stochastic capacitated arc routing problem

STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
STOCHASTIC CAPACITATED
ARC ROUTING PROBLEM
2
*
!"
'
!
'
277$
! ( )& #* ++ ,
-.
/0
1 '
!" # $%&
! )
0
2
!
'
! (
'
*
2&
)& #* ++ ,
. '0
0
3 /
33
!
&
!" # $%&
! )
4
3 - &
'
5 6 !" 2+*2
27#7& 51 77 7 3 - ! ) 5
'
. 0
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
GÉRARD FLEURY
-& ,''
/
-
!"
##27 & #* ++ ,
8
5
PHILIPPE LACOMME
-& !
'
-
!"
# $% & #* ++ ,
8
5
CHRISTIAN PRINS
-
9
: /
5
2
)
- ;0
3 - &!
/
0&
!0& 6
'
-& 2
1!
& 77 7 3 -
5
:
-,4
/
/
,
4
0
"! 0
": *1$<712 *+%1*0 '0 $7 = $ 20& " #0
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
$ %
!'!
(
!'"
+
&
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))*
&
,
!'.
0 1
))))))))))))))))))))))))))))))))))-
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))2
"'"
3
"'.
/
3
20*0
20*02
20*0*
20*0<
/
+
)))))))))))))))))))))))))))))))))))))))2
)))))))))))))))))))))))))))))))))))))))))))))))))))))!
3-'
/
/
(
/
>>>>>>>>>>>>>>>>>>>>>>>>> 7
?!,
@
/ !,
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
/
- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
A;
,4 /
/ !,
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> $
4
*0 0
*0 02
*0 0*
5
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))!*
4 / '
'/ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> +
4 / '
'/
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> +
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> +
"
.'"
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))!*
.'.
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))!-
.'#
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))!2
*0<0
*0<02
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> B
+ 70σ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> B
.'
.'9
6
7&&
&
&
.'*
!
(
/ ))))))))))))))))))))))))))))))))))))))))))))))))))))))))-
"'!
.'!
&
.
&
5
7/
8
&
: (
)))))))))))))))))))))))))))))))"!
8
))))))))))))))))))))))"!
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))""
"
"
"
*
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
5 &&/
5;
5;
5;
5;
5;
6 0,
3 "5
3A6 ?!,
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
6 20 3A6 , 6
3 "5
3A6 !,
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
6 *0
"!
6 5 3A6 !,
6
3 " 3A6 6C, ,3 " , 3 !," 6 !,"!6 6? 0000000000000000000000000000000000000000000000000B
6 <0
3 "6 5 , , ! 36 ,3 C6 6, !A
!6 5
, 3 !A, 3 ! 5 "!3 " " D,3 "000000000000000000000000000000000 7
6 $0 ;6"63 ! , ;
3A
3 "6 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 #
5 &
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
<
%
6 0 3A6 ? 556 6"3 ,
,!A6 E 3A 3A6
F6!3 C6 5 "!3 "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000
6 20 ?!,
"G6? 3 3A6 !,
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
6 *0
3"6
5
3 "
,
,!A 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
6 <0
3"6
5
3 "
,
,!A 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
6 $0
6 #0
6 +0 6; 6
6 %0 6 5
6 B0 6 5
6
70 ,C6
%
%
3"6
5
3 "
" D,3 " 5
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 B
3"6
5
3 "
" D,3 " 5
00000000000000000000000000000000000000000000000000000000000000000000000000000000000027
+ 70σ
6H " 3,"!6 ,"? 3A6 3E ,
,!A6 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002
,"!6
5 3A6 ,3A6 ,3 !, 6I 6
" " 3A6 ,E ,
,!A " D ";
00000000000000000000000000000000000022
,"!6
5 3A6 ,3A6 ,3 !, 6I 6
" " 3A6 ,E ,
,!A " D ";
+ 70σ 0000000000000000000000022
,;6 !
3,3 " 3 6 " 6! "? 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002*
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
5
(
, - & +& 7& & 2& +& %& 2*
, & & 2& #& +& B& 2& $& #& 2*& 2<
,
4 & +& B& 2& *& +& %& B& 27& 2 & 2*& 2<
4
"
& #& +& %& 2& *& <
-& B& 7& 2& *& <& #& B
!/
& $& #& +
!
& #
! & #& +& %& B& & 2& *& <& $& #& +& %& B& 27& 2 & 2*
!
& #& B& 7& *& <& $& #& +& %& B& 2*
!
& $& #
& #& #& +& %& B& 27& 2 & 22& 2*
& #& +& B& 7& 2& *& $& %& B& 27& 2 & 2*& 2<
:
? ' & #& +& %&
-& +
& #& +& %& 2& 2*
& 2& *& <& $
7
$
6 4 & #& +& %& 2& $& #
6)'
& & +& 2
'& #& +& %& B&
;
A;,& +& %& $& #& +& 2*
& 2& *& <& $& #& %& B& 27
<
C
C
-& 7& 2& %& B& 27
& %& 2& *
$
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM
GÉRARD FLEURY
-& ,''
/
#* ++ , 8
-
!"
##27 &
5
PHILIPPE LACOMME
-& ! '
#* ++ ,
8
!"
# $% &
5
CHRISTIAN PRINS
-
3 - &
2
3/
' '
J / /
/
J /
/
/ !,
0
'
@ J 4 /
(
,
/
1
'
'
/
&
4
4
@ J
/
' '
J /
- 4
4
'
'
( 4
/
-? ,
& 64
4
/
@
/
' '
0?
'
'
0 3/
0 3/
'
0 3/
J
4
J @
&
4
/
-
J
'
4:
4
4
40 3/
/
/
/
4
'
4
4
-
/
/
J @'
0
'
"
#" ≥7
)
: 7≤#" ≤
$ 3/ !,
4
/
4
- )
-
/
4 ' / 0 3/
''
&"
'
&
/
0 5
/ /
/
/
1 /
'
/
)
'
-
/
#" >7
"
?!,
'
&
- '
> 7 0 3/
!,
'
4
0 3/
'
J
/
!,
- /
4
/
J
&
'
-
0 0 / '
'
) '
0 3/
0
0
J
/
0 0J /
4
" 1/
4 /
4
''
" 1/
-0
'
)'
#
J /
/
'
&"
J @:
!,
>7
4
#" >7
J @&
0
'
/
4
!
'
/ /
4
/
J
'
'
'
3/
/
J ' J 4&
/
4
&" /
4
4
/
0, -
&
J/ /
"&
-
4
/
/
4
'
J
-
J/
'
0,
/ J 1
4
)
'
@
'
B%
4 0,
4
!,
/
!,
@
=
/
0
!,
E
( 4
'
J ' 4
- ;
-
/
0 3/
4
/
!,
(
' '
/
)
/
-
06
!,
J/ /
&
'
/
/
3 - &
!,
!,
/
/
H
4
'
/
'
3
! '
05
/
3 /
4
& 77 7 3 - 5
1!
'
4
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
J/
4
4
0
3
@ J
5
-
J @
M
4 &5
-
$ 2772 & 5
$ 277$
'
/
/
A-
!,
;
'
A;,
/
-
4-
'
( ?!,
/
/ ' '
!,
/
A-
;
&
/
'
-
A;, /
$ 277
-
/
'
-
/ ' '
"
/
J05
'
/
-
'/
& (
/
$& 277
/
4
/
'
'
4
)
'
/
/
@
4
/
'
/
?!,
'
& J/
- /
4
!,
'
- !,
4
)'
- J
-
0
K
&
/
'&
/
/
/
J @
/
'
/ '
4
'
/
)
'
/
- ''
/
/
/
)/
'
'
'-
0
/
@ J
-
-
0 !
'
-
4
: /
4
& /
/
@
/
"
'
"0
3
L
M
-&
/
''
L
0 3/
&
'
/
&
#" =
/
& J /&
'
- / 4
/
/
)'
K
?!,
/
/
0
& /
& ) '
'
'
/
/
N0
-
'
'
/
0
0
'
?!,
03
0
4
'
Stochastic CARP definition
"
'
0
'
#"
0
4 /
-
(
-
/
'
0
'
4
/
/
≤
/
"
- /
'
0
0
STOCHASTIC CARP
, !,
≥ 7 (0
"
"
'
& ( /
0
1.1
4 &'
"( &
> 70
"
0 3/
/
/
0
& ( /
/
/
-& /
/
4 &'
"( 7 ≤
4 &
' '
J @
4
/
4 &'
"( 7 ≤ # " ≤
'
J '/
'/
/ 4
''
/
"
4
'
'
/
& (
& !,
/
'/
/
-
/
/
(
J @
(
1
/
0
4
0 , 4
' '
#"
' 0
J /
/-' /
5
/
/ ?!,
'
'
@-
"
'
#" >7 /
4
'
'
/
0
/
4 / 4/1
,4
3/
0
/ !,
0 3/
4
:
/
%
'
/ A;, ' '
'
J
0
/ -' '
/
277 &
'
: / -
'
4
0
4'
(
!,
F
'
-
3/ ' '
/
)'
0A J
/
'
4-
/
4 /
$ 277<
'
0 , /
,4
-
4
-
- '
/
'
'
-
/
&
/
&
≥
/
&
@& *
'
@ J 4 /
''
/ ?!,
'
0 3/
/
&
-
0
) ' & ?!,
J /
& /
J /
O<
-B
/
+
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
@0 ,
J /
*
'
'
4
0 3/
<
O 77
/
*
:
)
&2&*
@ +&%&B & 2
J
/
'
'
-
@ &2
/
/
0 A
&
/
0
@ *&<&$&# 0
"
'
/
-
J/
0
2
B
1.3
*
%
Literature on stochastic routing
3/
<
/
/
+
/
&
0,
-
@<&
/
/
*0$
@ $
#
J
/
'
&
/
%
<
0
BBB & C J M
/
4
!/
!
