii) Associativity: Forall , , ∈ ,wehave ∗ ∗ ∗ . ∗ (iii) Identity: Thereexistsanidentityelement ∈ ,thatis,an element ∈ suchthat ∗ and ∗ forall ∈ . (iv) Inverses: Foreach ∈ thereexistsaninverse element ∈ ,thatis,anelement ∈ suchthat ∗ and ∗ . 1 7/25/2013 “COMPACT” DEFINITION OF A GROUP 3.1.4′Definition: AgroupisanonemptysetG withanassociativebinaryoperation,suchthat G containsanidentityelementforthe operation,andeachelementofG hasan inverseinG. THE SYMMETRIC GROUP; THE SYMMETRIC GROUP OF DEGREE n Definition3.1.5: Thesetofallpermutationsofaset S isdenotedbySym .Thesetofallpermutations oftheset 1, 2, … , isdenotedby . iscalledthesymmetric ThegroupSym group onS,and iscalledthesymmetricgroupof degree . Proposition2.1.6: IfS isanonemptyset,then Sym isagroupundertheoperationof compositionoffunctions. CANCELLATION PROPERTY FOR GROUPS 3.1.7Proposition(CancellationProperty forGroups): Let beagroup,andlet , , ∈ . (a) If ,then . (b) If ,then . ABELIAN GROUPS 3.1.9Definition: Agroup issaidtobe abelian if forall , ∈ . NOTES: 1. Theoperationismostoftendenoted additively. UNIQUENESS OF SOLUTIONS TO EQUATIONS AND GROUPS 3.1.8Proposition: If isagroupand , ∈ ,theneachoftheequations and hasauniquesolution. Conversely,if isanonemptysetwithan associativebinaryoperationinwhichthe equations and havesolutions forall , ∈ ,then isagroup. FINITE AND INFINITE GROUPS 3.1.10Definition: Agroup issaidtobea finitegroup iftheset hasafinitenumberof elements.Inthiscase,thenumberof elementsiscalledtheorder of ,denotedby | |.If isnotfinite,itissaidtobeaninfinite group. 2. Theidentityelementiscalledthezero element andisdenotedby0.Donot confusethiswiththenumber0. 2 7/25/2013 THE GENERAL LINEAR GROUP 3.1.11Definition: Thesetofallinvertible matriceswithentriesin iscalledthe generallineargroupofdegreenoverthe realnumbers,andisdenotedby . 3.1.12Proposition: Theset groupundermatrixmultiplication. formsa 3
© Copyright 2026 Paperzz