Journal of Endocytobiosis and Cell Research (2015) 100-111 | International Society of Endocytobiology zs.thulb.uni-jena.de/content/main/journals/ecb/info.xml Journal of Endocytobiosis and Cell Research Improvement of root architecture under abiotic stress through control of auxin homeostasis in Arabidopsis and Brassica crops Branka Salopek-Sondi1, Stephan Pollmann2, Kristina Gruden3, Ralf Oelmüller4 and Jutta Ludwig-Müller5* 1RuđerBoškovićInstitute,Zagreb,Croatia; 2CentrodeBio‐ tecnologíayGenómicadePlantas,Madrid,Spain; 3National Institute of Biology, Ljubljana, Slovenia; 4Institute for Gen‐ eralBotanyandPlantPhysiology,Friedrich‐SchillerUniver‐ sityJena,Dornburgerstr.,159,07743Jena,Germany;5Insti‐ tutfürBotanik,TechnischeUniversitätDresden,Helmholtz‐ straße10,01069Dresden,Germany; *correspondenceto:Jutta.Ludwig‐Mueller@tu‐dresden.de Auxinplaysanimportantroleinmanyaspectsofplant development including stress responses. Here we brieflysummarizehowauxinisinvolvedinsaltstress, drought (i.e. mostly osmotic stress), waterlogging and nutrientdeficiencyinBrassicaplants.Inaddition,some mechanismstocontrolauxinlevelsandsignalinginre‐ lationtorootformation(understress)willbereviewed. Molecular studies are mainly described for the model plant Arabidopsis thaliana, but we also like to demon‐ stratehowthisknowledgecanbetransferredtoagricul‐ turally important Brassica species, such as Brassica rapa, Brassica napus and Brassica campestris. Moreo‐ ver,beneficialfungicouldplayaroleintheadaptation responseofBrassicarootstoabioticstresses.Therefore, thepossibleinfluenceofPiriformosporaindicawillalso be covered since the growth promoting response of plantscolonizedbyP.indicaisalsolinkedtoplanthor‐ mones,amongthemauxin. JournalofEndocytobiosisandCellResearch(2015)100‐111 Category:Review Keywords:Auxin,rootdevelopment,abioticstress,Brassicae Accepted:19November2015 ____________________________________________________________________ Introduction Plantdevelopmentisdependentontheavailabilityofwater andnutrientsinagivengrowthhabitat.Severedisbalances inthesoilstatussuchaselevatedsalinity,nutrientdeficien‐ cies,andcriticalfluctuationsinwatercontentusuallycaused byclimatechanges(droughtandwaterlogging),determined asabioticsoilstressesorbelow‐groundstresses,affectplant developmentandcropproductivity.Plantshavedeveloped differentmechanismstorespondtoenvironmentalchanges by employing plasticity in their growth and development. These molecular mechanisms define a multi‐dimensional 100 network of gene regulation, environmental signal sensing, signaltransduction,signalresponsesandphenotyperealisa‐ tion(YiandShao2008).Theplantrootisdirectlyexposedto below‐groundstresses,andresponsibleforsensingandre‐ sponding to such unfavorable environmental conditions. Theresponsesofplantstoabioticstressincludenumerous endogenous signals that coordinate processes within the roottissue,butalsobetweenrootandsubsequentshoottis‐ suesinordertoachievestressadaptationwithinthewhole plant.Therefore,theimprovementoftherootresponseswill alsoresultinlargeraerialplantpartsunderabioticstresses translatingeventuallyintohigheryield. Improvementofrootarchitectureiscentralfortheadap‐ tationofplantstoabioticstress.Amongthecrucialregula‐ tors in controlling these adaptation processes are rather simple indolic compounds called auxins. These hormones areparticularlyimportantforrootadaptationprocessesin Brassicacrops.Thus,thequestionariseswhetheritispossi‐ bletoobtainbetterresistanceagainstabioticstressinBras‐ sica species by co‐cultivation with the endophyte P. indica sincethefunguschangestheauxinhomeostasisintheroots (Leeetal.2011;Dongetal.2013). Thespatiotemporalcontrolofauxinlevelsiscrucialto thedevelopmentofplants;inparticular,totheproliferation of the plant root system. This kind of control cannot be achievedbydirectedandundirectedauxintransportalone, but rather has to include biochemical processes that are known to alter cellular auxin levels. A set of interesting genesspecificallycontributingtoindole‐3‐aceticacid(IAA) conjugationanddeconjugationaswellasanumberofauxin biosynthesisgenesthathavebeenshowntobeexpressedin rootsandtobeaffectedbyanumberofdifferentstresscon‐ ditionsplayimportantrolesinthecontrolofrootdevelop‐ ment.ThemodelsystemBrassicacanadapttoenvironmen‐ talstressconditionsbyoptimizingtherootarchitectureand itscommunicationwiththeshootbycocultivationwiththe root‐colonizingendophyteP.indica.Thisadaptationprocess ismediatedbyre‐adjustmentoftheauxinhomeostasisand that this is mainly caused by local increase in auxin levels (Sirrenbergetal.2007;Vadasseryetal.2008;Schäferetal. 2009;Hilbertetal.2012,2013;Leeetal.2011,Dongetal. 2013). Auxinhomeostasisandabioticstress Whatistheexactroleofauxininregulatingabioticstressre‐ sponsesandhowcanmanipulationoftheauxinhomeostasis generatemoreabioticstresstolerantinBrassicaplants?P. indica‐inducedadaptationprocesstodroughtstress,e.g.,re‐ sultsinmoreresistantplantswith>20%increaseinbiomass andseedproduction,whichisassociatedwithamassiveal‐ terationoftherootarchitecture,root‐shootcommunication andlocalauxinlevels(Peškan‐Berghöferetal.2004).These Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Root architecture under abiotic stress, Salopek-Sondi B et al. processesaretriggeredbyalow‐molecularmasselicitorre‐ leasedbythefungusintotherhizospherethattargetsplant auxinmetabolisminBrassicacrops(Vadasseryetal.2009a; Lee et al. 2011; Dong et al. 2013). Expression profiles of auxinbiosynthesisandmetabolismgenesunderstresscon‐ ditions can be compared with global gene expression pro‐ filesobtainedunderabioticstresstreatmentsandafterP.in‐ dicacolonizationinthemodelplantArabidopsisthalianaand thecropplants Brassica rapaand Brassica napusbyasys‐ temsbiologyapproach.Targetgenescanbeidentifiedwhich couldbeusedasmarkersforbreedingstrategies.Differen‐ tial display identified many P. indica‐stimulated genes for regulatoryproteinsinroots(Vahabietal.2015).Interesting candidategenesarealsoregulatedbyauxin,althoughexog‐ enousauxinapplicationtoBrassicarootsdoesnotinduces theroothairphenotype. Root system architecture is mainly determined by the complexinterplayofseveralplanthormones,e.g.auxin,eth‐ ylene(ET),andcytokinin.Inthisnetwork,auxiniselemen‐ tarytotheformationoflateralroots,whichlargelycontrib‐ utetotheplasticityoftherootsystem.Thecontrolofroot branchingdeterminestheexpansionoftherootsystemand, thus,theareaofsoilpenetratedbyaplant.Togetherwiththe obviousincreaseintheabsorbing‐activesurface,thisiscru‐ cial for optimal waterlogging and nutrient uptake via the root system. The potential to take up water and dissolved saltsfromtherhizosphereessentiallydecidesonthebiolog‐ icalfitnessofaplant.Itmightbepossibletostudythesepro‐ cessesbyusingP.indica,whichinducesamassivestimula‐ tionofroothairdevelopment,bothinPetridishesandnatu‐ ralsoil. Theplasticityofplantdevelopmentanditspotentialto adapttoconstantlychangingenvironmentalconditionsim‐ ply that the underlying regulatory mechanisms are highly complex.Inthisrespect,thedifferentialdistributionofauxin withinagiventissue,i.e.theformationoflocalauxinmaxima orgradients,isaparticularlyimportantregulatorymatter. Auxingradientshavebeenimplicatedinnumerousdevelop‐ mentalprocesses,forexample,patternformation,embryo‐ genesis,andtropisms.Sofar,theformationofauxingradi‐ ents has been attributed to two different processes, local auxinbiosynthesis(Zhao2010)anddirectionalintercellular auxin transport (Tanaka et al. 2006). Both processes are tightlycontrolledbyawealthofbioticandabiotic,aswellas developmentalsignals. Hence,the controlof cellular auxin formationanditsdistributionprovidesavaluablemeansto efficientlytranslateinternalandexternalsignalsintoplant growth responses. Basically any plant cell is assumed to have the ability to perceive auxin signals, including root cells. Auxininrootdevelopment Overthepastyears,mostworkhasbeenfocusedontheelu‐ cidationofmolecularmechanismsbywhichtheintegration ofauxinsignalsinrootsisrealized.Thestudiesprovidedev‐ idence for a number of short signal transduction cascades thatgovernrootgrowthresponsesbytranscriptionalrepro‐ gramming of responding cells. Herein, they control both priming of pericycle cells to become lateral root founder cellsandactivationofasymmetricalcelldivisionsastheini‐ tialstepoflateralrootformation.Thepathwaysinvolvean auxin specific receptor, an Fbox protein named TIR1, and several transcriptional repressors of the Aux/IAA family, whicharetargetedforproteolysisbythereceptorcomplex. Journal of Endocytobiosis and Cell Research VOL 26 | 2015 The Aux/IAAs orchestrate the activity of a group of tran‐ scriptionfactors,mainlyfromtheARFfamily(DeRybeletal. 2010;Overvoordeetal.2010).Alongsidethesesignaltrans‐ ductionandtranscriptioncontrollingprocesses,directional auxintransporthasbeenextensivelystudiedoverthepast coupleofyears.MembersofthePIN‐formed(PIN)protein family have been shown to govern auxin efflux in plant as well as in heterologous systems (Grunewald and Friml 2010).However,ithasalsobecomeincreasinglyclearthat localauxinbiosynthesisiscrucialtothegenerationoflocal auxinmaxima.Thisholdstruenotonlyforpatternformation inaerialplantorgans,butalsoforroots,asnumerousgenetic andpharmacologicstudiesrevealedthatauxincanbesyn‐ thesizednotonlyinleavesandshootapicalmeristems,but alsoinroottissues(Mülleretal.1998;Ljungetal.2001;Pe‐ terssonetal.2009;Hentrichetal.2013a).Likewise,IAAcon‐ jugationhasbeenshowntocontributetothecomplexregu‐ lationofrootdevelopment(KhanandStone2007;Zhanget al.2007).Ingeneral,asophisticatednetworkofseveralbio‐ chemical reactions including de novo biosynthesis, for‐ mationanddecompositionofIAAsugarandIAAaminoacid conjugates, and translocation processes control cellular auxin levels. Each of these reactions is differentially regu‐ lated and can respond to environmental triggers in an ap‐ propriatemanner. Auxinconjugatesarethoughttoplayimportantrolesas storageformsfortheactiveplanthormoneIAA.Initsfree form, IAA comprises only up to 25 percent of the total amountofIAA,dependingonthetissueandtheplantspecies studied.ThemajorformsofIAAconjugatesarelowmolecu‐ larweightesteroramideforms,butthereisincreasingevi‐ denceontheoccurrenceofpeptidesandproteinsmodified byIAA(reviewedinLudwig‐Müller2011).Sincethediscov‐ eryofgenesandenzymesinvolvedinsynthesisandhydrol‐ ysisofauxinconjugates,muchknowledgehasbeengained on the biochemistry and function of these compounds. In mosttissuestheauxinresponsesareconcentrationdepend‐ entanddifferenttissuesrespondinadistinctmannertovar‐ yingamountsofexogenousauxins(Thimann1938).Higher auxinconcentrationsmightbeofteninhibitory,sotheopti‐ mumendogenouslevelmustbetightlycontrolled.Thistight controlofauxinhomeostasisisalsoinvolvedintheregula‐ tionofrootgrowthsinceprimaryrootgrowthisinhibitedby high auxin levels, but lateral root initiation is triggered by localmaximaofauxin.Forexample,mutantsinGH3‐9,apro‐ teinbelongingtoclassIIenzymesofauxinconjugatesynthe‐ tases,displayedashorterrootphenotypeandhighersensi‐ tivity to auxin‐regulated root growth, indicating a role for GH3‐9inrootdevelopment(KhanandStone2007).Another example provides the symbiosis of P. indica with an Ara‐ bidopsis auxin overproducer, where the fungus promotes growthbyconvertingfreeauxinintoconjugates(Vadassery etal.2008). Indicationsforfunctionsofauxinconjugationinabiotic stressresponsescomefromworkwithavarietyofplantspe‐ cies.Junghansetal.