4
@<
/
4
/
/
'
'
J
& ω = 2$ J/
= 77 0 ,
J/
& (O*0
1.2
Modelization of random quantities in the
4
4
-'
''
/
/
/
/
J
'
J
3/
/
BB# &
C
/
/
@ J
/
!,
0
-
:
4
0
4
-
- ;
J /
J/
(
'
-<
' '
/
J
/
/
4
&
/ C
' @1 '
-0
+7
'
'
0
4 '/ 0 3/
/ '
/
/
/
' '
/ !,
)
4 0
& /
/ J @
B7
/
'
) # " & σ 2"
A;,
@
'
/
&
C
/
&
4
''
& J/
&
C
4
: 040&
4 &
!,
!,
0
)
J /
$& 2772 &
'
& /
-&
4
'
'
'
-
4
/
J / /
BB# 0 3
'
& /
J
/
J
&"
4
&
/
J
4
J0
'
0
/
"
/
J/
$&
''
Stochastic CARP
@ J 4
&
P
' '
&ω = <
/
J /
0
' '
-
'0 ?
& /
'
0
) '
'
4
/
/
@$
'
;
/
,4
'
4
4 J /
/
@$&
'
2 0 3/
(
/
(
/
4
-
4
''
) '
&
/
'
3/
/
:$
"' $
/
/
''
$
#
J /< '
: 2$
/
J /
/
: 7
+
%
''
0
/
: 27
*
/
)
BB#
0
'
2
4
4
!! &
B
@
'
3/
02
C/
$
277
0<0
/
/
;
J&
'
/
& J /
&
: (
4
4 '
P
J /*
'
: 77
!' (
4
$
#
/
/
BBB
- '
/
- '
4 J @
0
) '
J @
& ;
/
4 1
$
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
BB#
/ )'
!/
4
J
/ C
BB#
-
/
0 3/
)'
/
)
'' )
4
/
5
4
$
-
/
'
4
''
'
/
/
0
4 & /
/
/
' '
2772
!,
/
''
' '
-
0 5
& 5
!,
''
/
2.2
/
/
/
'
/
' '
4
&
/
J @'
/
!,
: /
0 3/
'
/
(
'
(
2.1
,
: / '
0
'
)
:
4
4
σ
'
(
4
{
>
'
'
J
'
0
J / )
3/
/
/
0 3/
&
'
}0
[
=
/
]0
: /
/
'
!,
)'
: /
&
σ
/ 0
'
/
'
20*
Framework proposal
*:
-
σ
0
0
/
/-
J @
4
J
J/ /
-
)'
'
0 3/
&
'
'
'
/
4
-
/
0
'
'
J @
'
4
4
: /
&
J @J ' '
(
'
& ω 0 3/
!,
0
'
:
'
/
0
/
' '
&
SCARP RESOLUTION
5
4
3/
&
-
/
/
'
$ 277
/
4 /
/
0
40 3/ A-
/ J '
( 4 /
/
-
0 3/
$ 277
'
J
'
=
>'
'/
-
4
'
/
/
(
/
/
J/ /
,4
/
Second phase: statistics gathered during
replications
'/
;
&
%
3/
)'
0
2
.'
0 3/
@
'
'
0
/
6
/
'
4
(
-
/ 4
(
4
'
/
0 277*& 277< ' '
/ J /
/
/
-
- J '
!,
& 5
''
0
' '
0
0 3/
@
/ /
@ J
J 4
M
BB% '
/
/
&
/
:
/
@&
'/
-
J
@
/
/
BB+
& J/
'
' '
/
;/ /
/
0 3/
/
(
4
'
/
'
0
'
(
40
&
-
3
'
277
' '
J /
3
'
4
/
4
/
0
'
'
'
0 3/
σ
=
[
/
]0
/
B
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
σ
&
: /
&
-
4
<0 "
/
-
/
/
4&
0 0 "
/
/ 4/ /
/
σ
-
@
7
-'
/N /
(
;/ /&
0
J/ /
/
BB+
@&
3
BB%
13
BB% 0 5
3/
)
/ /4 /
2.3
'
(
'
4
4
Typical scheme of iterative methods for
minimization of a stochastic criterion
E
/
J
1
4 4 '
( 4
0
%
'
& ($
(
* +, -
%
J
/
&
-
-
0
'
J / /
J/
'
# 0 3/
&
) ' & - /
-
4-
- /
)'
4
'
)'
O
0
/
/ '
{
-
= ∞}
/
/
< ∞} J/
= ∞} > ε 0
{
& '
/
4 4 '
/
4 /
/
&
(
/'
5
4
-
(
'
/
/
/
)
/
4
/
-& BB*
4
/ '
J
-
/
' '
4
'
4
/
'
4
J
-
'
2
'
J /
/
0
/ 4/
/
-'
4-
0
-
- '' )
& /
(
/
/
'
0
3/
/ J
/
/
/
'
)
&
0 3/
/ '
/-' /
( 0
BB*
'
0,
-
/
-
)
J/ / /
/ 0 3/
/
'- 4 /
'
J/ /
/
-& BB* /
E/
J/
J/
4/&
/
4
'
'
&
J /
&
4
&
& /
-
6
0 5
)'
= ∞} ≤ ε
%
+
A J
/
/
) '
7
&
/
ε
{
#'
(
- / 4/ &
.
← 2
$
/
J -
-
&
'
'
) &
-
/
J /
≤
'!
) ' & J/
$ $
-0 E /
4
2&
2&
-'
.
-
) '
&
4
0 5
& (
5
*0*0 &
*0<0 7
<0 ?
$0
J/
&
4
'
( 0
/
'
*020 !
5
/
'
2
4
/
4&
&
/ 4/ -
0 3/
/
& 277 0
&
'
/
4
'
/
0 3/
4 /
F
J @&
/
''
20 ! '
20
*0 0 ;
&
& +(, & -(L
J -
3/
):
%
3/ '
'
/
&
-
/
0!
"
/
'
0
First phase: the optimization phase
2.3.1
{
4/
/
)
'
-
/
/ 4
/ !,
0
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
2.3.2
DCARPs linked to the SCARP
3/
- '
/
J @ J/ /
!,
5
'
/
! ''
/ /
''
/J '
M
/
/
-
/
)'
5
-
!
3/
/
'
4
- - 4
0 3/
0& 277< 0
4
- ! '
(
0
/
/
3/
)'
0 3/
(
/
M
' /
! ,''
/
/ ,''
/
/ ,''
/
+ !σ
/ ,''
/
N
! ''
4 / ?!,
/
4
'
-
/
-
/
/
'
/
''
0 3/
&
/
''
/
M
'
H<
/ 0
/
0 3/
-
/ '
/
/
0 0 3/
(
'
: 0 # & H&
(
J ''
) '
H
/
(
0
4 / ?!,
J
( )&
'
/
1
(
: 0 #& &
3/
$ % "' : (
@
/
4
) '
/
/ /
/
!,
3/
''
!0 P
7<! <
-
000
3
/
/
'
&
+ !σ
6 &
0
''
J
%@
6
,''
3/
5
/
0& 277<
%@
<
:
( 4
-
0
/
4 / !,
'
&&
/
/
$& 277< 0 3/
4
/
$ % !' $
&
(
0 3/
/
/
J /
'
-
20
(
(
•
•
!
2.3.3
'
-
• 0( & &
,
-
/
)
/
'
&
/
(
/
!
: (
?!,
! ''
,
?!,
''
/
,
?!,
/ ''
/
# =
/
# =
&
/ 4 &
H<
&
# =
&
=
Preliminary remarks.
4
M
&! ∈
/
M
0
/
/
!,
?!,
=
0!
&
!,
( " ) ≤ "≤
&
/
# "! ≤
:
'
4 /
/
/
"!
