The 2nd International Conference Computational Mechanics and Virtual Engineering COMEC 2007 11 – 13 OCTOBER 2007, Brasov, Romania MathCAD APPLICATION FOR STRUCTURES FUNDAMENTAL CONTOURS BASE GENERATION Mihai C. TOFAN, Mihai ULEA, Sorin VLASE Transilvania University of Brasov, ROMANIA, e-mail: [email protected] Abstract: The paper presents MathCAD design for fundamental contours of structure graph using two kinds of addressing matrix for sequence chain of going over it. Keywords: graph, fundamental cycles, elastic structures 1. INTRODUCTION A graph is associated to an elastic mechanical structure. This graph can be built on the base of the fundamental contours. Consider a structure with three fundamental contours. As defines in classical graph theory, for this application are involved equations defined by the nodal junction matrix I 2 3 X Nel ,where Nel is the number of structure elements start node , u = 0 1, I u, j = arrival node binodal element typ (optionally) j=0 Nel , ( 1) and the extended incidence matrix SE N + 1 X Nel , where one node is fixed, all the sides or couplings have between 1 to 6 degrees of freedom and N+ 1 is the number of the structure nodes. 1 start node SEi, j = 0 the element not incident in node , i = 0 N, j=0 Nel , ( 2) -1 arrival The matrix SE is defined by : u SE I = -1 , u, j ( 3) The extended incidence matrix is built on regular tree cell Si,j and represents the Hamilton’s way on the graph nodes and junctions Ji.jo : S i, j ,i 0;N, i 0;N, (4) J i, jo i 0,N, jo 0, C , C = Nel - N, 521 (5) 2. STRUCTURE WITH THREE FUNDAMENTAL CONTOURS The application from Figure 1 has N=6 and Nel=8. Consider C+1, the number of the contours, ta, the line of the tree, r, the nodal position, tr, the line of junctions. Elements of the MathCAD program are below: ( N Nel C ) ( 6 8 Nel N ) ( i j jo ) ( 0 N 1 0 N 1 0 C ) ( i j ) ( 0 N 0 Nel ) ( N Nel C ) ( 6 8 2 ) col ( A) cols ( A) lin ( A) rows ( A) EXT( A B) augment ( A B) unu ( n) identity ( n) EXT3 ( A B C) augment3 ( A B C) T DIM ( A) ( col ( A) lin ( A) ) 0 0 1 1 1 1 1 r ta ( 0 1 0 1 1 0 1 2 2 ( N Nel C ) ( 6 8 Nel N ) (i j i i ( N Nel C ) ( 6 8 2 ) I i 1 0 1 2 1 4 5 1 2 3 4 5 6 T 2 3 2 4 5 6) II I EXT( I II) T tr ( 3 0 4 1 2 6 ) qr 0 5 2 2 r1 ta u 0 1 jo ) ( 0 N 1 0 N 1 0 C ) ( i j ) ( 0 N 0 Nel ) 3 1 I 4 0 0 2 3 4 6 I q 0 7 r1 tr qr 1 q r1 ta q 0 1 r0 ta 0 r0 tr r0 ta q qr 1 q Figure 1 1 1 0 SE 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 Si j SEi 1 j T S 1 0 1 0 0 0 1 0 1 1 1 0 0 0 3 T BF 1 0 0 1 0 0 DIM BF 6 0 1 0 1 1 1 Ji jo SEi 1 N jo 522 T B ( T J) Bjo N jo 1 1 0 0 S 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 B 1 0 0 1 0 1 0 1 0 0 0 0 1 0 J 0 1 0 0 0 0 1 0 0 0 0 T 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 S 1 0 0 1 0 0 1 0 1 0 0 0 0 T S 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 Bf 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 T S BF 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 The fundamental contours matrix was built by classical