(2006)foundanauxinconjugatehydro‐ lase from poplar in salt stressed tissue. Overexpression of PcILL3inArabidopsisalsorenderedthesetransgeniclines moresalttolerant.Duringawaterloggingexperimentwith soybean,aputativeauxinconjugatehydrolasewasfoundto be upregulated (Alam et al. 2010). Furthermore, tempera‐ turesensitivecellsofhenbanehadalteredauxinconjugate levels(OetikerandAeschbacher1997).GH3auxinconjugate synthetase genes are also directly involved in stress toler‐ ance.WES1(GH3‐5)forexamplewasalsoinducedbyvarious stressconditionssuchascold,droughtandheattreatment 101 Root architecture under abiotic stress, Salopek-Sondi B et al. aswellasbythestresshormonessalicylicacid(SA)andab‐ scisicacid(ABA).ItisinterestingtonotethatWES1cannot only adenylate IAA but also SA (Staswick et al. 2005). A WES1overproducingline(wes1‐D)wasresistanttoabiotic stressessuchasdrought,freezingandsalt,butalsohightem‐ peratures (Park et al. 2007), whereas a T‐DNA insertional mutant showed reduced stress resistance. In addition, stress‐responsive genes were up‐regulated in the wes1‐D mutant.Interestingly,CBF(C‐repeat/dehydration‐responsive element‐binding factor) genes were directly regulated by auxin(repressedbyIAA),andtherepressionwasattenuated inthelinewithhigherauxinconjugateformation(Parketal. 2007). Rootarchitecturalalterationbyanendophyte As already insinuated, a potential help for optimizing the rootarchitectureunderabioticstressconditionsmightpro‐ videthesymbiotic,root‐colonizingendophyticfungusP.in‐ dica,abasidiomyceteoftheSebacinales.Thisprimitivefun‐ gusinteractsalsowiththemodelplantA.thaliana.P.indica isacultivablefungusandcangrowonsyntheticmediawith‐ outahost(Peškan‐Berghöferetal.2004).P.indicapromotes nitrateandphosphateuptakeandmetabolism(Shahollariet al. 2005; Sherameti et al. 2005; Yadav et al. 2010), allows plantstosurviveunderwaterandsaltstress(Sherametiet al.2008a;Baltruschatetal.2008;Sunetal.2010),andstim‐ ulates growth, biomass and seed production (Verma et al. 1998; Shahollari et al. 2004, 2005; Sherameti et al. 2005, 2008b;Vadasseryetal.2008;Walleretal.2005,2008;Oel‐ müller et al. 2009). In Arabidopsis and Chinese cabbage (Brassicarapa)growthpromotioncanalsobeachievedby an exudate component released by the fungus into its cell wallandintothegrowthmedium(Vadasseryetal.2009a; Leeetal.2011).Thisandotherdatasupporttheconceptthat (an)elicitorreleasedbythefungusisperceivedbythehost cell,activatingareceptor‐mediatedsignallingpathway.Phy‐ tohormonesandtheirhomeostasisintherootsarecrucial forP.indicaeffectsinplants(Sirrenbergetal.2007;Vadas‐ seryetal.2009b;Schäferetal.2009;Leeetal.2011;Donget al. 2013). The exudate component induces massive root branching,andresultsinamorethan2‐foldincreaseinthe auxinlevelintheroots(butnotintheshoots)ofChinesecab‐ bage seedlings (Lee et al. 2011). Furthermore, the aerial parts of these plants are significantly more resistant to drought (Sun et al. 2010). Since exogenous application of auxintoChinesecabbagerootscannotreplacethebeneficial effectsofthefungus,characterizationofthealreadyidenti‐ fiedP.indica‐andauxin‐relatedtargetsof P. indicainChi‐ nesecabbagerootsmightcontributesubstantiallytothebet‐ terunderstandingofthisscenario. Recentpublicationshaveemphasizedthatatightcontrol oflocalauxincontentsishighlyimportantfortheregulation of root development. This requires sophisticated mecha‐ nisms,whichcontrolauxinbiosynthesis,andthehydrolysis ofauxinconjugatesinrootsduringabioticstress.Thebene‐ ficialgrowth‐promotingfungusP.indicainducesstresstol‐ eranceandrootgrowthbycontrollinglocalauxinlevelsand auxinrelatedprocesses, providingatooltoinducethede‐ sired phentype, which can be studied with the aim of bio‐ technologicalapplications.Howrootsperceiveandrespond tobelow‐groundabioticstresses,andhowtherootarchitec‐ tureisadaptedtothenovelconditionsintermsofdevelop‐ ment,root‐shootcommunicationandinteractionswiththe bioticenvironmentisstillunclear.Theresponseismediated 102 byadaptationoftheauxinhomeostasistochangerootdevel‐ opmentinresponsetoabioticstresses.Theperceptionofthe signal by P. indica trigger auxin response pathways under normalgrowthandstressconditions,resultinginenhanced abioticstresstolerancetraitsofthecolonizedplants.Inad‐ dition,P.indicaprotectstheplantsystemicallyunderstress using root to shoot communication, which is achieved by takingadvantageoftheplant’ssignalingpathways.Thisgen‐ eratesastronginteractionoftheplantrootswiththeenvi‐ ronmentalsoil.Responsetochangingenvironmentsandad‐ aptationoftherootstothesenovelconditionsrequirespri‐ marily(local)increaseinauxinlevels.Changesinauxinho‐ meostasis, i.e. via biosynthesis and release from inactive conjugatesmightbeadirectorindirectconsequenceofP.in‐ idca colonization. P. indica confers stress tolerance to Chi‐ nese cabbage roots via changes in the auxin homeostasis. Moreover,thefungusutilizesseveralplanthormonesignal‐ ingpathwaystoconferincreasedtoleranceandthusinflu‐ ences the hormonal networks in roots under given stress conditions(Schäferetal.2009;Sunetal.2014). Four kinds of abiotic stresses impairing plant growth andbiomassproductionplaymajorrolesinagriculture:salt stress, drought, waterlogging and nutrient deficiency. In termsofnutrientdeficiency,phosphate(P)deficiencystud‐ ieshavedemonstratedthatlimitingPconditionshavedra‐ maticimpactonrootarchitecture.Theeffectisgovernedby theinterplayofauxin‐dependentcellcyclecontrol,modula‐ tion of auxin perception, and auxin accumulation (López‐ Bucio et al. 2005; Sánchez‐Calderón et al. 2005; Pérez‐ Torresetal.2008;Miuraetal.2010).Additionally,asout‐ linedabove,P.indicapromotesPuptake(Yadevetal.2010; Kumaretal.2011;Molitoretal.2011;Petersenetal.2013; Dasetal.2014).Thissuggestsalinkagebetweenthebenefi‐ cialpropertiesattributedtothesymbiosisofthehostplant withtheendophyteandtheinfluenceontheauxinlevelin thecourseoffungusinfection.However,theselectedkinds ofstressarecausingsevereproblemsinagricultureandre‐ ducecropyieldsallovertheworld.Itisestimatedthatcon‐ siderablelossesincropproductivity(morethan50%)are causedbyabioticstresses(Qinetal.2011);hence,threaten thefoodsecurityworldwide.throughoutEurope.Over6%of thegloballandareahasestimatedtobeaffectedbysalinity, 64% by drought, 13% by flooding, and about 57% by ex‐ tremetemperatures(MunnsandTester2008;Crameretal. 2011;Ismailetal.2014).Inthelastfewyearswaterlogging becameatopicarisingconsiderablepublicandscientificat‐ tentioninCentralEurope,wherelargerainfallsresultedin riversoverflowedmoreoftenthaninthepast.Membersof theBrassicaceaearefoundmoreorlessallovertheworld and represent a large number of economically important plantculturecrops.Brassicavegetableslikecabbages,broc‐ coli, turnip greens and leaf rape, among others, are con‐ sumedthroughouttheworld.FAOStatistics(FAOStat2013) showedthattheproductionofcabbagesandotherbrassicas was6.3%,and8%ofthetotalvegetableproductionofthe world, and European Union, respectively, in 2013. The model plant A. thaliana can be used to elucidate general mechanismsbyfunctionalandgeneticanalysis. In conclusion, understanding auxin homeostasis‐based networks that govern the outcomes of plant growth re‐ sponsestoanumberofdifferentabioticstressconditionsin rootsisanimportanttaskforthefuture.Theresultswillbe of great significance for studies of crosstalk signaling not onlyinplant‐pathogenbutalsoinplant‐stressinteractions. Thebroadermeritcouldresultinimprovedstressresistance Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Root architecture under abiotic stress, Salopek-Sondi B et al. incorporatedintocommerciallinesthatisofgreatandim‐ mediate significance for the general public, seed industry, oilseed rape growers and breeders. Ultimately, improved stresstoleranceisexpectedtoleadtoincreasedseedyield andbiomassproduction.Withthebackgroundknowledgeof asteadyrisingdemandforagriculturalproductsandlimited resources (arable land), this is and will become an even more important matter of concern. Achievement of these goalsispossible,asdemonstratedbyP.indicacolonization, howeverourpresentknowledgeabouttheauxintargetsof the fungus prevents the development of biotechnological applicationaltools. Howtocontrolauxinsignalling,biosynthesisand metabolism Unlikeanimals,plantsremainfixedinoneplaceabsorbing wateraswellasmicro‐andmacronutrientsfromtheirenvi‐ ronment.Therootsystemplaysahighlyimportantrolein thiswayoflife.Ontheonehand,itservesastheorganofab‐ sorptionforwateranddissolvedsalts;ontheotherhand,it is the organ of attachment, anchoring the plant to the ground.Asplantshavetocopewithever‐changingandoften adverseenvironmentalconditions,theyremainedtheability torespondtochangesinnutrientandwateravailability,as wellastoanswerbioticandabioticstresscues.Ingeneral, optimizingthemetabolismoradaptingthebodyplantothe given environmental demands mediates these responses. Withrespecttotherootsystemarchitecture,eitherincreas‐ ingordecreasingthevelocityofrootgrowthandexpansion achievesthelatter. Abioticstressresultsinaseriesofmorphological,physi‐ ological,biochemical,andmolecularchangesthatadversely affect plant growth and productivity (Wang et al. 2001). Muchabioticstresses,e.g.drought,salinity,orextremetem‐ peratures, appear to be interconnected and seemingly in‐ ducesimilarcellulardamage.Asanexample,droughtandsa‐ linityaredisclosedprimarilyasosmoticstress,resultingin thedisruptionofhomeostasisandiondistributioninthecell (Serranoetal. 