"&! ∈
>
/
&
" &! ∈
4
/
'
4
"
@
=
J& /
&
"
≥
0A
"=
0 3/
"
"
"&! ∈
"!
0
& /
"!
/
J
"
" &! ∈
1 :
0 # & H&
J/
!
"=
&
/ 4 &
& &
Mathematical analysis
0 #& &
M
/
& & (
& (0
J
/
'
&
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
21 : &
&
/
%
'
'
/
σ
σ
-
{
>
}= {
{
>
+
/
#
}
)
/
{
12 &
ϕ
J/
> ε}
−
>
"!
&! ∈
)
-
&
J
2
0
/
. −
ϕ . =
20π
0
4
00
/
)'
<1
/
/
-
(
) # " & ! 2 0# 2"
)
J/ /
,
#"
4
,
4
=
/
/
/
J /
/ 4/ '
-:
"
>
& ∈
' 5
(
−
"
/
2
"
0
)
0
/
4 /
-
'0
&
-& /
/
/
/
'& M
'
/
'0 5
& / '
J&
-& M
-
/
&
/
-
& /
0
/
-
J / / 4/
/
J 4
J 4& J
/-' /
:
0
/
/
'
!,
& /
4
0
4
&
∈
A
4
/
5
A2
0
'
"
;
/
#
∈
"
)
A2 ' J /
0
'
/
"
)'
4
$
"
&
2
"
∈
"
J /
+
-
5
=
-
'
6
'
"
≥
6
'
J
"0
"&
-
=
&
'
'
/
&
'
#" ≤
"
4
"=
21
'
?!,
)
'
"=
-& /
/
}
+
4
Mathematical analysis of the trips.
"
J/
"
0
/
'
−
"=
/
'
>
:
&
:
/
/
05
;
−∏
-& /
'
%%
}=
!0
)
4
@
&
J 4 /
0 3/
&
'
'
>
-
-
'
5
)&2'
+(:
/
{
4
- J
1
/
-
4
-
&
0
&
'
0
- '
- ! 0# " J /
-
"
0
'
/
0 0A
/
J 4 /
)'
J 4& J /
∈
2
2
) # ! & ! 2 # 2!
/
@ J &
"
#2
!0
'
−∞
σ
-
J
= 3ϕ
"
{
&
"
/
σ
*1 (
/
"
'
-74
&
#
∈
&
&
}&
>
ε >7
@ J 0
∈
2
/
}O {
>
3/
;
! 0
-
"=
-
−
2
&
'
)
/
"0
/
'
/
'
/
'
/ /-' /
- +3
"
&
/
A
'
/
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
"
=
J /
∈
&
"
=
'
-
/-' /
&
/
-
ε >7
"
"
+
0
"
/
/ '
'
/
/
'
/
4
/
':
=
"
( " ) = 2" 0(
. = ( " ) ≤ "≤ .
5
4 /
−
"
{
+
∈
&
2
"
"0
"
'
"
&J /
&
3&
&
)
3/
'
&.(
'&
∈
&
0
"
.
=
. +
"0
"=
=
"=
(
2
"0
−
"
2
"
)
& J
J
L
& /
K4
!,
%
/
&
- /
%
&
9
9
J/
σ &
/
'
σ &
3
/ '
/
-
'
{
-
)
>
/
}
"=
−
0
4
#
∈
#2
'
+
>
/
-
-
"=
"
:
{
/
>
+
}≤ 6
M
"
/
{
&
>7
>
{
/
}≤ 6
>
+
}≤ 6
20 0
J/
0
{
/
>
}≤ 6 0
M
'
J /
'
- ε0 A
-
}
-
∏( − " )> ε 0
>ε 0 0
"
!0
( 4
-
/
4
& /
'
/
{
/
-
E
/
-σ &
?!,
/ '
Πϕ
-
- ε 0 3/
-
'
−
−
'
J /
'
( 4
/
≥7
/
4
-
&
4
'
'0
&
' 4
-
'
/
≤
4
}≤ 6
>
)
'
0
−
'
"
/
L
:
/& /
'
4 /
J
3
−
/
∈
M
"
ε > 7 0 3/
J
0 3J @
3
)
/
0
&
' (
'
(0
''
-&
}≤ 6
- +∞
K
/
0
>
{
SCARP objectives
'
0 E /
'
ε
0
"
"=
/
'
0
4 '
)'
.
/
- /
)
/
{
"=
C
'(
#$% &
"
-
"
4 /
#$% &
.
"
≥7
)
/ 4/ 0
"=
. =
}
>
− & σ &
' 0
J 4
.
4
'
M
/
&.( =
/
{
/
. =
/
}
>
0
/
/ :
1
≤
"
& /
?
)
-
"
0
)0
'
' '
,
=
/
:
/
≤ε
"
∈
'
1
':
"
"
∈ "
&
/
/
/
/
@
4 /
'
&
202 0
J
'
'
(: /
'
'
+
-
0
/
*
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
( 4
{
/
>
}≤ 6
+
>7
)
*
M
!
M
(
'
4
'
&
-
4
@ J
4
/
&
,
)
0 3/
M
(:
4
/
/
0
0 3/
J /
& J
'
/
σ
J/
σ
/
'
σ
4
05
M
'
/
0A
*0 0
-
+ !0
M
*02 0
+ ! 0σ
M
*0* 0
& /
/
/
'
-
'
@
&
/
'
4
'
-
"
J /
"
"
/
M
-
(: /
ε
0 3/
J/ /
0,
'
A
A2
-&
'
( 4
3/
+ ! 0σ
M
*0$ 0
/
&
0
/
-
/ /-' /
'
J/ /
/
@
M
/
J 4/ 4
'
"
≤ε
- "
M
'
( &
-0
/
&
(
-
4
/
∪ {+ ∞}
J /
0
$
0 3/
-
$0 0
'
A2
%
4
- 4
'
4 J 4/ / 0
/
/
5
4&
-
/
'
:
/
$& 277*
?!,
- !$
-
J
&
)
0 3/
'
63 & /
%@
/
M
/ 4
A
4
M
4 J 4/
/
(
'
M
-& BB<
)
/
/
/
G -
)
M
( /
≤ε
J /
&
*0< 0
'
'
(
'
'
/
M
/
<0* 0
0
* " ε >70 E /
/
+ !0
'
M
A2
:
-
<02 0
( /
)
, "
'
A
∪ {+ ∞}
&
J 4
4
J /
*
'
( 0
( 4:
M
M
/
#$% & +'(
) ' &
<0 0
≤ε
/
&
&
+ ! 0σ
/
&
-
'
M
σ ≤ε
/
&
- σ
-
)
<
σ ≤ε
/
/
M
J
/ 4/ -
'
5
0
:
( 4
σ 0
/ '
'
-
>ε 0
/
( 4
M
/
'
/
'
σ
σ
&
0 3/
A2
J 4/
, -
'
≤ε
0
4 A
+
/
:
!
4 /
≤ε
'
- +∞
'
σ
"
0
+ ! 0σ
)
σ
A2 &
( 4
J
!
4 A
4
/
* "
ε
J /
/
/
) ' & /
#$% & '(
* " ε > 7 0 3/
∪ {+ ∞}
J /
-J
"
20* 0
0
/
(
0
) '&
2020
)
#$% & !'(
'
''
/ '
/0
-
{
!& 7Q!Q 0 3/
!
-
& /
'
(
>
}
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
4& 4
4
4
/
0 , /
'
-
0
/ ?!,
/
M
2.3.4
/
'
' /
4
/ -
/
/
(
/
' '
/
/
/
/
/
'
!,
' '
/
/ K
4
/
/
-
0
L:
4
S &000& #R 0 3
' '
)&
4
& / 4
/
/
4
/
'
J
J /
≤
4
4
&
/
'' 4
0
'
'
#
$ $&
&
/
4:
J -
4
&
4
'
-
&
T
≤ # ≤ 0 3/
←
+
06 /
@
-
''
#
T 0 3/
/
/
&
2
20 ,
-@ '
4 /
J
2
5
- )/ 4 4 /
;,
[& ]
J '
& /
&!
/
'
' '
/
0
4/
&
@
-
:
0 5
/
-'
/
/
'
4'
& /
/
/ 0
0
Chromosomes and Fitness
3/ A;,
/
J / J
'
5
&
/
J @
-
4 &
-
5
/
4 '/
)
'
/
@& J /
&
J/ /
/
@ ''
J
0 3/
'
3/
/
J
-
4
' /
/
J
/
/
'
J
@
/
' /
/
/
' 0 3/
4
-0
@0 6 /
- / 4
/
'
/
-
'
4
J /
J
/
'
2 0
''
4 0 6 / /
''
/
0
Population Structure and Initial Population
3/
' '
/
&
4
J /
0
J
'
/
/
/1
/ 4/1
4
;
(
-
, 4
E
4
1
B%
/
'
J
0 ,
'
4
0
J &
4
-
4
I
)
0 3/ 4
-
4
A;, ' '
$& 277
/
0 3/
Recombination of chromosomes
Hybrid Genetic Algorithm for the SCARP
'
J /
-
0
3/
'/
'
'
-
'
'
$
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
←
←7&
0
20
*0
U
7
7
& 2
7
7
8
0
0
←7
*0 0
*020 ←
*0*0 ! ←
*0<0 &
& 2
&
P2
≤
←9
V{
&
←
0-
7
7
7
7
5
&
7
7/
0.