sequence, on the lines matrix T oriented to the fixed node 0 and on the junctions: T = S1 , ( 6) The fundamental contours are built on the tree branches by the application: B = T J , T ( 7) extended with the close end by the junctions: B jo, jo+ N 1. ( 8) The series of the fundamental contours is not directly addressed by two index matrix both on the same dimension, k jo, j jo, . The first matrix has a void elements column, which are addressed to the closing element of the incidence junction jo contour. In the matrix klu, jo and κl u, jo , u 0 1, respectively, are defined the border of the rows of the index matrix. The graph sides which belong to each contour are stored in the matrix D. In the paper are described two metods. The first one used the sequence building of the contours defined on the matrix B rows. The second one used the simple enumeration of the nodes sequence which defines the contour, in the C matrix. 3. FIRST METHOD The used nodal coordinates calculus is made on the fundamental contours: T ( 1 ) ( 0 Nel 1 1 Nel 1 ) qo ( 0 0 2 ) k jo j ( Nel 2) jo j 1 klu jo k jo Nel u T ns ( 0 10 20 ) 523 jo ( Nel 2) jo 1 2 3 4 5 6 7 8 9 k 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 0 10 20 9 19 29 l 1 11 21 9 19 29 0 kl Sa j SE0 j 1 T 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 SJ jo SE0 N jo T Sa ( 1 0 0 0 0 0 ) 2 0 SJ ( 1 1 0 ) DIM ( S) ( 6 6 ) T DIM ( J) ( 6 3 ) T T DIM ( I) ( 2 9 ) T DIM ( Bf) ( 3 9 ) 0 1 2 1 4 5 0 0 2 j I1 j I0 j r D r 1 2 3 4 5 6 3 4 6 0 1 0 1 0 2 1 1 0 T D qo ( 0 0 2 ) 1 0 1 0 1 0 0 1 1 1 1 1 T T Sa 1 1 1 I 0 0 f0 f 1 f1 f 1 2 3 4 5 6 7 8 9 f0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 8 9 2 3 f1 0 0 0 0 1 0 1 1 2 f2 f 4 5 6 7 0 -1 -1 -1 -1 0 0 1 1 1 1 1 0 0 0 1 2 3 4 5 6 7 8 9 f2 0 1 1 0 0 -1 -1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 In the Figures 2, 3 and 4 are presented respectively the three fundamental contours. 2 r1 ta f1 2 r1 ta q 1 f1 0 1 0 r0 ta f0 q 1 q 1 1 1 0 r0 ta f0 0 q Figure 1 Figure 2 524 1 1 2 r1 ta f1 q 1 2 1 0 1 r0 ta f0 q 2 Figure 3 4. THE SECOND METHOD In this case is defined directly the used nodes succession of the contour by the C matrix. j B jo j Bf jo p 2 p 0 1 B 1 0 0 C 0 2 r1 ta 2 3 3 3 3 4 4 4 1 1 2 2 2 2 3 1 1 2 3 4 4 4 1 2 3 3 3 0 0 1 1 1 4 4 4 0 2 2 2 4 5 6 6 3 5 0 0 2 q 1 r1 C 0j 1 0 1 r0 ta r0 C 0j q Figure 4 In the figures 5, 6 and 7 are presented the three fundamental contours obtained by this method. 2 r1 ta 2 r1 ta q 1 r1 C q 1 r1 C 1j 2j 1 0 1 1 r0 ta r0 C q 0 1 r0 ta r0 C 1j q Figure 5 Figure 6 525 2j The figurile 8 and 9 present a n iterative buiding of the fundamental contours. J 0 j 1 jo j 1 jo 0 f f z1 D B jo z1 kz 0 kl1 C kl1 C 29 z1 2 2 r1 ta f1 r1 ta q 1 f1 J 1 0 r0 ta f0 q q 1 J 1 1 0 r0 ta f0 J q 1 J Figure 8 Figure 7 REFERENCES [1] Wittenburg, J.: Dynamics of Systems of Rigid Bodies, B.G. Teubner, Stuttgart, 1977 [2] Tofan, M.C., Goia, I., Ţierean, M., Ulea, M.: Deformatele Structurilor, Ed. Lux Libris, Braşov, 1995 526
© Copyright 2026 Paperzz