1999;Zhu2001).Asaconsequence,thedi‐ verse environmental stress cues often activate similar cell signalling cascades (Shinozaki and Yamaguchi‐Shinozaki 2000;KnightandKnight2001;Zhu2002)andtriggersimilar cellularresponses,suchastheproductionofstressproteins, up‐regulationofanti‐oxidants,andaccumulationofcompat‐ ible solutes (Vierling and Kimpel 1992; Zhu et al. 1997; CushmanandBohnert2000).Likewise,theyinducealtera‐ tionofplanthormonehomeostasis,inparticularofABAand jasmonicacid(JA)(Chavesetal.2003;CreelmanandMullet 1995;Dombrowski2003),which,inturn,translatesintoad‐ aptation of the plant developmental program. Due to the high degree of developmental plasticity, plants are able to respond by completing their life cycle before prevalent stressconditionscausephysiologicaldeficits.However,such prematurecompletionofthelifecycletoensuresurvivalof theprogenyleadstoasignificantlossinplantproductivity. ExperimentsemployingtheendophyticfungusP.indicapro‐ videdevidenceforasignificantlyincreasedstresstolerance andproductivityofinfectedplants,indicatingthatthereign ofgrowthinhibitingplanthormonescanbebroken.Itisbe‐ comingincreasinglyclearthatthefungusproducesitsbene‐ ficialimpactbymanipulatingauxinhomeostasis,buttheun‐ derlyingmolecularmechanismshaveyettobedisclosed. Research on abiotic stress involved the screening for mutants directly affected in individual stress components suchassaltordroughtorwaterlogging,etc.Bythisapproach Journal of Endocytobiosis and Cell Research VOL 26 | 2015 individualcomponentsofaparticularstresspathwayhave beenidentifiedamongthemtransportersforsodium(Qiuet al.2004)ormembersofsignaltransductionchains(Gonget al.2002).However,therootarchitecturehasbeenneglected asacommontargetinthesestudies.Theidentificationofa singlecomponenttransferringstresstolerancetoonlyone stressistheresultofthesestudies.Ontheotherhand,im‐ provingtherootarchitectureasawholeinresponsetoava‐ rietyofstressesandstresscombinationswillresultinplants tolerant to more than one abiotic stress situation. To im‐ provetherootsystembyusingnaturalcompounds,i.e.aux‐ ins will be important for the understanding root develop‐ ment. So far, the involvement of auxins as signaling mole‐ culesinplantstressresponsesisonlypoorlyexploited.How‐ ever,therearealreadyafewlinesofevidencefromgenomic studiesthatindicateacontributionofauxininthisprocess (Sreenivasuluetal.2007;Wangetal.2010;Dombrechtetal. 2007;Hentrichetal.2013a).Inthiscontextitisimportant to analyse also hormonal crosstalk between stress and growth‐relatedhormonesasoneaspecttoidentifycombina‐ tionsincreasingstresstolerance. Theinitiationoflateralrootsisofparticularimportance fortheabsorptionefficiencyofaplant,asitdirectlydeter‐ minestheactivesurfaceoftherootsystem.Plantsproduce neworgans,suchaslateralroots,primarilypostembryoni‐ cally. The formation of these new lateral organs proceed fromrudimentaryformedfoundercellsthatfollowaprecise pattern, which guarantees an even and optimal spacing of thelateralrootsthatcontributestothefunctionalityofthe newlyformedplantorgans.Althoughseveraldifferentcom‐ poundsareknownasplanthormonesandtocontributeto plantstressresponses,eitheractingindividuallyorincross‐ talkwithotherphytohormones(Davies2004),plantshape islargelycontrolledbyauxins(VannesteandFriml2009).In roots,bothprimingofthelateralrootfoundercellsaswell asinitiationoftheasymmetricaldividingofthesepericycle cellsandtheirdevelopmentispredominantlygovernedby auxin,andanumberofAUXINRESPONSEFACTORS(ARFs) and AUXIN/INDOLE‐3‐ACETIC ACID (Aux/IAA) proteins thatactasinhibitorsoftheARFs. It has been reported that the control of lateral root founder cell identity is facilitated by an IAA28‐dependent auxinsignallingmoduleinthebasalmeristemregionofthe primaryrootthatregulatestheexpressionofthetranscrip‐ tionfactorGATA23thatseeminglyplaysakeyroleinspeci‐ fying pericycle cells to become lateral root founder cells priortolateralrootinitiation(DeRybeletal.2010).Lateral rootinitiationitself,islargelymaintainedbytheSOLITARY ROOT (SLR)/IAA14‐ARF7‐ARF19 auxin response system thatisnecessaryforproperactivationofthebasiccellcycle machineryandforthecontroloftheinitial,asymmetricper‐ icyclecelldivisions(Fukakietal.2002;Vannesteetal.2005; FukakiandTasaka2009). Ascanbetakenfromthesefewexamples,thedynamic andspatiotemporalpresenceofIAAaswellastheabilityto perceiveandintegratethissignalhastobetightlycontrolled, inordertoenableappropriategrowthoftherootsystem.Ex‐ tremelysimplified,itcanbeassumedthatlowIAAcontents translateintoarepressionoflateralrootformation,whileel‐ evatedlevelsofIAAresultinanincreasednumberoflateral rootfoundercellsand,hence,anincreasednumberoflateral roots.Thissummaryisnotentirelycorrect,though,sinceit is well‐knownthat, especially in roots, high IAA levels can havegrowthinhibitoryeffects(Thimann1938;Ivanchenko etal.2010).Nevertheless,itprovokesthecrucialquestion onhowcellularauxinlevelsarecontrolled.Onemajoraspect 103 Root architecture under abiotic stress, Salopek-Sondi B et al. inthegenerationoflocalauxinmaximaissurelythecell‐to‐ celltransportofIAAbypolarlocalizedauxinexportersofthe PIN‐FORMED (PIN) family and some evenly distributed ATP‐bindingcassettesubfamilyB(ABCB)‐typetransporters of the multidrug resistant/phosphoglycoprotein (ABCB/ MDR/PGP) protein family. Accompanied are these trans‐ portersbyauxinimportersoftheAUX1/LAXfamily(Petra‐ sekandFriml2009).However,severalrecentstudieshave ledtothediscoverythatalsolocalauxinbiosynthesisiscru‐ cialtomanydevelopmentalprocessesincludingpatternfor‐ mation, gametogenesis, embryogenesis, seedling growth, andflowerdevelopment(Zhao2010).Moreover,ithasbeen suggested that the release of free auxin from auxin‐conju‐ gatesadditionallycontributestovariousdevelopmentalas‐ pects(Ludwig‐Müller2011;seeFigure1). Figure1:Pathwaystoregulateauxinhomeostasisbybiosynthesis andconjugation. Regulationofauxin Despitethemountingknowledgeoftheprocessesgoverned byauxinsandofauxintransport,thebiosynthesisofIAAis stilluncertain.IAAbiosynthesisissuggestedtoproceedvia anumberofdifferentmetabolicroutes.Uptodate,onlyone oftheproposedpathwaysisfullydisclosedwithrespectto thecatalyzedreactionstepsandtheenzymesinvolved.How‐ ever,itisproposedthatthedifferentpathwaysacteitherin parallelorredundantlytooneanother,inadevelopmentally regulatedmanner(Zhao2010).InA.thaliana,comprehen‐ sive mutant analyses have implicated two major biosyn‐ theticpathwaysinauxinbiosynthesis;theseeminglypreva‐ lentIAA‐biosyntheticpathwaythattakesatryptophanami‐ notransferase(TAA1/SAV3)dependentroute(Stepanovaet al.2008;Taoetal.2008),whichproceedsviaafinalYUCCA (YUC)monooxygenase‐likefamily‐dependentreactionstep (Zhaoetal.2001;Mashiguchietal.2011;Wonetal.2011; Stepanova et al. 2011), and the CYP79B2/B3 cytochrome P450 monooxygenase family‐dependent pathway (Zhao et al. 2002; Sugawara et al. 2009). The lack of CYP79B2/B3 homologs in genera other than Arabidopsis and very few closelyrelatedspeciesmostlikelyrestrictsthelatterpath‐ waytotheBrassicaceaefamilyandcontradictawidespread 104 distribution of this route within the plant kingdom (Quit‐ tendenetal.2009;Sugawaraetal.2009).Besidestheabove‐ mentioned biosynthetic pathways, several other publica‐ tionsreportedtheoperationofanIAMhydrolase‐dependent pathwaytooccurinplanta(Pollmannetal.2003;Araietal. 2004; Nemoto et al. 2009). Especially the identification of IAMasanendogenouscompoundinArabidopsis(Pollmann etal.2002),andthesubsequentisolationandcharacteriza‐ tionofanIAMhydrolase(AMI1)fromthisspecies,butalso severalothermonoanddicotspecies,implicatedthefunc‐ tionalityofsuchapathwayinplants(Pollmannetal.2003, 2006;Neuetal.2007;Sánchez‐Parraetal.2014). Various features in root architecture such as in‐ crease/decrease of primary root length, number of lateral rootsandroothairsallareconnectedtorootsurfacewhich affectsviabilityoftheupperpartoftheplant.Auxinsplaya major role in root growth and development, and thus also in abiotic stress tolerance. In additon to auxinseveralotherplanthormonesareinvolvedin thecontrolofrootdevelopment,suchascytokinin, JAs,andET. Previous research characterized the first de‐ scribed IAM hydrolase from plants, referred to as AMIDASE1(AMI1)(Pollmannetal.2003,2006;Neu etal.2007).TheArabidopsisAMI1showshighho‐ mology to bacterial iaaH auxin biosynthesis en‐ zymesfromplantpathogens,suchasPseudomonas and Agrobacterium. Metabolic and genetic studies haveunderlinedthecontributionofAMI1toauxin biosynthesisinplanta,too(Lehmannetal.inrevi‐ sion). The induced ectopic expression of AMI1 re‐ sultsinauxin‐relatedmutantphenotypes,i.e.short primary roots, reduced growth, and curled leaf shapes. Moreover, the overexpressors have in‐ creased IAM hydrolase activities, and elevated en‐ dogenousIAAcontents.Promoterreporterlinesas wellasqRT‐PCRexperimentsrevealedstrongAMI1 expressionduringseedlingdevelopmentandinpro‐ liferating tissues (Pollmann et al. 2006; Hoffmann et al. 2010;Lehmannetal.inrevision),resemblingtheexpression pattern of other auxin biosynthesis genes, such as YUC4, TAA1, and CYP79B2, and of the synthetic auxin reporter DR5::GUS(Ulmasovetal.1997;Mikkelsenetal.2000;Cheng etal.2007;Taoetal.2008).Besidesseveralbioticcues,nu‐ merousabioticstimulihavebeenobservedtoregulatethe expression of AMI1. In particular, salt stress has been re‐ ported to significantly up‐regulate the expression of AMI1, whereashighsugarcontentshavebeenshowntosuppress AMI1 transcription. The latter implies crosstalk between auxin formation and sugar signaling networks, whereby plantgrowthispresumablylinkedwithphotosynthesisand carbonfixation(Lehmannetal.2010). Incontrasttotheresultsobtainedinthegain‐of‐function experiments,theanalysisofan AMI1T‐DNAinsertionmu‐ tantdisclosedreducedIAMhydrolaseactivitiesandasignif‐ icantlyreducedendogenousIAAlevels.Interestingly,thein‐ depth analysis of the root architecture of the three ami1 knockoutlineundercontrolandsaltstressconditionspro‐ videdstrongevidenceforafunctionofAMI1asasuppressor ofrootbranchingandoftheexpansionoftherootsystem. Thisfunctionbecameevenmorepronouncedwhenplantlets