77
0
(
4
4
S! R}
7
7 /
0
7
*0$0 7
*0#0 &
&
V{
←
S! R}
+
PP
SR
PP
Q
←7
&
7
←
7
+
J /
PP
'
←7
/
J /
'
/
&
PP
&!
<0 ?
$0
'
/
/ ' '
*0%0 7
&
'!
/
'
/
-0 3/ 4
4
Local Search as Mutation Operator
E /
)
& /
4
'
:
'
&
/
'
3J @
Summary – General Structure
J
'06 /
/
54
0
5
21 '
4
0
$ 4
/ 4/
4 /
'
) :
:
:
S! R
-
&
/
0
/
J /
0
'
S! R
&
&
-
'
''
&
0
/
S! R
SR
#
)
0 3/
J
'
/ A;, '
/
4
@ ' /
/
&
/ ' '
&
4
'
/ &
0
/
/
'
& /
0 3/
05
/
/
!,
$ 277 0
'
/
0 E/
'
/
J 4 4
'
'
'
'
J / /
)
0
J/
4
0
'
&
:
/
/
/ & /
/
/
4
4
)
:
'
4
A;,0
Replacement Method and Stopping Criteria
3/
J
2
'
J
J/
/ 0
/
)/ 4 0 6 /
)
)
&
'
- /
&
'
'
&
/
4
/
/
&
/
4
&
/
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
3
Stopping criteria of the local search
COMPUTATIONAL EXPERIMENT
3.1
Numerical experiment
3/
)'
,
/
& /
'
'
/
4 /
@ J
BB+ &
?,
'
'
'
/
/
4 -
4
0 3/ ' 4
)'
/ 4/
= 777
J / /
/
/
'
(
'
0 3/
'
4
'
O27777&
'
/
O#7770 3/
'
:
O70
'
-
5
-
&
&
phase
J 4
Notations
3/
'
$& 277* 0
'
(0 5
/
'
J ''
J /
/
0
-
/
/
-
'
= *7
0 5
/
0,
'
&
4
-
'
'
/
'
(
/
5
Stopping criteria of the HGA
'
! ''
-
4
'
/ 4/ -
J
4 ' J
05
/
/
/
!,
0 3/
/
/
/ ?!,
4
' /
0
/
/
4
07$
/
3.2
/
/
! ''
/
/
/
0
/
0& 277<
/
/ '
/
!,
0
J /
/
/
''
/
J /
/
/
''
/
0
2:
/ ?!,
''
J / /
/
& /
0
:
5
4
:
(
/
/
; & 64
7:
''
4
σ 0
/
'
+ 70σ 0
(
4
J / /
/
*0<02
4
J 4 )
!= 7 /
/
!= 7 '
3/
/ /
C 0 3
' '
)'
-0
(
:
+ ! 0σ
0
/0
4
4
64
/
)
4
& ?,
J
4
/
/
0 5
/
'
'
'
(
/
'
0
*0<0 '
+ ! 0σ
'0
4 /
/0
+ 70σ 0
Tight approach
'
/
1@ J
3/
5
'
/
,''
/
&
&
''
J / /
+ ! 0σ 0 ,
&
:
/ ?!,
! ''
/J
'
?!,
*0*
/
&σ
&
J 4
'
/
/
/
&σ
&
3.1.3
Chromosome and fitness: objective function
3/
0
-
'
Parameters used during the optimisation
3/
'
Parameters used during the replication phase
3
/
4 ? '/ #07 ' @ 4 0
3.1.1
0 3/
/
C 0% ;A(J / 2$#
J 2777
'
3.1.2
BB#
/
27
1
)
4
64
B% 0 3/
E
J
4
@
-
) 0 3/
& /
$& 277<
'
4
/
J/
'
+
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
J /
' 0 +7W
'
'
?,
& B#W
/
$7W
&
&
σ
&
σ
σ
&
&
&
3/ 4 '
2*0*$W
$0#+W
+7077W
#07%
70%<
B#0%+W
%<207<
0#$
$*07#W
*0%7
70#%
'! A
*'.9A
.'9*A
'
/
'
'
(
/
'
4
/
&4
4
/
*
4
?,
& +W
64
''
/
/
/
'
'
0!
'
$& 277*
/
(
'
<0
707+
70*<
707<
'# A
!' 2A
'. A
/
7&
7&
4
/
/
/
'
/& /
'
4 /
5
-
'
/ 4/ -
?,
&
$*W
4
0
/
/
/
''
4
/
0,
/
BW
/
/
/ 4/ -
&
64
4/
''
'
/0 3/
'
J&
3/
4
&
&
/ 4/ -
/ ?!,
$& 277<
'
7&
!
-0
/
/
4
/
'
4 /
-
&
4
-
277* 0
J/
'
64
& /
/
/
-
'
'
7&
@
W
0 !
/
%
0
64
'
'
&
@
J /
07#W
*0<%W
/
0
!
/
/0 3/
&
4
/ 2*W
(
''
&
&
J / / 4/
-0 3/
7&
7&
7&
/
' '
0 3/
'
70#$W
07
) '
J/ /
''
/
-
4 /
/
/
*0<%W
+#0*#
/
- 5
'
?!,
07#W
0**
J/ /
& /
- -
7&
7&
70#$W
/0 3
-
707$W
-
B#W
4
/ ' '
/
70$+W
4
/
! ''
707#W
7
+7W
Slack approach
3/
1 0BBW
-
-
0
3.3
1 0<%W
/
J /
*0#+W
1*027W
&
/
3/ '
/ 4/ $W
*0*<W
/
0
3/
σ
σ
σ
*$ 0
? ,
64
B0$<W
−
7
7&
0 3/
$
<0$7W
−
777
J/ /
/
*02BW
/ ;
4
'
C
&
0 3/
* #
64
''
/
%0B2W
−
7&
%07$W
4
%<7
C
&
/
;
J /
'
>
64
>
<0<*W
7&
=
J
=
7 −
/
0
;
−
&
&
64
-
/
%
%
!
4
@ '
$ % .'
$ % #'
4
* 0 3/
/
)'
/
0
/
! ''
5
/0 5
-
$&
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
E/
/
-
/
/
''
& /
/&
J/ /
/
'
- / ?!,
-
0 3/
(
! ''
4
'
'
( 0 3/
)
/
/
'
''
/
& /
J /
''
'
/
4
' '
0
-
0<7W
4/
''
/
?,
/ & *07BW
4/
''
4
/
4
&
J /
M
4
J
J
J /
' J
''
''
/
M
'
/ 4/ -
4
$
J / /
@
/
!
'
−
−
/
0%+W
&
4
4 '
/
J
/
@ ''
?,
7
64
*02BW
&
/
4
7&
0 3/
1 0B$W
/
0%2W
1*0<$W
σ
σ
σ
E/
&
&
&
&
-
0 +W
20+BW
70*BW
2<0B<W
<07$
#70 BW
**%0 *
70*%W
*0<*
70*<
70%2
702
!'# A
.' 2A
'-.A
& /
4
?,
-
/
4/
&
''
'
/
B#W
7W
0 E/
/
(
'
'
4/
/
@
/
4/
/
4
/
0
/
/
'
<
/
4
@ ''
)
/
/
'
/0
'
/ /
/
( 4
4
/
4
0
/ 4/ +7W
3.4.2
+ 70σ
Minimisation of
2$W
#7W
$*W
'-J /
/
'
J 4
)
'
4
(
:
/ '
1*0<$W0
@ 0 3/
(
3/
4 /
J
/
/ '
'
&
J/ /
4 '
1<0$7W& 1 0B$W
&
/
−
&
&
&
&
/: <0<*W
0<2W
%0B%W
1<0$7W
?,
0<2W
/
−
&
/ 4 '
7
C
#07*W
*07+W
/
0 3/
&
&
@ ''
0
64
''
/
0%+W
4/ -
64
(
;
J /
-
4
%0B2W
0
4/
70*7W 0
& #07*W
' '
4
-
4 /
0 3/ J/
70%*W
J / /
J
!
)0
$ %
/
70<7W& 0$BW
(
'
(
4 /
/
/
'
4
0 3/
'
/
03
,''
J
J
/
/ 0 3/
'
/
64
*0#+W J / /
''
- /
@
-0 E
+0*#W J / /
Minimisation of
/
-
$0 $W J /
3.4.1
J /
/0
Law approach
3.4
/
64
4
3/
/
'
#0 !
( 4
'
& /
'
B
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
/
/
4 / '
5
-&
'
''
-
'
J/
/ 0
J
/
'
/
J / /
3/
707%W
'
( 4
07
-
0 "
-
64
& /
70<%W J/ /
'
& /
70 BW
/
05
&
/
@ ''
/
70*< J/
707*
-
/
=
/
/
/0
&
!
'
2 −
$&$ W
−
2&
/
σ
σ
σ
& /
'
'
4
2*&<<W
702#0 5
707<0 3/
J/
-
/
2*&# W
<& %W
12&2BW
17&2*W
1 &**W
7&77W
7& $W
7&72W
2&
2&
7&<#W
7&2
+&##W
#<& 2
2&2$W
7&+2
2&
2&
2&
7&7*
7&2#
7&7#
B-A
B
#-A
B
!2A
702 0
( 4
/
'
+ 70σ & /
<& $W
$&$ W
2
+ 70σ
( 4
/ 4/
/
707# J/ /
4 /
'
/
-
! ''
-
&
&
4 /
?,
/0 3/
& 70$+W
'
/ J/
+ 70σ
: 7077W
J / /
0 +W& 20+BW
( 4
(
64
4
0 3/
3/
'
! ''
707$W
''
/
/0
4
J4 '
707#W
−
2
J
C
&
2&
( 4
'
4
E/
&
/
70*<0 E /
70%20
/
−
2&
64
''
/
64
/
/
;
J /
-
/
' J/ /
! ''
+
'
0 3/
+ 70σ 0 5
/0 5
4 /
&
4 /
707+
( 4
/
/
%
>
J/
?,
/
$ % 9'
+ 70σ
/
0,
( 4
! ''
! ''
4
- /
J
-
+ 70σ
( 4
/ 4
- /
/
+ 70σ
( 4
'
-
4
/
'
/
4/
-0
/
-
/
-
/0
/
J/
/
)
( 4
! ''
/
( 4
! ''
0 5
/
/
?,
0<7W
-
70*BW 0
'
-
?,
7072W
/
& 70 $W
64
'
/
J
4
0
-&
/
/
E/
(& /
'
4
/
/ ?!,
/
/
/
4
J /
/ /
(
''
- 702
'
/ <07$
0** J / /
#<
''
/0 5
0 3/
27
J/
/0 3/
?,
7 −
&
0%+W J/
/0 3/
(
'
/
+#
4
/
!
/
70+2
( 4
( 4
+ 70σ 0 5
<0<*W0 3/
4 '
(
J/ /
/
J/
/
?,
64
**%
! ''
J / /
! ''
/
2&
/
/
$0$ W J/
( 4
)'
+ 70σ 0
J : J/
/
*0<*
( 4
03
M
4 /
(&
/
& /
-&
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
/ 4/ 0 5
/ /
'
4 '
3/
(
4
64
& /
%0B2W
/
''
&
J /
σ
σ
σ
0 3/
/ '/
/
4 /
!,
'/-
0
/
4
J
3/
/
J /
!,
J
+0##W
+#0*#
70*<
**%0 *
70%2
#<0 2
702#
!' 2A
.' 2A
0#-A
/ ''
/
' '
−
'
/
/
4
-
' '
/
(0 5
/
4
!,
/
&
'
'
Efficiency of the mathematical expressions
for the DeArmon’s instances
3
/
/
/
'
4
'
/
/
&
M
/
'
J /
0 3/
/:
4
'
&ω
0
$ % *' 7/
C
'
0
/
''
!
''
!
'
−
&
&
-
'
&
-
0
4 / ?!,
3.6
'
J&
/
$& 277 0
(0
/
J
J
'
/
Eglese’s instances
+ '
-
4
'
'
'
0 3/
/
3/ '
/
4
−
&
M
Comparative study of the 3 approaches for
&
/ 4/
-(
64
'
#70 BW
/ 4/
&
0
/ 4/ -
'
*0<%W
&
/
−
/
3
&
/
&
J/
)
3.5
70 $W
'
0 3/
/
20+BW
/
-
/
4
&
70$+W
−
/
&
−
&
&
&
J
'
- 4
σ
0
2*W0
/
M
( 4
4
4
/ 4/ 4/
/
#07*W J/
+ 70σ
4 ' J/ /
! ''
−
−
&
&
/
J /
/
/
( 4
''
/
( 4
+ ! 0σ
''
/
%0B2W
#07*W
2*0<<W
B0$<W
%0B%W
2*0# W
1 0<%W
1 0B$W
1702*W
3/ 4 '
J
/ ''
/
''
/
- /
/
)'
0
/
&
( 4
( 4
+ 70σ
%
/
/
B0
2
/
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
$ % -'
0
&
&
+ /
5
$ % 2'
0
−
&
&
+ /
2 −
&
&
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
**<
*$#
2B2
* *
<7#
*2*
*<2
*#*
*27
2+B
*B$
<%7
$<<
77
$%
2B
B
#<
$+
2*
$%
272
2*#
2
*
<
$
#
+
%
B
7
2
*
<
$
#
+
%
B
27
2
22
2*
/
'
4/ 4 '
4 & / 4 '
2
**2
*$<
2B7
* *
<7<
*2
**B
*#2
*27
2+B
*B$
<+B
$<<
77
$%
2B
B
#<
$+
2*
$%
272
2*#
4
17&+2W
17&<#W
17&#+W
7&77W
17&$<W
17&$#W
17&%$W
17& %W
7&72W
17&22W
7&72W
17& 7W
7&77W
7&7*W
7&7*W
7&72W
7&77W
7&72W
17&**W
7&72W
7&7 W
7&77W
17&7*W
17027W
J
2&
+ 70σ 0 3/
707$W0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
0
&
7027W
4
B0
( 4
J
**+
*##
2B#
* *
<7B
*2<
*$
*%%
**B
2%*
<7*
$*<
$$2
72
$%
2B
B
#<
#*
2*
$%
272
2*B
2
*
<
$
#
+
%
B
7
2
*
<
$
#
+
%
B
27
2
22
2*
E
/
-
/
/
J/
4 4 '
& σ
2
**+
*##
2B#
* *
<7B
*2<
*$
*%%
**$
2%*
<7*
$*<
$$2
72
$%
2B
B
#<
#*
2*
$%
272
2*%
4
7&77W
7&77W
7&77W
7&77W
7&77W
7&77W
7&77W
7&7*W
1 &7<W
7&77W
7&77W
7&77W
7&77W
7&7<W
7&77W
7&77W
7&77W
7&7 W
7&77W
7&77W
7&7 W
7&77W
17&2$W
1707$W
4
/ 4/ 4/ /
/
'
2
)'
:
&
σ
&
&
& σ
/ 64
3.7
0
Computational time
-
'
4
$& 277
)'
σ
4
'
J / /
,''
&
&
/
3/ / 4/
3/
2&
2&
&
22
5
+ 70σ
/
/
'
J/
/
4 / ?!,
'
)0 3
/
7 '
/
0
'
0
0 5
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
$ % ! ' (6
,''
/
/
3
;
3
!
<077
2 #0+$
#0*$
2*02+
2+$0<
$0<*
+20#2
+20<
3
3
=3
**02*
!
2%B0$7
%07$
$270 B
B$0B
+%0<B
+B 072
2B+0$B
2<0BB
2*20#%
%<0 *
REMARKS
M
'
4
/
/
!,
;
&
'
'
/
-
@ 4
4'
4 /
/
/
/
-
'
' '
/
/ A;, ' '
'
'
(
/
!,
/
?,
/
&
3/
@
-
J/ / /
-
,
/
/
/
/
'
J
'
-
'
- /
4 /
/
@
4 &
& '0
BB# ,
'
/
-
4
& G J & '0 #**1
0G01 0
J
4 ?& J /
0&
E 0 00
,''
?-
F0 0
-
B%
,!
'
A
0
-
- ;0
'
3/
5
'<< # & '0 B$ 1B#*0
!/
5
BB#0 ,
" J @ J /
&:
3/
'
!
4
BB* 0
'
@&
/
8
-
H 3/
?&
&
,0
/
" 1?
!
0 /? 3/
15
>>>>>>>>>&
0
4
6
- ,4
0
&5
&
0
0&
/
!0&
/
"! 0
277< 0
,
4
": *1$<712 *+%1*0 277<0
'0 $7 = $ 20
>>>>>>>>>& >>>>>>>>>& >>>>>>>>>
@
/
'
;
4&
/
0
6)
<B%&
F0 0 G -
! '
/
4
/
3/
'' '
/
@
"!
:
/
!,
4
0
-
J / /
4
0Y0
/
4
J /
/
!