weregeminatedundersaltstressconditions.Whilethewild typerespondedwithaslightreductionofrootbranchingto highsalinityinthemedia,theami1nullmutantansweredto thistypeofabioticstresswithareasonableinductionofroot branching.Sofar,itisnotentirelyclearhowAMI1‐governed Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Root architecture under abiotic stress, Salopek-Sondi B et al. auxinproductioncannegativelyaffectlateralrootformation andtheexpansionoftherootsystem.Currently,wefavour the working hypothesis that this way of auxin formation counteractslocalauxinmaximainsuchwaythatitreduces thesteepnessoftheauxingradientsbytheproductionofIAA insurroundingtissues.Consequently,thismayoverridelo‐ calauxinsignalsnecessaryfortheinitiationoflateralroot formation,andtranslateinanarrestoflateralrootdevelop‐ ment. Alternatively, AMI1‐mediated auxin biosynthesis might result in general auxin overproduction, which may have a global inhibitory effect on root proliferation. How‐ ever,itisyettooearlytodecidewhichmolecularmechanism is responsible for the suppressive function of AMI1, as in‐ sightintothedynamicexpressionofAMI1duringthecourse oflateralrootformationisyettobeprovided. Some other previous studies unraveled substantial crosstalkbetweenoxylipinsandauxin.Thisisremarkablein suchasthesetwoplanthormonesusuallyhaveantagonistic effects. However, it appeared that the expression of one YUCCA(YUC)genefamilymember,YUC9,isstronglyinduced by JA and coronatine, a bacterial phytotoxin that mimicks thephysiologicallyactiveformofJA,JA‐Ile.Bycontrast,the bioactiveJAprecursor,12‐oxo‐octadecatrienicacid(OPDA), suppressesYUC9transcription.Mutantanalysis,employing the JA receptor mutant coi1, reveaved that JA‐mediated auxin biosynthesis proceeds via the COI1 signalling path‐ way.Metabolicstudiesondissectedorgansofwildtypeand yucmutantlinesprovidedseverallinesofevidenceforapar‐ tiallyredundantsysteminwhichYUC9actstogetherwithits closehomolog,YUC8.However,YUC8showsonlyaweakand lateresponsetoJA,butiscapableofpartiallycompensating foralossofYUC9,asintheyuc9backgroundYUC8showsan inducedresponsivenesstoJA.Thoroughgeneticandmeta‐ bolicanalysesindicatedthatbothgenescontributetoauxin biosynthesisinplanta.Comparedtothewildtype,yuc8and yuc9knockoutshaveshorterprimaryroots,hypocotyls,and petioles.Moreover,especiallytheyuc9mutantsshowanab‐ errant root branching phenotype. Noteably, a loss of both loci,YUC8andYUC9,translatesintoanearlycompletelack of IAA production in response to the administration of JA (Hentrich et al. 2013a). Interestingly, JA has additionally beenreportedtoinducetheexpressionofseveralIAA‐amino acid hydrolases, i.e. IAR3, ILR1, ILL3, and ILL5 (Taki et al. 2005; Salopek‐Sondi et al. 2013). The corresponding en‐ zymescould,inturn,beresponsiblefortheremainingIAA formation in the yuc8/yuc9 double‐knockout line, thereby providingafunctionalconnectionbetweenauxindenovobi‐ osynthesis and auxin release from diverse storage pools. However,theseresultsareinagreementwithpromoterre‐ porter studies that disclosed expression pattern for both YUC8andYUC9thatimplyaparticipationinlateralrootde‐ velopment.Apparently,YUC9,butnotYUC8,isdownstream of the repressor protein SOLITARY ROOT/IAA14, as it is clearlyup‐regulatedintheslr1nullmutantbackground.In‐ triguingly, YUC9 is seemingly not controlled by ARF7/ ARF19, the transcription factors mainly affected by SLR/IAA14,sinceYUC9isnotsignificantlyrepressedinthe arf7/arf19double‐knockoutline.However,withrespectto theexpressionpattern,itisstricinglyclearthatYUC9goes aheadofYUC8inthecourseoflateralrootformation.YUC9 expression gets visible at stage II to III of primordia for‐ mationinthecentralcylinderoftheroot,directlybeneath proliferatinglateralrootprimordia.Theexpressionlevelin‐ creases with the onset of lateral root growth but stays re‐ strictedtothecentralcylinderoftheprimaryroot.YUC8ex‐ Journal of Endocytobiosis and Cell Research VOL 26 | 2015 pression,however,lacksbehindshowingfirstdetectablesig‐ nals clearly later than stage five at the central base of the newlyformedlateralroot.Lateron,YUC8expressionstays restrictedtothelateralrootandincreaseswithinthecentral cylinderofthenewlyformedorgan. JAsaregenerallyconsideredtobebasicplantstresshor‐ monesproducedafterherbivoreorpathogenattack.None‐ theless,thereisalsoawealthofdataprovidingevidencefor acontributionofJAincontrollingbothdevelopmentalpro‐ cessesandplantresponsestowaterdeficit,saltstress,and heavymetalstress(CreelmanandMullet1995;Dombrowski 2003;Maksymiec2007).ItseemsevidentthatplantsuseJA asabridgetolinkplantstressandgrowthresponses.Inthis framework, the JA‐induced and YUC8‐ and YUC9‐mediated auxinbiosynthesisissuggestedtoresultinlocalIAAover‐ production,whichleadstotwodifferentoutcomes:i)high IAAdosesrepressplantgrowth,therebyassistingthegen‐ eralgrowthinhibitinginfluenceofJA;ii)highIAAcontents areknowntoinduceETbiosynthesis.ETisknowntostimu‐ latetheformationofsclerenchymatictissueandtopromote secondary plant growth. Both of these effects can be ob‐ served in respective YUC8 and YUC9 gain‐of‐function mu‐ tants(Hentrichetal.2013a,b). Taken together, AMI1 and the two YUCCA genes, YUC8 andYUC9,fromArabidopsis,arelikelyinvolvedinregulating lateralrootdevelopment.Publiclyavailablemicroarraydata pointtowardsadifferentialregulationofthethreecandidate genesuponvariousabioticstressconditions,includingsalt‐, drought‐,andosmoticstress.Furthermore,severaltypesof nutrientstresses,suchasnitrogen,phosphorous,sulfur,po‐ tassium,orirondeficiencyordepletionhavebeenshownto transcriptionally control target gene expression. Possibly even more importantly, the three target genes show very broad distribution in the plant kingdom, implying an im‐ portantandperhapsbasicfunction.Currently,thereare47 identified AMI1 homologous proteins derived from 38 dif‐ ferent species, covering both mono‐ and dicot genera (Sánchez‐Parraetal.2014).LikeAMI1homologs,YUC‐like proteinshavebeenidentifiedfromvariousplantspecies,in‐ cludingtherelevantcropplantsmaize,rice,andtomato.As Brassicacrops,suchasBrassicarapaandBrassicanapus,are phylogeneticallycloselyrelatedwithA.thalianatheidentifi‐ cationandfunctionalcharacterizationofpendantstoAMI1, YUC8,andYUC9intheBrassicacropsisnotexpectedtobea majorobstacle.Anotherremarkableaspectwithrespectto thethreeselectedtargetgenesisthatalossofneitherofthe genescauseslethality,whichmakesthemtoidealcandidates forthegenerationoftransgenicplantlinesorforthedevel‐ opment of targeted breeding programs that yield in elite germplasmswithimprovedtraits. IAA is found mostly in its conjugated form (approxi‐ mately95%)inalltheseedplantsstudiedsofar,thussug‐ gestingthatreversibleconjugationis,inadditiontoauxinbi‐ osynthesis,anothercriticalmechanismtoregulateIAAavail‐ ability(Szteinetal.1995).Differentplantspecieshavedis‐ tinctprofilesofauxinconjugates;monocotspreferablyaccu‐ mulate ester conjugates, whereas dicots synthesize mostly amide conjugates (reviewed by Bajguz and Piotrowska 2009).Since1955,whenIAA‐Aspwasdetectedasafirstam‐ ideconjugateinpeaseedlings,differentaminoacids(seefor review Woodward and Bartel 2005; Ludwig‐Müller et al. 2009; Penčik et al. 2009) and peptide (Walz et al. 2002, 2008;Seideletal.2006)conjugatesofIAAwerereportedto be identified in different plants. It is generally postulated thatIAAconjugatedtoAspandGluisanirreversiblecatabo‐ lite being important for auxin detoxification, while other 105 Root architecture under abiotic stress, Salopek-Sondi B et al. amidconjugatesaresuggestedtoparticipateinstorageand hormonehomeostasisasaslow‐releasingsourceoffreeIAA (HangarterandGood1981).Amideconjugatesofthelong‐ chain auxin, 4‐(indol‐3‐yl)butyric acid (IBA) (particularly IBA‐Asp)werereportedtobefoundinafewplantssuchas peatissue(Nordströmetal.1991),andpetuniacellsuspen‐ sionculture(EpsteinandLudwig‐Müller1993)afterfeeding withIBA,andinmaizerootsduringarbuscularmycorrhiza formation(Fitzeetal.2005).Intheviewofapplication,ex‐ ogenousIBAconjugateshavebeensuccessfullyusedforthe rootingofcuttings(EpsteinandWiesman1987;Wiesmanet al. 1989; Mihaljević and Salopek‐Sondi 2012), although mechanismofrootinitiationhasremainedunclear. The conjugate IAA‐Trp has a different function from other auxin conjugates, i.e. it is not a storage compound (Staswick2009).IAA‐Trpcausedagravitropicrootgrowthin seedlings, while Trp alone did not. In addition, IAA‐Trp nearly eliminated seedling root inhibition caused by high concentrationsofIAAandinhibitedIAA‐dependentstimula‐ tion of lateral root growth (Staswick 2009). These results showedthatIAA‐Trpconstituteapreviouslyunrecognized mechanismtoregulateauxinactionandcouldbetherefore animportantcompoundincontrollingrootarchitecture. Ithasbeenshownthatreversibleauxinconjugationmay playanimportantroleinplantadaptationtoabioticstress. Inpoplartrees,theauxincontentwasfoundtodeclinedur‐ ingstressconditionswhileauxinconjugateswereincreased (Junghansetal.2006;Popkoetal.2010),suggestingthatdi‐ minishedauxincontentmaybeafactorthatadaptsgrowth (generally reduce) during adverse environmental condi‐ tions.Furthermore,perturbationinauxinprofilesuchasel‐ evatedleveloflongchainauxinIBAanditssugarconjugate IBA‐Glc in Arabidopsis transgenic plants ectopically ex‐ pressed UDP‐glucosyltransferase (UGT74E2) has been shown to improve survival during drought and salt stress significantly (Tognetti et al. 2010). A cascade of signals causedbystressconditionsseemstomediateauxinprofile andlevelbyinfluencingexpressionandactivityofenzymes responsibleforreversibleauxinconjugation,suchasauxin conjugate synthases (GH3), UDP‐glucosyltransferases (UGTs),andauxinamidohydrolases(IARandILL).Thusvar‐ iousenvironmentalstresses,includinghighsalinityandos‐ moticstress,areshowntoinduceGH3genesandoverpro‐ duce GH3 enzymes in Arabidopsis (Park et al. 2007). Fur‐ thermore, activation of GH3 promoter has been found in poplarundersaltstressbyusingpGH3::GUSasanauxin‐re‐ sponsive reporter (Teichman et al. 2008). Tognetti et al. (2010) showed that UDP‐glucosyltransferase (UGT74E2), which preferentially glucosylates IBA as a substrate was strongly upregulated during drought and salt stress. The mechanism of regulation has appeared to be mediated by H2O2,usuallyreleasedduringstressconditions.Ontheother side, Arabidopsis plants transformed with auxin‐amidohy‐ drolase gene ILL3 from poplar were more resistant to salt stress than the wild‐type plants (Junghans et al. 2006). Basedonproteomeanalysis,auxin‐amidohydrolasewasalso reportedasanovelproteinidentifiedinsoybeanrootinre‐ sponse to waterlogging (Alam et al. 2010). Despite a few above‐mentionedevidences,areversibleauxinconjugation as a mechanism of abiotic stress adaptation is mostly un‐ clear,particularlyincropplants. The enzymology involved in the metabolism of amide conjugatesisjustbeginningtobeunderstood.Thebiosyn‐ thesisofamideconjugatesiscatalyzedbyasubsetofpro‐ teinsfromtheso‐calledGH3familyandappearedtoinclude auxins activated by adenylation as critical intermediates 106 (Staswicketal.2002,2005).ThefamilyofGH3genesinAra‐ bidopsis consists of 19 family members (Staswick et al. 2005),ofwhichatleastsevenareabletocatalyzethesyn‐ thesisofIAAamideconjugates.Thesebelongtotheso‐called groupIIgenes(Staswicketal.2005).Thefirstmemberofthe auxininducibleGH3genefamilywasisolatedfromsoybean (HagenandGuilfoyle1985).UptonowGH3familymembers involvedmostlikelyinIAAconjugationhavebeenreported fromavarietyofplantspecies(formoredetailsseethere‐ viewonGH3sbyWangetal.2008),amongthemthemoss Physcomitrellapatens(Bierfreundetal.2004;Ludwig‐Mül‐ ler et al. 2009), tobacco (Roux and Perrot‐Rechenmann 1997),rice(Jainetal.2006),andpungentpepper(Liuetal. 