X @ 3&
0A0
/ ! '
/
4
,6&
0
?,
0 3/
-
(0
0
' '
'
,
1@ J
64
/
,4
'
/ J
: 6
4J /
!/
/
4
4
'
''
0 3/
-
A 0
0E 0
9
/
$ 277 & J
J
3/
4 / 4
-
0
#$70
/
0
0
/
4
(
/
" B% &
64
!,
/ '
J
/:
4
/J
0
E '
BB# 0 ,
B= 2%0
/
- '' )
4
"
/
0,
?0
BB#0
/
A;,0 3/
0
-0 :
@ F0 BB% 0 !
/
4 '
4
4
/1,'
AND
4
/1
C/
/
60 277* ,
0 *7 $ & '0 +7$1+2%0
?0F0
)'
J / /
&
'
:
-J
BB% 0
0:
F0 0
RECOMMENDATIONS
3/
@ ,0
09
4
<< 2 0
CONCLUDING
"
2* < & " 0 BB%& '0 +#B1%7$0
,4
4
,0
) '
<0B+
#BB0#
3
+ 70σ
C
0*$
3
/&
64
REFERENCES
2+%0#*
3
/'
>
$0%7
3
3
=
/
0
!/
E 0 277$ 0
4'
!,
$ 2772 0
&<:
0<
'
1
4
0:
4
('C $#& 0 $2# 1 $*%& 277$0
2*
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
>>>>>>>>>& >>>>>>>>>& >>>>>>>>>& >>>>>>>>>0
/ ! '
4
0 2772 0 !
4
A 4/ ,
4
;
,
4
& ,&
-
& +1 7 ,'
,
>>>>>>>>>& >>>>>>>>>&
-
6 0& !
4
F0
,
-
" 1$#$$$12<21*&
27720
,4
,
'
4
/
277*
3
E
'
6
277*&
4
1A
! '
@/ '
5
0
A
/
/
00
<
40
:
;
0&
3
'
/A
/
<< * &
-1F
E
4 030
&) / ! &
F
030 277 0
!
?
!
'
0
'
/?
?
&
0&
4
)
'
4
C
'
-
&
, / &
;0
/
4 '
/ 0=
'
!0
/
1!/
/ ! '
,
0 '0 <+*1<%*&
Z,''
4Z& 60F0E 0
0&
E0
4
"! 27*+&
40
'
) 50C0
J / /
9
6
3
27%0
4
& G J & '0 $B1 #+0
BBB 0
4
& 30;0 !
4
1 / '
4
-
277 0
?00
BB< &
4
& 2 * & '0
'
/
F0 ?0
BBB 0 ,
4 1 /
' @1 '
<
0
0 :
<& '0 <<+1<#<
,0
;/ / ,0
BB+ 0 ;
,4
/ 4
5
/
4
4
-
&
B% 0 ! '
5 )
& 3/
4 "
0 5
0 0
- '
0
& '0 *7$1* $0
: ,
22 12<%0
J /
@0
277 0 , 4
/
;0
4
4-&
G (
/
4 ,'' )
'
J /
4'
6
'
,4
BB# 0 ,
0 :
' ,
3 /
J/
BB#0
0 0
?'
00
4
!
;
J /
4
/ C/
?
4
/
;0
5
0& G -J 4 ,0& "
"0
0
$ %%& '0 *1 20
?-
-0 3 /
&;
BB# 0 ,
" J @ J /
/
4
BB# 0
E 0 00
,''
,''
;
4
J
,0 277 0 3/
M
;0
0 :
0 << # & " P? 0 BB#0
'
0
'
/
/
!
0 *B $ 0 '0 *< B1*<$+0
0&
C/
?
0:
/ '
00 277 0
/
J /
C J M 0& ,/
4/
- 2+1*7& 277*0
<
;
2<
!,
0
/
0
;0
-&
/
4 ?-
4
&
-&
>>>>>>>>>& ;
F
/
4
?Y
/ ! '
G0!0
/
>>>>>>>>>& >>>>>>>>>& >>>>>>>>>& >>>>>>>>>&
!
0C0 2772 0
& $7 * < $1<2*0
"
&
/
J /
& '0 2B712B$&
2772& 5
1 / ' ,4
A
4
/
&
/
0
* & '0 27 1
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
APPENDIX 1. DCARP RESOLUTION: TIGHT
APPROACH
$ % !' ? ,
&
4
* #
>
$ % "'
$
*$ 02*
σ
&
&
&
$0%2
##027
* 0 +
σ
&
70#%
&
4 1 1, *$<%
$
*B #0#<
41 1
&
&
σ
&
σ
&
#0 %
+%0<7
2B<0<
70%#
4 2
**B
#
*%B0$7
%07%
B<027
2%07#
0 7
<<B%
+
$2B#0 <
%0#
%#0*7
$*20$*
072
4 *
2+$
$
2B20%2
$0%
#<0<7
$0*<
70+7
4 1 1! $$B$
7
+ *%0+#
*0#%
BB0*7
#<<0*%
0<%
4 <
2%+
<
*270B*
$02<
+B0+7
2*0$%
70%#
4 1 21, $7 %
+
$%770<2
%0%#
B 0%7
<#<077
07+
4 1 21
4 $
*++
#
<<*0 +
%07B
B20+7
*+0#+
0 2
4 #
2B%
$
**$077
#02$
+B0<7
2+0B%
70%#
4 +
*2$
$
*$<0#+
$0%2
#$077
2$02+
70+7
4 %
*$7
7
*%$0 7
0BB
B20*7
2 0 B
4 B
*7*
7
*#20B%
*0$%
BB0*7
7 2+$
<
2%#02B
<0<*
<*077
4
*B$
$
< 202
$0#+
4
2 <$%
+
$
%0 %
4
* $*#
#
$%<0%
4
<
77
$
720<$
4
$
$%
<
4
#
2+
4
+
B
4
%
#<
$
#+072
$0*7
2%0+7
4
B
$$
*
#70$7
*0#B
$B027
4 27
2
<
2B0<7
$0+<
B 077
4 2
4
#*<7
7
+%+<0*
*0<2
B%0B7
#+B0%#
0<*
4 1 21! %< $
<
72 +0#+
+0B#
BB0$7
+<$0#
0$*
4 1 *1, $%B%
%
#+<#0%*
70*B
B$027
<%70#$
02*
07B
4 1 *1
+%22
2
B+B#0+*
#0$7
BB0%7
+ 20B
0$*
2<0$%
0<7
4 1 *1! 7<**
+
**$*0B+
2*0 %
77077
B 20 *
0%
*0 2
70$7
4 1 <1, #<#
B
+#2B0$7
0$7
B$077
$B#0$<
02#
$%0B7
$0#*
70#2
4 1 <1
+%027
*B0B*
70%$
4 1 <1!
%0%
B+0#7
2<0+
$0<+
<70*7
*0+<
70#*
$%07#
<07*
20B7
70*<
70 +
$
*<0<#
#0#*
%%0$7
$02*
#
B 022
#0
0 7
70#*
0+#
B72
<
+# 07<
77077
B770BB
0#%
BB0B7
B<$0++
0%*
%0$*
%$0<7
#2+0#<
70BB
20+$
B#0+7
#$20+7
02B
%077
BB0 7
B7202+
0$+
2*7%0%<
%0B
BB0+7
%##02*
0+
+7# 0$$
2%0<
77077
2*0#7
2022
20*B
++B
27
<$*20$
4 1 1, $7 %
+
$B7%0++
41 1
#<*$
7
++*$0 $
4 1 1! %$ %
<
7%2 0$2
70B<
4 1 21, BBB$
<
70*
4 1 21
27
<0B
70<B
4 1 21! #+B$
$0+%
70#<
4 1 *1, 72B#
$0*B
70B$
4 1 *1
02
* +<
<7$*
$#
#
#<0$B
+0#B
B7027
$0*+
70B$
4 1 *1! +2B+
4 22 277
%
27$0%2
B0#<
%+0B7
*0#*
072
4 1 <1, 2<<2
4 2* 2**
7
2<%0+*
*0+B
BB0*7
#0#B
0$7
4 1 <1
#$*
4 1 <1! 27%*2
2+ 2 %$ 0$7
B0 +
2$0$
*#0B+
77077
2+%07#
$
2%#<0<2
2707$
BB0B7
B7*02%
0#$
22
+$7<0 2
2%0++
77077
7+20 +
2077
2B 22$ 70%+
20<2
*B0<+
77077
2+#0*2
<B7%02<
2*0+B
77077
B7B0 2
0#%
2+ 27%%<0B+
*#07*
77077
%*07$
202#
*# 2+ $#0%$
<%0B7
77077
$7<0+<
20+#
B
>
$ % .'