2005), the latter regulated by auxin and ET. Despite this, onlyforafewplantspecies,inadditiontoArabidopsis,the activity of GH3 proteins as adenylating enzymes has been demonstrated,e.g.forP.patens(Ludwig‐Mülleretal.2009), andrice(Chenetal.2009).Inaddition,theGH3proteinfam‐ ilyhasbeenimpliedinthestressresponseandstresstoler‐ anceinArabidopsis(Parketal.2007),poplar(Teichmannet al.2008),sorghum(Wangetal.2010),rice(Duetal.2012), andapple(Yuanetal.2013). The hydrolysis of IAA amide conjugates results in free auxins and is mediated by auxin amidohydrolases, metal‐ loenzymesbelongingtotheM20familyofpeptidases.Sev‐ eralsuchhydrolases(namedIARandILL)werefirstcloned fromA.thalianaandtestedforactivitytowardsconjugates ofthemostcommonauxin,IAA(BartelandFink1995;Da‐ vies et al. 1999; Lasswell et al. 2000; LeClere et al. 2002; Rampeyetal.2004).Eachoftheseenzymesshowsdifferent but overlapping substrate specificity. Auxin conjugate hy‐ drolaseswerethenisolatedandpartiallycharacterizedfrom Arabidopsis suecica (sILR1), a close relative of A. thaliana (Campanellaetal.2003a,b).Someofauxinconjugatehydro‐ lasesfromthelegumeMedicagotruncatuladisplayedactiv‐ ity towards IAA‐aspartate (Campanella et al. 2008), which hasearlierbeendescribedonlyassubstrateforbacterialIAA conjugatehydrolases(Chouetal.1998).Anorthologofthe A.thalianaIAR3fromthemonocotspecieswheat(Triticum aestivum)(TaIAR3)showedsubstratespecificityforlonger sidechainauxinssuchasaminoacidconjugateswithindole‐ 3‐butyricacid(IBA)andindole‐3‐propionicacid(IPA)(Cam‐ panellaetal.2004).Furthermore,afamilyofauxinconjugate hydrolases from Chinese cabbage also showed substrates preferencestowardsaminoacidconjugatesinthefirstplace withIPA,thenIBA(Savićetal.2009).Inaddition,recentthe‐ oreticalstudyconfirmedthatalanineconjugatesofIBAand IPA make stronger interactions with the binding site of BrILL2incomparisontoIAA(Šimunovićetal.2011).Also, thesehydrolasesweredifferentiallyregulatedduringthein‐ teraction of Chinese cabbage with the obligate biotrophic pathogen Plasmodiophora brassicae (Schuller and Ludwig‐ Müller2006).Long‐chainauxinIBAappearstobestoredin amannersimilartothatofIAAinaformconjugatedtoamino acids,allowingitsslowhydrolysisandrelease.IPAhasalso auxinactivity,butitsoccurrenceasanendogenousauxinis stillquestionable.Ithasbeen foundsofarin rootsofAra‐ bidopsisupontreatmentwithSA(Walkeretal.2003),while IBAwasshowntobeelevatedintheconditionsofdrought andhighsalinity(Tognettietal.2010).Thisisinaccordance withearlyworkfromLudwig‐Mülleretal.(1995),showing that IBA synthesis was drought and salt inducible. These preliminary findings may imply the involvement of long‐ chain auxins in stress responses. Despite the isolation and characterizationofnumerousauxinamidohydrolasesform differentplantstodate,thereactionmechanismsaswellas Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Root architecture under abiotic stress, Salopek-Sondi B et al. regulationofauxinamidohydrolasesonthegeneexpression levelandproteinactivitylevelarestillunclear.Thefirstx‐ raystructureoftheILL2enzymefromArabidopsishasbeen reportedasan apoenzyme(Bittoetal.2009),stillmissing detailsaboutsubstratebindingsiteandaminoacidresidues importantforsubstratespecificity.Basedonmodelingapo‐ tentialsubstratebindingclefthasbeenproposedfortheAr‐ abidopsisenzyme(AtILL2)(Bittoetal.2009),aswellasthe Chinese cabbage enzyme (BrILL2), in which additionally severalsubstratebindingmodeshavebeenpredictedforthe preferredsubstrateIPA‐Ala(Savićetal.2009;Smolkoetal. underreview). Conclusionsandperspectives–P.indicamayhelp tounderstandtheroleofauxininmutualisticin‐ teraction Studiesontheinteractionofthesymbiotic,root‐colonizing endophyticfungusP.indicawiththemodelplantArabidop‐ sis showed general growth‐promoting effects (Peškan‐ Berghöfer2004;Leeetal.2011;Lahrmannetal.2013).P. indica‐insensitive mutants are also insensitive to the exu‐ datefraction(Vadasseryetal.2009a;Leeetal.2011;John‐ sonetal.2014a,b).Thisandotherdatasupporttheconcept that(an)elicitorreleasedbythefungusisperceivedbythe hostcellandactivatesareceptor‐mediatedsignallingpath‐ way.Consistentwiththishypothesis,anatypicalreceptor‐ likekinasewithleucine‐richrepeatsisrequiredforthein‐ teraction(Shahollarietal.2007)andarapidincreaseinthe intercellularcalciumconcentrationandofthesecondmes‐ sengerphospholipidphosphatidicacidrepresentearlysig‐ nallingevents(lessthan2minutes)intherootcells(Vadas‐ seryetal.2009a;Camehletal.2010).Mutationspreventing theincreaseintheintracellularCa2+elevationinrootcellsor theaccumulationofphosphatidicacidinresponsetotheex‐ udate of P. indica completely prevent the benefits for Ara‐ bidopsis plants (Camehl et al. 2010). Phytohormones and theirhomeostasisintherootsarecrucialforP.indicaeffects in plants (Sirrenberg et al. 2007; Vadassery et al. 2008; Schäferetal.2009).P.indicaexudatecomponentalsostim‐ ulates growth of Chinese cabbage plants. Much work has beenperformedtounderstandtheroleofauxininthebene‐ ficialinteractionbetweenP.indicaandotherplantspecies. In Arabidopsis, growth promotion is achieved without an overallupregulationoftheauxinlevelinroots.However,the draftphenotypeoftheauxin‐overproducersur1isentirely rescuedbythefungusbyconvertingfreeauxinintoconju‐ gates(Vadasseryetal.2008).TheP.indica‐inducedgrowth promotioninChinesecabbageismuchstrongerthaninAra‐ bidopsis,resultinginmassiveroothairdevelopment(Leeet al.2011).Interestingly,thebenefitsfortheplantdonotre‐ quirealivingfungus,butcanalsobetriggeredbyalowmo‐ lecularmassexudatecomponentreleasedfromthefungus intothefungalcellwallandgrowthmedium.InChinesecab‐ bagerootsthiscomponentinducesmassiverootbranching, andamorethan2‐foldincreaseintheauxinlevelintheroots (butnotintheshoots)ofChinesecabbageseedlings(Leeet al.2011),and‐aftertransfertosoil‐resultsinplants,which produce23%moreseeds.Furthermore,theaerialpartsof theseplantsaresignificantlymoreresistanttodrought(Sun etal.2010):theadultplantsrequire440mllesswaterfor seed production in the greenhouse (control plants require 5100mlwater),andaremoreresistantagainstinfectionsby Alternaria brasssicae (Johnson et al. 2014a, b). The fungus confers stress tolerance by strongly reducing endogenous and stress‐induced reactive oxygen species in Arabidopsis Journal of Endocytobiosis and Cell Research VOL 26 | 2015 (Matsuoetal.2015).SincetheexudatecomponentofP.in‐ dicadoesnotcontainauxin(Leeetal.2011),buttriggersthe benefits in Chinese cabbage plants via the stimulation of auxinhomeostasisintheroots,andsinceexogenousappli‐ cationofauxintoChinesecabbagerootscannotreplacethe beneficialeffectsofthefungus,characterizationofauxin‐re‐ latedtargetgenesinChinesecabbageroots,whichareup‐ regulatedbythefungusmightcontributesubstantiallytothe betterunderstandingofthisscenario.Overexpressionofthe B. rapa AUX1 IAA influx carrier in Arabidopsis resulted in larger roots even without P. indica colonization (Lee et al. 2011).AUX1wasfoundtobeupregulatedbyP.indicainChi‐ nesecabbage(Leeetal.2011;Dongetal.2013).Thisshows thatauxin‐relatedgenesidentifiedinatranscriptomeanaly‐ siscanserveastargetsforimprovingtherootsystem. Theprocessesinvolvedinauxinsignallingintherootun‐ derstressconditionsareverycomplexandcannotbetack‐ ledbyanalysingsingleoronlyafewcomponentsofasystem. Asystemsbiologyapproachdealswiththebiologicalprob‐ lemsinthemostgeneralwaypossiblewiththehelpofboth advancemoleculartechniquesandmathematicalmodelling. Technologies available for gene expression profiling allow simultaneousanalysisofallgenesintheorganism.However, this is linked with collection of immense amounts of data that have strong dimensionality problem, representing a challengebothtobiologistsaswellastostatisticians.Itwas shownthatadataanalysisworkflowwhereonlytheinter‐ sectionofdifferentiallyexpressedgeneslistobtainedusing different preprocessing methods (background correction, normalization, greatly improves the robustness of the ob‐ tained results (Rotter et al. 2007). Another implication of hugedatasetsistheirreportingandsharingandFAIRprin‐ ciples (Findable, Accessible, Interoperable and Reusable; Starretal.2015).Foreasiersharingofinformationandpos‐ siblere‐analyses,datamustbestoredinpermanentpublic databases (e.g. GEO, ArrayExpress, CIBEX), following ade‐ quateMIBBIstandard(Tayloretal.2008)andapplyingFAIR principlesofdatasharing.Appropriate‘in‐house’organiza‐ tionoftranscriptomedataisanexcellentstartingpointfor designingexperiments,generatinghypothesesorconceptu‐ alizingaswellasforcross‐speciescomparison(Mochidaand Shinozaki2010).Anotherimportantpointisefficienttrans‐ lationofknowledgebetweenmodelspeciesandcropspecies whichisenabledinGOMapManApplication(Ramšaketal. 