2$
2
2
2
*
*
*
<
<
<
<
$
$
$
$
#
#
#
+
+
+
%
%
%
B
B
B
B
7
7
7
7
+*
+*
2<$
22+
2$B
<$+
%
%+
*%
<77
< 2
<2%
$<
<2*
<<#
<+<
$%
22*
2**
* +
2+B
2%*
**<
*%#
*B$
$2+
*2*
*2#
**2
*B
<2%
<*#
<<#
$*7
2
*
B
2
*
%
2
*
+
*
<
$
B
*
<
$
B
*
<
7
*
$
B
*
<
B
*
<
$
7
*
<
$
7
&
+*077
B70#7
2# 0<*
22+07
2%*0+7
$#702<
%20<
%B0%7
# 0B*
<720
< +0 #
<<+0%2
$B<0B#
<2%0%$
<$#0B2
<B70*B
#+$0
22B0+<
2<<0+B
*+#0<
2%*0B$
2%<0 7
*#%0$B
*%+0 +
*B#0*+
# 20*%
*2<0*B
**$0$$
***0%+
<2%0*+
<2%0%<
<< 0#
<$$0%#
$+*0#2
&
2077
<02B
B0++
2077
*0<B
70$7
20<B
*0<+
B02$
*02
<0<2
$0BB
70+*
*0*7
<0#+
$0+$
2072
*0<2
<0#7
*0
*0*#
$0
70%$
*07#
<0 +
0#B
*0 $
<0%+
$02
20$<
*0 2
<0<7
$0+B
20$
&
7077
%20+7
$%077
70 7
<B0<7
B$0%7
<%0#7
<+027
B*0 7
2 0 7
*+0$7
+*077
B7027
2B0<7
$%0+7
# 0$7
B%027
<20 7
$#0+7
B%0#7
*$0$7
077
%%0*7
#0$7
#0#7
B#0%7
<0+7
#$0%7
B0%7
B#0 7
2027
*B0#7
#*0#7
B$0#7
σ
&
7077
<07+
+0*2
702$
2$077
$70+<
202B
*0<7
$0%%
<0 7
+0<B
$0+%
*20BB
B0
70B%
<0B$
<70%%
+0B7
07B
2%02<
#0+<
*0 *
2202%
<0<2
*0$7
<70$$
*0*B
%027
<07*
B0B$
20*+
#0B#
%0$
220$#
σ
&
7077
70%<
70++
707*
70$7
022
70$7
70$7
0 B
70<2
70$+
70+#
077
70<#
70#*
70#B
02#
70<B
70$#
02+
70<%
70*
0
702$
70<7
02*
70*$
70+#
70<*
02<
70*<
70<B
70+7
02B
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
APPENDIX 2: DEARMON’S INSTANCES
! ''
$ % #'
&
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
*
<
$
#
+
%
B
7
2
*
<
$
#
+
%
B
27
2
22
2*
2#
**+
*$B
2B#
* *
<7B
*2<
*$
*+7
**
2%*
<7*
<+%
$<<
77
$%
2B
B
#<
#*
2*
$%
272
2*+
#
+
#
$
+
#
#
2
$
#
%
+
$
<
#
#
$
<
$
+
B
2
$ %
/
**+077
*$B077
2B#077
* *077
<7B077
*2<077
*$ 077
*+ 0#$
** 0B*
2%*0
<7*077
<%702
$<<02*
7707$
$%077
2B072
B 077
#<07*
#*077
2*07$
$%07$
2720
2*+07*
&
&
#077
+077
#077
$077
+077
#077
#077
07+
207$
$07
#077
%07<
+07
$077
<077
#07
#077
$077
<077
$077
+07
B07*
207
7077
7077
7077
7077
7077
7077
7077
#0%7
<0+7
70+7
7077
<077
077
70$7
70 7
70+7
7077
70<7
7077
70$7
027
20+7
077
σ
&
7077
7077
7077
7077
7077
7077
7077
#0*<
<0$%
0*2
7077
20 *
20#7
70+
707#
70*7
7077
70$7
7077
70+
70<<
70#
702+
σ
&
&
7077
7077
7077
7077
7077
7077
7077
702$
7022
707%
7077
7027
70 7
707+
707*
707%
7077
707#
7077
707+
70
70 +
70 7
*2*
*<$
2+B
* *
*B$
* 2
*2$
*$%
* +
2+$
*B$
<+%
$<<
77
$%
2B
B
#<
$$
2*
$%
272
2*$
+ !0σ
$ % 9'
'
$
#
$
$
#
$
$
2
<
$
%
+
$
<
#
#
$
*
$
+
B
** 0#7
*$<0*#
2%B0$$
* *077
<7*0%7
*2 027
**B0 7
*# 0B<
*2707%
2+%0$%
*B$07#
<+B0*2
$<<022
7707*
$%072
2B07*
B 077
#<07*
$+02
2*072
$%072
27207B
2*$0%*
&
$0+%
#0%#
$0%*
$077
#0+B
$0%<
$0%<
2022
0 +
<0<<
$07
%07*
+07
$077
<07
#07
#077
$077
*0#B
$077
+07
B07<
0*B
&
# 0#7
##0%7
##077
7077
#<077
#$027
##0#7
27077
$0+7
<*0<7
70#7
*077
077
70$7
70B7
70+7
70 7
70*7
$%0 7
70$7
0 7
*0B7
**0+7
σ
&
%07*
%07<
B02%
7077
+0%*
%0 7
*0*$
%0<B
+0#<
<02+
70B<
%0 *
20$2
70<2
70 B
70*%
707#
70$$
20##
702%
702
70<#
0*$
σ
&
&
70+
70+
70+7
7077
70#%
70+
70#B
70<$
70<7
70$7
707%
70 +
70 7
707+
707B
707%
707*
707$
70#$
707+
70 7
70 B
70#7
**+
*##
2B#
* *
<7B
*2<
*$
*%%
**$
2%*
<7*
$*<
$$2
72
$%
2B
B
#<
#*
2*
$%
272
2*%
#
+
#
$
+
#
#
*
2
$
#
%
%
$
<
#
$
$
<
$
+
B
2
**+077
*##077
2B#077
* *077
<7B077
*2<077
*$ 077
*%%0 7
**$07+
2%*077
<7*072
$*<077
$$2077
7207<
$%077
2B077
B 077
#<07
#*077
2*077
$%07
272077
2*%07
&
&
#077
+077
#077
$077
+077
#077
#077
*077
207
$077
#077
%07<
%077
$07<
<077
#077
$077
$077
<077
$077
+077
B077
207
7077
7077
7077
7077
7077
7077
7077
70<7
70$7
7077
70 7
<0 7
7077
<077
7077
7077
7077
70 7
7077
7077
7027
7027
70B7
σ
&
7077
7077
7077
7077
7077
7077
7077
0$B
02*
7077
70+7
7077
7077
70$<
7077
7077
7077
702$
7077
7077
70*<
707B
70 $
σ
&
7077
7077
7077
7077
7077
7077
7077
707#
707+
7077
707*
7027
7077
7027
7077
7077
7077
707*
7077
7077
707<
707<
707B
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
APPENDIX 2: BELENGUER AND BENAVENT’S
INSTANCES
$ % *'
! ''
&
2
2
2
*
*
*
<
<
<
<
$
$
$
$
#
#
#
+
+
+
%
%
%
B
B
B
B
7
7
7
7
+*
+B
2#
22+
2#2
<BB
%
%B
<#
<7#
< %
<<%
$#$
<<
<##
<B+
# +
22*
2<$
**+
2+B
2%*
*$2
*B$
<7B
$#$
*2#
**2
*<7
<7B
<*#
<<#
<$B
$$$
2
<
7
2
*
B
2
<
%
<
$
#
7
<
$
#
7
*
$
<
$
7
<
$
7
<
$
#
<
$
#
+*07
+B07
2# 02
22+07
2#207
$7 0%
% 07
%B07
<+07
<7#07
< %07
<<%07
$#$0$
<< 07
<##07
<B+07
# +02
22*07
2<$07
**+0<
2+B07
2%*07
*$20
*B$07
<7B07
$#$02
*2#07
**207
*<707
<7B0
<*#07
<<#07
<$B07
$$$07
&
&
207
<07
707
207
*07
B0
207
<07
%0
<07
$07
#07
707
<07
$07
#07
707
*07
$07
07
<07
$07
707
<07
$07
707
<07
$07
#07
07
<07
$07
#07
07
707
702
0<
707
707
%0%
707
702
$0
707
707
707
07
707
707
707
70%
707
70
20<
707
707
70+
707
707
70+
707
707
707
70+
707
707
707
70
σ
&
707
70#
207
707
707
70$
707
702
<0$
707
707
707
<0B
707
707
707