2014).Besidesstatisticalanalyses,pathwayanalysis(gene setenrichmentmethods),dataintegrationanddatavisuali‐ zationinthecontextofbiologicalpathways(suchas Map‐ Man)cancontributesignificantlytotherelevantbiological interpretation(Rotteretal.2007,2009).Finally,asystems biology approach can, through integration of several data sources,leadtoconstructionofregulatorynetworkmodels of the studied process (Breitling 2010). Those approaches mightcontributesubstantiallytoabetterunderstandingof theroleoftheauxinhomeostasisunderstress. References AlamI,LeeD‐G,KimK‐H,ParkC‐H,SharminSA,LeeH,OhK‐W,Yun B‐W,LeeB‐H.(2010)Proteomaanalysisofsoybeanrootsunder waterloggingstressatanearlyvegetativestage.JBiosci.35:49‐62. AraiY,KawaguchiM,SyonoK,IkutaA.(2004)Partialpurificationof anenzymehydrolyzingindole‐3‐acetamidefromricecells.JPlant Res.117:191‐198. BajguzA,PiotrowskaA.(2009)Conjugatesofauxinandcytokinin. Phytochemistry.70:957‐969. 107 Root architecture under abiotic stress, Salopek-Sondi B et al. BaltruschatH,FodorJ,HarrachBD,NiemczykE,BarnaB,GullnerG, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, SkoczowskiA.(2008)Salttoleranceofbarleyinducedbytheroot endophyte Piriformospora indica is associated with a strong in‐ creaseinantioxidants.NewPhytol.280:501‐510. BartelB,FinkG.(1995)ILR1,anamidohydrolasethatreleasesac‐ tiveindole‐3‐aceticacidfromconjugates.Science.268:1745‐1748. BierfreundNM,TintelnotS,ReskiR,DeckerEL.(2004)LossofGH3 functiondoesnotaffectphytochrome‐mediateddevelopmentina moss,Physcomitrellapatens.JPlantPhysiol.161:823‐836. BittoE,BingmanCA,BittovaL,HoustonNL,BostonRS,FoxBG,Phil‐ lipsGN.(2009)X‐raystructureofILL2,anauxin‐conjugateami‐ dohydrolasefromArabidopsisthaliana.Proteins.74:61‐71. BreitlingR.(2010)Whatissystemsbiology?FrontPhysiol.1:1‐5. CamehlI,SherametiI,VenusY,BethkeG,VarmaA,LeeJ,Oelmüller R.(2010)Ethylenesignallingandethylene‐targetedtranscription factorsarerequiredtobalancebeneficialandnonbeneficialtraits inthesymbiosis betweentheendophyticfungusPiriformospora indicaandArabidopsisthaliana.NewPhytol.185:1062‐73. CampanellaJJ,BakllamajaV,RestieriT,VomackaM,HerronJ,Pet‐ tersonM,ShahtaheriS.(2003a)IsolationofanILR1auxinconju‐ gatehydrolasehomologfromArabidopsissuecica.JPlantGrowth Regul.39:175‐181. CampanellaJJ,Ludwig‐MüllerJ,BakllamajaV,SharmaV,CartierA. (2003b)ILR1andsILR1IAAamidohydrolasehomologsdifferin expressionpatternandsubstratespecificity.JPlantGrowthRegul. 41:215‐223. CampanellaJJ,OlajideA,MagnusV,Ludwig‐MüllerJ.(2004)Anovel auxinconjugatehydrolasefromTriticumaestivumwithsubstrate specificity for longer side‐chain auxin amide conjugates. Plant Physiol.135:2230‐2240. CampanellaJJ,SmithSM,LeibuD,WexlerS,Ludwig‐MüllerJ.(2008) TheauxinconjugatehydrolasefamilyofMedicagotruncatulaand their expression during the interaction with two symbionts. J PlantGrowthRegul.27:26‐38. ChavesMM,MarocoJP,PereiraJS.(2003)Understandingplantre‐ sponsestodrought‐fromgenestothewholeplant.FunctPlant Biol.30:239‐264. ChenQ,ZhangB,HicksLM,WangS,JezJM.(2009)Aliquidchroma‐ tography–tandem mass spectrometry‐based assay for indole‐3‐ aceticacid‐amidosynthetase.AnalBiochem.390:149‐154. ChengY,DaiX,ZhaoY.(2007)AuxinsynthesizedbytheYUCCAfla‐ vinmonooxygenasesisessentialforembryogenesisandleaffor‐ mationinArabidopsis.PlantCell.19:2430‐2439. ChouJ‐C,MulbryWW,CohenJD.(1998)Thegeneforindole‐3‐ace‐ tyl‐L‐asparticacidhydrolasefromEnterobacteragglomerans:mo‐ lecular cloning, nucleotide sequence, and expression in Esche‐ richiacoli.MolGenGenet.259:172‐178. Contreras‐Cornejo HA, Macías‐Rodríguez L, Cortés‐Penagos C, López‐BucioJ.(2009)Trichodermavirens,aplantbeneficialfun‐ gus, enhances biomass production and promotes lateral root growththroughanauxin‐dependentmechanismin Arabidopsis. PlantPhysiol.149:1579‐1592. CramerGR,UranoK,DelrotS,PezzottiM,ShinozakK.(2011)Effects of abiotic stress on plants: a systems biology perspective. BMC PlantBiol.11:163. CreelmanRA,MulletJE.(1995)Jasmonicaciddistributionandac‐ tioninplants:regulationduringdevelopmentandresponsetobi‐ oticandabioticstress.ProcNatlAcadSciUSA.92:4114‐4119. CushmanJC,BohnertHJ.(2000)Genomicapproachestoplantstress tolerance.CurrOpinPlantBiol.3:117‐124. DasJ,RameshKV,MaithriU,MutanganaD,SureshCK.(2014)Re‐ sponseofaerobicricetoPiriformosporaindica.IndianJExpBiol. 52:237‐51. Davies PJ. (2004) Plant Hormones. Biosynthesis, Signal Transduc‐ tion, Action! Kluwer Academic Publishers, Dordrecht, Boston, London. DaviesRT,GoetzDH,LasswellJ,AndersonMN,BartelB.(1999)IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell.11:365‐367. DeRybelB,VassilevaV,ParizotB,DemeulenaereM,GrunewaldW, Audenaert D, Van Campenhout J, Overvoorde P, Jansen L, Van‐ nesteS,MollerB,WilsonM,HolmanT,VanIsterdaelG,Brunoud 108 G,VuylstekeM,VernouxT,DeVeylderL,InzeD,WeijersD,Ben‐ nettMJ,BeeckmanT.(2010)AnovelAux/IAA28signalingcascade activatesGATA23‐dependentspecificationoflateralrootfounder cellidentity.CurrBiol.20:1697‐1706. DombrechtB,XueGP,SpragueSJ,KirkegaardJA,RossJJ,ReidJB,Fitt GP,SewelamN,SchenkPM,MannersJM,KazanK.(2007)MYC2 differentially modulates diverse jasmonate‐dependent functions inArabidopsis.PlantCell.19:2225‐2245. Dombrowski JE. (2003) Salt stress activation of wound‐related genesintomatoplants.PlantPhysiol.132:2098‐2107. DongS,TianZ,ChenPJ,SenthilKumarR,ShenCH,CaiD,Oelmüller R,YehKW.(2013)Thematurationzoneisanimportanttargetof Piriformospora indica in Chinese cabbage roots. J Exp Bot. 64:4529‐4540. DuH,WuN,FuJ,WangS,LiX,XiaoJ,XiongL.(2012)AGH3family member,OsGH3‐2,modulatesauxinandabscisicacidlevelsand differentiallyaffectsdroughtandcoldtoleranceinrice.JExpBot. 63:6467‐6480. EpsteinE,Ludwig‐MüllerJ.(1993)Indole‐3‐butyricacidinplants: occurrence, synthesis, metabolism, and transport. Physiol Plant. 88:382‐389. EpsteinE,WiesmanZ.(1987)Improvedvegetativepropagationof olivecultivarswithIBA‐Alanine.Olea.18:35‐38. FitzeD,WiepningA,KaldorfM,Ludwig‐MüllerJ.(2005)Auxinsin thedevelopmentofanarbuscularmycorrhizalsymbiosisinmaize. JPlantPhysiol.162:1210‐1219. FukakiH,TamedaS,MasudaH,TasakaM.(2002)Lateralrootfor‐ mationisblockedbyagain‐of‐functionmutationintheSOLITARY‐ ROOT/IAA14geneofArabidopsis.PlantJ.29:153‐168. Fukaki H, Tasaka M. (2009) Hormone interactions during lateral rootformation.PlantMolBiol.69:437‐449. GongD,GuoY,JagendorfAT,ZhuJ‐K.(2002)Biochemicalcharacter‐ izationof theArabidopsisprotein kinase SOS2that functionsin salttolerance.JPlantPhysiol.130:256‐264. GrunewaldW,FrimlJ.(2010)ThemarchofthePINs:developmental plasticity by dynamic polar targeting in plant cells. EMBO J. 29:2700‐2714. HagenG,GuilfoyleTJ.(1985)Rapidinductionofselectivetranscrip‐ tionbyauxins.MolCellBiol.5:1197‐1203. Hangarter RP, Good NE. (1981) Evidence that IAA conjugates are slow‐release sources of free IAA in plant tissues. Plant Physiol. 68:1424‐1427. HentrichM,BöttcherC,DüchtingP,ChengY,ZhaoY,BerkowitzO, MasleJ,MedinaJ,PollmannS.(2013a)Thejasmonicacidsignaling pathwayislinkedtoauxinhomeostasisthroughthemodulation ofYUCCA8andYUCCA9geneexpression.PlantJ.74:626‐637. Hentrich M, Sánchez‐Parra B, Pérez Alonso MM, Carrasco Loba V, Carrillo L, Vicente‐Carbajosa J, Medina J, Pollmann S. (2013b) YUCCA8andYUCCA9overexpressionrevealsalinkbetweenauxin signalingandlignificationthroughtheinductionofethylenebio‐ synthesis.PlantSignalBehav.8(11):e26363. HilbertM,NostadtR,ZuccaroA.(2013)Exogenousauxinaffectsthe oxidativeburstinbarleyrootscolonizedbyPiriformosporaindica. PlantSignalBehav.8:e23572. HilbertM,VollLM,DingY,HofmannJ,SharmaM,ZuccaroA.(2012) Indole derivative production by the root endophyte Pirifor‐ mosporaindicaisnotrequiredforgrowthpromotionbutforbio‐ trophiccolonizationofbarleyroots.NewPhytol.196:520‐534. HoffmannM,LehmannT,NeuD,HentrichM,PollmannS.(2010)Ex‐ pressionofAMIDASE1(AMI1)issuppressedduringthefirsttwo daysaftergermination.PlantSignalBehav.5:1642‐1644. IsmailA,TakedaS,NickP.(2014)Lifeanddeathundersaltstress: sameplayers,differenttiming?JExpBot.65:2963‐2979. Ivanchenko MG, Napsucialy‐Mendivil S, Dubrovsky JG. (2010) Auxin‐inducedinhibitionoflateralroot initiationcontributesto rootsystemshapinginArabidopsisthaliana.PlantJ.64:740‐752. Jain,M,KaurN,TyagiAK,KhuranaJP.(2006)Theauxin‐responsive GH3genefamilyinrice(Oryzasativa).FunctIntegrGenom.6:36‐ 46. JohnsonJM,AlexT,OelmüllerR.(2014)Piriformosporaindica:The versatile and multifunctional root endophytic fungus for en‐ hanced yield and tolerance to biotic and abiotic stress in crop plants.JTropAgri.52:103‐122. Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Root architecture under abiotic stress, Salopek-Sondi B et al. Johnson JM, Reichelt M, Vadassery J, Gershenzon J, Oelmüller R. (2014).AnArabidopsismutantimpairedinintracellularcalcium elevationissensitivetobioticandabioticstress.BMCPlantBiol. 14:162. Junghans U, Polle A, Düchting P, Weiler E, Kuhlmann B, Gruber F, Teichmann T. (2006) Adaptation to high salinity in poplar in‐ volveschangesinxylemanatomyandauxinphysiology.PlantCell Environ.29:1519‐1531. KhanS,StoneJM.(2007)ArabidopsisthalianaGH3.9influencespri‐ maryrootgrowth.Planta.226:21‐34. Knight H, Knight MR. (2001) Abiotic stress signalling pathways: specificityandcross‐talk.TrendsPlantSci.6:262‐267. KumarM,YadavV,KumarH,SharmaR,SinghA,TutejaN,JohriAK. (2011)Piriformosporaindicaenhancesplantgrowthbytransfer‐ ringphosphate.PlantSignalBehav.6:723‐725. LahrmannU,DingY,BanharaA,RathM,HajirezaeiMR,Döhlemann S,vonWirénN,ParniskeM,ZuccaroA.(2013)Host‐relatedmeta‐ boliccuesaffectcolonizationstrategiesofarootendophyte.Proc NatlAcadSciUSA.110:13965‐13970. LasswellJ,RoggLE,NelsonDC,RongeyC,BartelB.(2000)Cloning andcharacterizationofIAR1,agenerequiredforauxinconjugate sensitivityinArabidopsis.PlantCell.12:2395‐2408. LeClereS,TellezR,RampeyRA,MatsudaSPT,BartelB.(2002)Char‐ acterization of a family of IAA‐amino acid conjugate hydrolases fromArabidopsis.JBiolChem.277:20446‐20452. LeeY‐C,JohnsonJM,ChienC‐T,SunC,CaiD,LouB,OelmüllerR,Yeh K‐W.(2011)GrowthpromotionofChinesecabbageandArabidop‐ sis by Piriformospora indica is not stimulated by mycelium‐syn‐ thesizedauxin.MolPlant‐MicrobeInteract.24:421‐431. LehmannT,HoffmannM,HentrichM,PollmannS.(2010)Indole‐3‐ acetamide‐dependent auxin biosynthesis: A widely distributed way of indole‐3‐acetic acid production? Eur J Cell Biol. 89:895‐ 905. LiuK,KangB‐C,JiangH,MooreSL,LiH,WatkinsCB,SetterTB,Jahn MM. (2005) A GH3‐like gene, CcGH3, isolated from Capsicum chinenseL.fruitisregulatedbyauxinandethylene.PlantMolBiol. 58:447‐464. Ljung K, Bhalerao RP, Sandberg G. (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth.PlantJ.28:465‐474. López‐Bucio J, Hernández‐Abreu E, Sánchez‐Calderón L, Pérez‐ Torres A, Rampey RA, Bartel B, Herrera‐Estrella L. (2005) An auxin transport independent pathway is involved in phosphate stress‐InducedrootarchitecturalalterationsinArabidopsis.Iden‐ tificationofBIGasamediatorofauxininpericyclecellactivation. PlantPhysiol.137:681‐691. Ludwig‐MüllerJ,JülkeS,BierfreundNM,DeckerEL,ReskiR.(2009) Moss(Physcomitrellapatens)GH3proteinsactinauxinhomeosta‐ sis.NewPhytol.181:323‐338. Ludwig‐MüllerJ,SchubertB,PieperK.(1995)RegulationofIBAsyn‐ thetasefrommaize(ZeamaysL.)bydroughtstressandABA.JExp Bot.46:423‐432. Ludwig‐MüllerJ.(2011)Auxinconjugates:theirroleforplantdevel‐ opment and in the evolution of land plants. J Exp Bot. 62:1757‐ 1773. MaksymiecW.(2007)Signalingresponsesinplantstoheavymetal stress.ActaPhysiolPlant.29:177‐187. MashiguchiK,TanakaK,SakaiT,SugawaraS,KawaideH,Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, HayashiK,KamiyaY,KasaharaH.(2011)Themainauxinbiosyn‐ thesispathwayinArabidopsis.ProcNatlAcadSciUSA.108:18512‐ 18517. Matsuo M, Johnson, JM, Hieno A, Tokizawa M, Nomoto M, Tada Y, GodfreyR,ObokataJ,SherametiI,YamamotoYY,BöhmerF‐D,Oel‐ müller R. (2015). High REDOX RESPONSIVE TRANSCRIPTION FACTOR1levelsresultinaccumulationofreactiveoxygenspecies inArabidopsisthalianashootsandroots.MolPlant.8:1253‐1273. MihaljevićS,Salopek‐SondiB.(2012)AmideconjugateofIndole‐3‐ butyric acid improves rooting of highbush blueberry. Plant Soil Env.58:236‐241. Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. (2000) Cyto‐ chrome P450 CYP79B2 from Arabidopsis catalyzes the conver‐ sionoftryptophantoindole‐3‐acetaldoxime,aprecursorofindole Journal of Endocytobiosis and Cell Research VOL 26 | 2015 glucosinolates and indole‐3‐acetic acid. J Biol Chem. 275:33712‐ 33717. MiuraK,LeeJ,GongQ,MaS,JinJB,YooCY,MiuraT,SatoA,Bohnert HJ,HasegawaPM.(2011)SIZ1regulationofphosphatestarvation‐ induced root architecture remodeling involves the control of auxinaccumulation.PlantPhysiol.155:1000‐1012. Mochida K, Shinozaki K. (2010) Genomics and Bioinformatics Re‐ sourcesforCropImprovement.PlantCellPhysiol.51:497‐523. MolitorA,ZajicD,VollLM,Pons‐KHnemannJ,SamansB,KogelKH, WallerF.(2011)Barleyleaftranscriptomeandmetaboliteanaly‐ sis reveals new aspects of compatibility and Piriformospora in‐ dica‐mediated systemic induced resistance to powdery mildew. MolPlant‐MicrobeInteract.24:1427‐1439. Müller A, Hillebrand H, Weiler EW. (1998) Indole‐3‐acetic acid is synthesized from L‐tryptophan in roots of Arabidopsis thaliana. Planta.206:362‐369. MuunsR,TesterM.(2008)Mechanismsofsalinitytolerance.Annu RevPlantBiol.59:651‐681. NemotoK,HaraM,SuzukiM,SekiH,MuranakaT,ManoY.(2009) TheNtAMI1genefunctionsincelldivisionoftobaccoBY‐2cellsin thepresenceofindole‐3‐acetamide.FEBSLett.583:487‐492. NeuD,LehmannT,ElleucheS,PollmannS.(2007)Arabidopsisami‐ dase 1, a member of the amidase signature family. FEBS J. 274:3440‐3451. NordströmAC,JacobsFA,EliassonL.(1991)Effectofexogenousin‐ dole‐3‐aceticacidandindole‐3‐butyricacidoninternallevelsof therespectiveauxinsandtheirconjugationwithasparticaciddur‐ ing adventitious root formation in pea cuttings. Plant Physiol. 96:856‐861. OelmüllerR,SherametiI,TripathiS,VarmaA.(2009)Piriformospora indica,acultivablerootendophytewithmultiplebiotechnological applications.Symbiosis.49:1‐17. OetikerJH,AeschbacherG.(1997)Temperature‐sensitiveplantcells with shunted indole‐3‐acetic acid conjugation. Plant Physiol. 114:1385‐1395. OvervoordeP,FukakiH,BeeckmanT.(2010)Auxincontrolofroot development.ColdSpringHarbPerspectBiol.2:a001537. ParkJ‐E,ParkJ‐Y,KimY‐S,StaswickPE,JeonJ,YunJ,KimS‐Y,KimJ, LeeY‐H,ParkC‐M.(2007)GH3‐mediatedauxinhomeostasislinks growthregulationwithstressadaptationresponseinArabidop‐ sis.JBiolChem.282:10036‐10046. PedersenBP,KumarH,WaightAB,RisenmayAJ,Roe‐ZurzZ,Chau BH,SchlessingerA,BonomiM,HarriesW,SaliA,JohriAK,Stroud RM. (2013) Crystal structure of a eukaryotic phosphate trans‐ porter.Nature.496:533‐536. PenčikA,RolčikJ,NovakO,MagnusV,BartakP,BuchtikR,Salopek‐ SondiB,StrnadM.(2009)Isolationofnovelindole‐3‐aceticacid conjugatesbyimmunoaffinityextraction.Talanta.80:651‐655. Pérez‐TorresC‐A,López‐BucioJ,Cruz‐RamírezA,Ibarra‐LacletteE, Dharmasiri S, Estelle M, Herrera‐Estrella L. (2008) Phosphate availability alters lateral root development in Arabidopsis by modulatingauxinsensitivityviaamechanisminvolvingtheTIR1 AuxinReceptor.PlantCell.20:3258‐3272. Peškan‐Berghöfer T, Shahollari B, Giang PH, Hehl S, Markert C, Blanke V, Varma AK, Oelmüller R. (2004) Association of Pirifor‐ mosporaindicawithArabidopsisthalianarootsrepresentsanovel system to study beneficial plant‐microbe interactions and in‐ volvesearlyplantproteinmodificationsintheendoplasmaticre‐ ticulumandattheplasmamembrane.PhysiolPlant.122:465‐477. PeterssonSV,JohanssonAI,KowalczykM,MakoveychukA,WangJY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K. (2009) An auxingradientandmaximumintheArabidopsisrootapexshown by high‐resolution cell‐specific analysis of IAA distribution and synthesis.PlantCell.21:1659‐1668. PetrasekJ,FrimlJ.(2009)Auxintransportroutesinplantdevelop‐ ment.Development.136:2675‐2688. PollmannS,NeuD,LehmannT,BerkowitzO,SchäferT,WeilerEW. (2006) Subcellular localization and tissue specific expression of amidase1fromArabidopsisthaliana.Planta.224:1241‐1253. PollmannS,NeuD,WeilerEW.(2003)Molecularcloningandchar‐ acterization of an amidase from Arabidopsis thaliana capable of convertingindole‐3‐acetamideintotheplantgrowthhormone,in‐ dole‐3‐aceticacid.Phytochemistry.62:293‐300. 109 Root architecture under abiotic stress, Salopek-Sondi B et al. PollmannS,MüllerA,PiotrowskiM,WeilerEW.(2002)Occurrence and formation of indole‐3‐acetamide in Arabidopsis thaliana. Planta.216:155‐161. PopkoJ,HänschR,MendelR‐R,PolleA,TeichmannT.(2010)The roleofabscisicacidandauxinintheresponseofpoplartoabiotic stress.PlantBiol.12:242‐258. Qin F, Shinozaki K, Yamaguchi‐Shinozaki K. (2011) Achievements and challenges in understanding plant abiotic stress responses andtolerance.PlantCellPhysiol.52:1569‐1582. QiuQ‐S,GuoY,QuinteroFJ,PardoJM,SchumakerKS,ZhuJ‐K.(2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana bytheSalt‐Overly‐Sensitive(SOS)pathway.JBiolChem.279:207‐ 215. QuittendenLJ,DaviesNW,SmithJA,MolesworthPP,TivendaleND, RossJJ.(2009)Auxinbiosynthesisinpea:characterizationofthe tryptaminepathway.PlantPhysiol.151:1130‐1138. RampeyRA,LeClereS,KowalczykM,LjungK,SandbergG,BartelB. (2004)Afamilyofauxin‐conjugatehydrolasesthatcontributeto free indole‐3‐acetic acid levels during Arabidopsis germination. PlantPhysiol.135:978‐988. RamsakŽ,BaeblerŠ,RotterA,KorbarM,MozeticI,UsadelB,Gruden K.(2014)GoMapMan:integration,consolidationandvisualization of plant gene annotations within the MapMan ontology. Nucleic AcidsRes.42(Databaseissue):D1167‐75. RotterA,CampsC,LohseM,KappelC,PilatiS,HrenM,StittM,Cou‐ tos‐Thevenot P, Moser C, Usadel B, Delrot S, Gruden K. (2009) Geneexpressionprofilinginsusceptibleinteractionofgrapevine withitsfungalpathogenEutypalata:extendingMapManontology forgrapevine.BMCPlantBiol.9:104. RotterA,UsadelB,BaeblerŠ,StittM,GrudenK.(2007)Adaptation oftheMapManontologytobioticstressresponses:applicationin solanaceousspecies.PlantMethods.3:10. RouxC,Perrot‐RechenmannC.(1997)Isolationbydifferentialdis‐ playandcharacterizationofatobaccoauxin‐responsivecDNANt‐ gh3,relatedtoGH3.FEBSLett.419:131‐136. Salopek‐Sondi B, Šamec D, Mihaljević S, Smolko A, Pavlović I, JankovićI,Ludwig‐MüllerJ.(2013)Influenceofstresshormones on auxin homeostasis inBrassica rapa seedlings. Plant Cell Rep. 32:1031‐1042. Sánchez‐ParraB,FrerigmannH,PérezAlonsoM‐M,CarrascoLoba V,JostR,HentrichM,PollmannS(2014)Characterizationoffour bifunctional plant IAM/PAM‐amido‐hydrolases capable of con‐ tributingtoauxinbiosynthesis.Plants.3:324‐347. SavićB,TomićS,MagnusV,GrudenK,BarleK,GrenkovićR,Ludwig‐ Müller J, Salopek‐Sondi B. (2009) Auxin amidohydrolases from Brassicarapacleavethealanineconjugateofindolepropionicacid asapreferablesubstrate:abiochemicalandmodelingapproach. PlantCellPhysiol.50:1587‐1599. SchäferP,PfiffiS,VollLM,ZajicD,ChandlerPM,WallerF,ScholzU, Pons‐KühnemannJ,SonnewaldS,SonnewaldU,KogelKH.(2009) Manipulationofplantinnateimmunityandgibberellinasfactorof compatibility in the mutualistic association of barley roots with Piriformosporaindica.PlantJ.59:461‐474. SchullerA,Ludwig‐MüllerJ.(2006)Afamilyofauxinconjugatehy‐ drolasesfromBrassicarapa:characterizationandexpressiondur‐ ingclubrootdisease.NewPhytol.171:1‐13. SeidelC,WalzA,ParkS,CohenJD,Ludwig‐MüllerJ.(2006)Indole‐ 3‐acetic acid protein conjugates: Novel players in auxin homeo‐ stasis.PlantBiol.8:340‐345. SerranoR,MuletJM,RiosG,MarquezJA,deLarrinoaIF,LeubeMP, Mendizabal I, Pascual‐Ahuir A, Proft M, Ros R, Montesinos C. (1999) A glimpse of the mechanisms of ion homeostasis during saltstress.JExpBot.50:1023‐1036. ShahollariB,Peškan‐BerghöferT,VarmaA,OelmüllerR.(2004)Re‐ ceptorkinaseswithleucine‐richrepeatsareenrichedinTritonX‐ 100insolubleplasmamembranemicrodomainsfromplants.Phys‐ iol.Plant.122:397‐403. ShahollariB,VadasseryJ,VarmaA,OelmüllerR.(2007)Aleucine‐ rich repeat protein is required for growth promotion and en‐ hanced seed production mediated by the endophytic fungus Pi‐ riformosporaindicainArabidopsisthaliana.PlantJ.50:1‐13. ShahollariB,VarmaA,OelmüllerR.(2005)Expressionofareceptor kinaseinArabidopsisrootsisstimulatedbythebasidiomycetePi‐ riformosporaindicaandtheproteinaccumulatesinTritonX‐100 110 insoluble plasma membrane microdomains. J Plant Physiol. 162:945‐958. SherametiI,ShahollariB,VenusY,AltschmiedL,VarmaA,Oelmüller R.(2005)TheendophyticfungusPiriformosporaindicastimulates theexpressionofnitratereductaseandthestarch‐degradingen‐ zyme glucan‐water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor which binds to a conservedmotifintheirpromoters.JBiolChem.280:2641‐2647. SherametiI,TripathiS,VarmaA,OelmüllerR.(2008a)Theroot‐col‐ onizing endophyte Piriformospora indica confers drought toler‐ ance in Arabidopsis by stimulating the expression of drought stress‐relatedgenesinleaves.MolPlant‐MicrobeInteract.21:799‐ 807. SherametiI,VenusY,DrzewieckiC,TripatiS,DanVM,NitzI,Varma A,GrundlerFM,OelmüllerR.(2008b)PYK10,abeta‐glucosidase locatedintheendoplasmaticreticulum,iscrucialforthebeneficial interactionbetweenArabidopsisthalianaandtheendophyticfun‐ gusPiriformosporaindica.PlantJ.54:428‐439. ShinozakiK,Yamaguchi‐ShinozakiK.(2000)Molecularresponsesto dehydrationandlowtemperature:differencesandcross‐talkbe‐ tweentwostresssignallingpathways.CurrOpinPlantBiol.3:217‐ 223. ŠimunovićM,ŽagrovićB,TomićS.(2011)Mechanismandthermo‐ dynamicsofligandbindingtoauxinamidohydrolase.JMolRecogn. 24:854‐861. SirrenbergA,GöbelC,GrondS,CzempinskiN,RatzingerA,Karlov‐ skyP,SantosP,FeussnerI,PawlowskiK.(2007)Piriformospora indica affects plant growth by auxin production. Physiol Plant. 131:581‐589. Smolko A, Šupljika F, Jajčanin‐Jozić N, Ludwig‐Muller J, Grabar‐ BranilovićM,TomićS,PiantanidaI,Salopek‐SondiB.(2015)The role of conserved Cys residues in Brassica rapa auxin amidohy‐ drolase: the Cys139 is crucial for the enzyme activity and the Cys320regulatesenzymestability.PhysChemChemPhys.(under review) StarrJ,CastroE,CrosasM,DumontierM,DownsRR,DuerrR,Haak LL,HaendelM,HermanI,HodsonS,HourcléJ,KratzJE,LinJ,Niel‐ senLH,NürnbergerA,ProellS,RauberA,SacchiS,SmithA,Taylor M,ClarkT.(2015)Achievinghumanandmachineaccessibilityof citeddatainscholarlypublications.JComputSci.pii:e1. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldo‐ nadoMC,SuzaW.(2005)CharacterizationofanArabidopsisen‐ zymefamilythatconjugatesaminoacidstoindole‐3‐aceticacid. PlantCell.17:616‐627. StaswickPE.(2009)Thetryptophanconjugatesofjasmonicandin‐ dole‐3‐aceticacidsareendogenousauxininhibitors.PlantPhysiol. 150:1310‐1321. StaswickPE,TiryakiI,RoweML.(2002)Jasmonateresponselocus JAR1 and several related Arabidopsis genes encode enzymes of thefireflyluciferasesuperfamilythatshowactivityonjasmonic, salicylic, and indole‐3‐acetic acids in an assay for adenylation. PlantCell.14:1405‐1415. Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, AlonsoJM.(2011)TheArabidopsisYUCCA1flavinmonooxygen‐ asefunctionsintheindole‐3‐pyruvicacidbranchofauxinbiosyn‐ thesis.PlantCell.23:3961‐3973. Stepanova AN, Robertson‐Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM. (2008) TAA1‐ mediated auxin biosynthesis is essential for hormone crosstalk andplantdevelopment.Cell.133:177‐191. SugawaraS,HishiyamaS,JikumaruY,HanadaA,NishimuraT,Ko‐ shibaT,ZhaoY,KamiyaY,KasaharaH.(2009)Biochemicalanal‐ yses of indole‐3‐acetaldoxime‐dependent auxin biosynthesis in Arabidopsis.ProcNatlAcadSciUSA.106:5430‐5435. SunC,ShaoY,VahabiK,LuJ,BhattacharyaS,DongS,YehKW,Sher‐ ametiI,LouB,BaldwinIT,OelmüllerR.(2014)Thebeneficialfun‐ gusPiriformosporaindicaprotectsArabidopsisfromVerticillium dahliae infection by downregulation plant defense responses. BMCPlantBiol.14:268. SunC,JohnsonJM,CaiD,SherametiI,OelmüllerR,LouB.(2010)Pi‐ riformosporaindicaconfersdroughttoleranceinChinesecabbage leaves by stimulating antioxidant enzymes, the expression of drought‐related genes and the plastid‐localized CAS protein. J PlantPhysiol.167:1009‐1017. Journal of Endocytobiosis and Cell Research VOL 26 | 2015 Root architecture under abiotic stress, Salopek-Sondi B et al. SzteinEA,CohenJD,SlovinJP,CookeTJ.(1995)Auxinmetabolism inrepresentativelandplants.AmJBot.82:1514‐1521. TakiN,Sasaki‐SekimotoY,ObayashiT,KikutaA,KobayashiK,Ainai T,YagiK,SakuraiN,SuzukiH,MasudaT,TakamiyaK,ShibataD, KobayashiY,OhtaH.(2005)12‐oxo‐phytodienoicacidtriggersex‐ pressionofadistinctsetofgenesandplaysaroleinwound‐in‐ duced gene expression in Arabidopsis. Plant Physiol. 139:1268‐ 1283. TanakaH,DhonuksheP,BrewerPB,FrimlJ.(2006)Spatiotemporal asymmetricauxindistribution:ameanstocoordinateplantdevel‐ opment.CellMolLifeSci.63:2738‐2754. TaoY,FerrerJL,LjungK,PojerF,HongF,LongJA,LiL,MorenoJE, BowmanME,IvansLJ,ChengY,LimJ,ZhaoY,BallareCL,Sandberg G,NoelJP,ChoryJ.(2008)Rapidsynthesisofauxinviaanewtryp‐ tophan‐dependent pathway is required for shade avoidance in plants.Cell.133:164‐176. Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, BallCA,BinzPA,BogueM,BoothT,BrazmaA,BrinkmanRR,Mi‐ chaelClarkA,DeutschEW,FiehnO,FostelJ,GhazalP,GibsonF, GrayT,GrimesG,HancockJM,HardyNW,HermjakobH,JulianRK Jr,KaneM,KettnerC,KinsingerC,KolkerE,KuiperM,LeNovère N,Leebens‐MackJ,LewisSE,LordP,MallonAM,MarthandanN, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, QuackenbushJ,ReecyJM,RobertsonDG,Rocca‐SerraP,Rodriguez H,RosenfelderH,Santoyo‐LopezJ,ScheuermannRH,SchoberD, SmithB,SnapeJ,StoeckertCJJr,TiptonK,SterkP,UntergasserA, Vandesompele J, Wiemann S. (2008) Promoting coherent mini‐ mumreportingguidelinesforbiologicalandbiomedicalinvestiga‐ tions:theMIBBIproject.NatBiotechnol.26:889‐896. Teichman T, Bolu‐Arianto WH, Olbrich A, Langenfeld‐Heyser R, Göbel C, Grzeganek P, Feussner I, Hänsch R, Polle A. (2008) GH3::GUSreflectscell‐specificdevelopmentalpatternsandstress‐ inducedchangesinwoodanatomyinthepoplarstem.TreePhys‐ iol.28:1305‐1315. Thimann KV. (1938) Hormones and the analysis of growth. Plant Physiol.13:437‐449. TognettiVB,VanAkenO,MorreelK,VandenbrouckeK,vandeCotte B,DeClercqI,ChiwochaS,FenskeR,PrinsenE,BoerjanW,Genty B,StubbsKA,InzeD,VanBreusegemF.(2010)Perturbationofin‐ dole‐3‐butyricacidhomeostasisbytheUDP‐Glucosyltransferase UGT74E2modulatesArabidopsisarhitectureandwaterstresstol‐ erance.PlantCell.22:2660‐2679. UlmasovT,MurfettJ,HagenG,GuilfoyleTJ.(1997)Aux/IAAproteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 9:1963‐1971. Vadassery J, Ranf S, Drzewiecki C, Mithöfer A, Mazars C, Scheel D, LeeJ,OelmüllerR.(2009a)Acellwallextractfromtheendophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. PlantJ.59:193‐206. VadasseryJ,RitterC,VenusY,CamehlI,VarmaA,ShahollariB,No‐ vákO,StrnadM,Ludwig‐MüllerJ,OelmüllerR.(2008)Theroleof auxinsandcytokininsinthemutualisticinteractionbetweenAra‐ bidopsis and Piriformospora indica. Mol Plant‐Microbe Interact. 10:1371‐1383. Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R. (2009b) Ascorbate, monodehydroascorbate reductase 3 and dehydroas‐ crobatereductase1arecrucialforamutualisiticinteractionbe‐ tween Piriformospora indica and Arabidopsis under drought stress.JPlantPhysiol.166:1263‐1274. VahabiK,SherametiI,BakshiM,MrozinskaA,LudwigA,ReicheltM, OelmüllerR.(2015)TheinteractionofArabidopsiswithPirifor‐ mosporaindicashiftsfrominitialtransientstressinducedbyfun‐ gus‐releasedchemicalmediatorstoamutualisticinteractionafter physicalcontactofthetwosymbionts.BMCPlantBiol.15:58. VannesteS,DeRybelB,BeemsterGT,LjungK,DeSmetI,VanIster‐ daelG,NaudtsM,IidaR,GruissemW,TasakaM,InzeD,FukakiH, BeeckmanT.(2005)Cellcycleprogressioninthepericycleisnot sufficientforSOLITARYROOT/IAA14‐mediatedlateralrootiniti‐ ationinArabidopsisthaliana.PlantCell.17:3035‐3050. VannesteS,FrimlJ.(2009)Auxin:atriggerforchangeinplantde‐ velopment.Cell.136:1005‐1016. VermaSA,VarmaA,RexerK‐H,HasselA,KostG,SarbhoyA,BisenP, BütehornB,FrankenP.(1998)Piriformosporaindica,anewroot‐ colonizingfungus.Mycologia.90:898‐905. Vierling E, Kimpel JA. (1992) Plant responses to environmental stress.CurrOpinBiotech.3:164‐170. WalkerTS,BaisHP,HalliganKM,StermitzFR,VivancoJM.(2003) MetabolicprofilingofrootexudatesofArabidopsisthaliana.JAg‐ ricFoodChem.51:2548‐2554. WallerF,AchatzB,BaltruschatH,FodorJ,BeckerK,FischerM,Heier T,HuckelhovenR,NeumannC,vonWettsteinD,FrankenP,Kogel KH. (2005) The endophytic fungus Piriformospora indica repro‐ grams barley to salt‐stress tolerance, disease resistance, and higheryield.ProcNatlAcadSciUSA.102:13386‐13391. WallerF,MukherjeeK,DeshmukhSD,AchatzB,SharmaM,Schäfer P, Kogel KH. (2008) Systemic and local modulation of plant re‐ sponsesbyPiriformosporaindicaandrelatedSebacinalesspecies. JPlantPhysiol.165:60‐70. WalzA,ParkS,SlovinJP,Ludwig‐MüllerJ,MomonokiYS,CohenJD. (2002)Ageneencodingaproteinmodifiedbythephytohormone indoleaceticacid.ProcNatlAcadSciUSA.99:1718‐1723. WalzA,SeidelC,RusakG,ParkS,CohenJD,Ludwig‐MüllerJ.(2008) HeterologousexpressionofIAP1,aseedproteinfrombeanmodi‐ fiedbyindole‐3‐aceticacid,inArabidopsisthalianaandMedicago truncatula.Planta.227:1047‐1061. WangH,TianC,DuanJ,WuK.(2008)ResearchprogressonGH3s, one family of primary auxin‐responsive genes. J Plant Growth Regul.56:225‐232. WangS,BaiY,ShenC,WuY,ZhangS,JiangD,GuilfoyleTJ,ChenM, QiY.(2010)Auxin‐relatedgenefamiliesinabioticstressresponse inSorghumbicolor.FunctIntegrGenomics.10:533‐546. WangWX,VinocurB,ShoseyovO,AltmanA.(2001)Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations.ActaHort.560:285‐292. WiesmanZ,RiovJ,EpsteinE.(1989)Characterizationandrooting abilityofindole‐3‐butyricacidconjugatesformedduringrooting ofmungbeancuttings.PlantPhysiol.91:1080‐1084. WonC,ShenX,MashiguchiK,ZhengZ,DaiX,ChengY,KasaharaH, KamiyaY,ChoryJ,ZhaoY.(2011)Conversionoftryptophantoin‐ dole‐3‐acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSISandYUCCAsinArabidopsis.ProcNatlAcadSciUSA. 108:18518‐18523. WoodwardAW,BartelB.(2005)Auxin:Regulation,action,andin‐ teraction.AnnBot.95:707‐735. YadavV,KumarM,DeepDK,KumarH,SharmaR,TripathiT,Tuteja N,SaxenaAK,JohriAK.(2010)Aphosphatetransporterfromthe rootendophyticfungusPiriformosporaindicaplaysaroleinthe phosphate transport to the host plant. J Biol Chem. 285:26532‐ 26544 YiZ,ShaoH‐B.(2008)Therespondingrelationshipbetweenplants and environment is the essential principle for agricultural sus‐ tainabledevelopmentontheglobe.CRBiologies.331:321‐328. YuanH,ZhaoK,LeiH,ShenX,LiuY,LiaoX,LiT.(2013)Genome‐ wideanalysisoftheGH3familyinapple(Malusxdomestica).BMC Genom.14:297. ZhangZ,LiQ,LiZ,StaswickPE,WangM,ZhuY,HeZ.(2007)Dual regulationroleofGH3.5insalicylicacidandauxinsignalingdur‐ ingArabidopsis‐Pseudomonassyringaeinteraction.PlantPhysiol. 145:450‐464. ZhaoY.(2010)Auxinbiosynthesisanditsroleinplantdevelopment. AnnuRevPlantBiol.61:49‐64. ZhaoY,ChristensenSK,FankhauserC,CashmanJR,CohenJD,Weigel D,ChoryJ.(2001)Aroleforflavinmonooxygenase‐likeenzymes inauxinbiosynthesis.Science.291:306‐309. ZhaoY,HullAK,GuptaNR,GossKA,AlonsoJ,EckerJR,NormanlyJ, ChoryJ,CelenzaJL.(2002)Trp‐dependentauxinbiosynthesisin Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3.GenesDev.16:3100‐3112. Zhu JK. (2001) Cell signaling under salt, water and cold stresses. CurrOpinPlantBiol.4:401‐406. ZhuJK.(2002)Saltanddroughtstresssignaltransductioninplants. AnnuRevPlantBiol.53:247‐273. ZhuJK,HasegawaPM,BressanRA.(1997)Molecularaspectsofos‐ moticstressinplants.CritRevPlantSci.16:253‐277. Journal of Endocytobiosis and Cell Research VOL 26 | 2015 111
© Copyright 2025 Paperzz