20+
707
70*
20%
707
707
0*
707
707
20<
707
707
707
0<
707
707
707
07
σ
&
&
7077
707<
70 2
7077
7077
70*7
7077
707<
702*
7077
7077
7077
70 7
7077
7077
7077
707B
7077
707*
70 $
7077
7077
707%
7077
7077
707%
7077
7077
7077
707%
7077
7077
7077
707*
+*
+B
2<%
22+
2#7
<B
%
%+
<#
<77
< 2
<<<
$<B
<2*
<<#
<+<
#7$
22*
2*$
**
2+B
2%*
*<2
*%#
*B$
$$%
*2*
*2#
**2
<7B
<2%
<*#
<<%
$<
+ ! 0σ
$ % 2'
$ % -'
/
2
<
B
2
*
B
2
*
%
*
<
$
B
*
<
$
B
*
<
7
<
$
7
*
<
7
*
<
$
*
<
$
7
+*077
+B07*
2$2022
22+077
2#70 <
<B<0+
% 077
%+07*
<+072
<7707<
< 207*
<$20<<
$#+0%%
<2*07<
<<#07B
<+#0*$
#7#0+#
22*072
2*#0+$
***0%<
2+B077
2%*072
*<<0B
*%#0 %
*B$0$2
$$B0 <
*2*077
*2#07<
**20 %
<7B072
<2%07#
<*#077
<<%02*
$<<0+B
&
2077
<077
B02%
2077
*077
B07B
2077
*077
%07$
*077
<077
$0%2
B0%B
*077
<07
$02%
B0 7
*077
<0**
70<<
<077
$077
7022
*072
<07$
707#
*077
<07
$072
077
*07
<077
$07<
70*#
&
7077
70<7
2$0 7
7077
70*7
%0*7
7077
70$7
$027
70<7
70$7
#*0%7
#%0 7
70*7
027
2$0%7
B027
7027
*20+7
*%077
7077
70<7
270*7
0%7
$0<7
#077
7077
70#7
20*7
70 7
0<7
7077
*0#7
*70B7
σ
&
7077
70<#
+0%#
7077
20$2
20B
7077
70<2
<0#+
70#%
70#2
B0$#
2$077
70%7
70BB
#07+
#0$B
70$<
*0$%
<0%#
7077
70*%
+0*B
0*#
20<
$0#+
7077
70$+
02#
70$
70<+
7077
0*+
+07*
σ
&
&
7077
707#
70$
7077
707$
702B
7077
707+
7022
707#
707+
70+$
70+$
707$
70
70<B
70*
707<
70<B
70#
7077
707#
70<+
70 *
702*
702$
7077
707%
70 $
707*
70 2
7077
70 B
70$%
2+
+*
+B
2#%
22+
2#7
$#%
%
%+
#2
<77
<22
<$<
$+<
<2%
<$7
<B$
#*
22*
2<$
*<+
2+B
2%*
*$2
*B2
<7B
$%*
*2*
**2
*<7
<2
<2%
<*#
<$B
$#2
2
<
7
2
*
7
2
*
B
*
<
#
7
*
<
#
7
*
$
2
<
$
7
*
$
*
$
#
*
<
#
+*077
+B077
2#%07*
22+077
2#7077
$#%077
% 077
%+072
#207B
<77077
<2207*
<$<07+
$+#0<
<2%077
<$702<
<B$077
#* 0
22*077
2<$077
*<+0 <
2+B077
2%*077
*$207*
*B20 B
<7B07%
$%*07<
*2*077
**2077
*<7077
<2 07#
<2%072
<*#077
<$B077
$#2077
&
2077
<077
7077
2077
*077
7077
2077
*077
B077
*077
<077
#077
702
*077
<02
#077
7077
*077
$077
2077
<077
$077
7077
*0*
$077
077
*077
$077
#077
077
*077
<077
#077
077
&
7077
7077
7027
7077
7077
7077
7077
70*7
70<7
7077
70*7
70*7
270*7
7077
2 0$7
7077
70*7
7077
7077
70<7
7077
7077
70*7
* 0*7
70*7
70 7
7077
7077
7077
70<7
7027
7077
7077
7077
σ
&
7077
7077
70#7
7077
7077
7077
7077
70*#
0*B
7077
70#*
0<7
%07<
7077
0%<
7077
207+
7077
7077
202#
7077
7077
70$$
022
0<#
0**
7077
7077
7077
70B2
70<#
7077
7077
7077
σ
&
7077
7077
707<
7077
7077
7077
7077
707$
707#
7077
707$
707$
70<2
7077
70<
7077
707$
7077
7077
707#
7077
7077
707$
70<#
707$
707*
7077
7077
7077
707#
707<
7077
7077
7077
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
APPENDIX 3: EGLESE’S INSTANCES
! ''
$ % ! '
/
&
&
<7*#077
&
#077
7077
7077
<B*
%
<B*20+7
%07
70+7
2#0#
707%
+72B
2
+7*70%%
207
70$7
2%0#%
707+
70B
$#2%
%
$#2B07%
%077
70*7
B0+<
707$
2#%022
70+$
++ B
2
++270 7
2077
7027
2<0<%
707<
<7#0*
70+%
7$*<
%
7$*<0$#
%077
70 7
+0+#
707*
707$
##2$
B
##2+0
B07
70$7
*70 +
707+
*#B0+2
70#
72#2
$
72#<0*7
$07
70$7
*20+
707+
*077
+20B2
70*+
27#7
27
27##0*B
2707
0<7
$<0$
70 2
70##
$<0+7
B20*2
70#+
++$<
$0+%
$B077
%+0<2
70++
#<
%#027
*BB0#B
07#
$70 7
22<0+7
&
&
&
*%2$
#
*%**0*
#07
0$7
#%0*#
70 2
*$#%
$
*#BB0*B
$0B
##0 7
%*027
70%
<7*#
41 1
<%7$
%
<%220+B
%07<
<0<7
%$02$
702
<#$B
%
<+$20<*
%0*B
*<0+7
<B0<2
70$+
4 1 1!
# #
#2 B0$%
0
70+7
%#02B
70*2
#7<*
# *#0+B
0#
$*027
%<027
70#*
4 1 21,
$< %
$<*70B<
%07*
20#7
%*0%*
70 #
$ $2
$*$<0 2
%0 #
+$027
22707<
4 1 21
#+B
#%7B0 $
07<
<0*7
B7027
7027
#$<
#+ B0%2
0%*
#<0 7
4 1 21!
B*#B
#
B<#+07+
#02
%0+7
22*0B7
70<<
%+B<
$
B *<0*+
$0+7
$*077
4 1 *1,
#*$$
B
#*# 0*
B07
0*7
$%0BB
70 *
#*%*
B
#*%*0 B
B077
70*7
*0$7
4 1 *1
%$B7
*
%#$*0$*
*0 <
*0+7
#+027
70*+
%*$+
*
%+2#0#<
*0$B
$*027
4 1 *1!
< 2
B
<%%0#2
B0 +
#077
%+02+
70<7
< %
B
<% 0
B0 <
4 1 <1,
#B%B
7
#BB%0*#
7072
0%7
+70#
70 *
#%##
7
#BB$0<2
4 1 <1
B+B
#
B%# 022
#0 $
<0 7
B 0#2
70*+
B+*
$
B%<+0B2
70#7
2+ +
70 $
$ #7
4 1 <1!
4 1 1,
41 1
4 1 1!
4 1 21,
4 1 21
4 1 21!
4 1 *1,
4 1 *1
4 1 *1!
4 1 <1,
4 1 <1
2%#<
22
$$72
%
#B *
#
7B2+
<##7
%2*%
#
2*
*7
<B
$ <7
B7+#
*<
% +
*7*+0#%
$$ 0 #
#B*<07
B* %
4 1 <1! 22%2+
2%
%
#
2<
*2
2
*7
B*$7022
7B*<0##
<+*%0#%
%$ *0+
#20B<
$2 02#
B* 707+
*<*+0+#
%27*02<
<7 2*7++0%*
&
220*$
%072
07$
#07#
#07
2*0 2
*70$
#07*
2<0 B
*20$<
2 07$
*7027
<70$
&
*7077
20<7
<0#7
$0*7
0<7
0*7
< 0B7
20+7
#0B7
<20$7
$0<7
+0+7
<70*7
&
*7B0%7
+20*+
720+
<#0+$
#$0+2
2*70$B
<7#0#2
B70<2
%%0<$
*#B0*+
2<07
2 20 <
*B202
&
#
&
4 1 1,
&
&
702
702<
70 2
70**
70#%
70 #
70<*
70+
702*
70<$
70+
#+2#
B7<<
7$7#
<7#<
++*#
7%+#
<%$%
%$%B
*< %
+$7<
22277
+ ! 0σ
$ % !"'
$ % !!'
+
2
* <$0<B
+
7
$
$
22
2B
$
2*
*
27
2B
$**+0*<
#B 20%#
B<7*0#7
7#<#0*B
<*+$0+#
%<#%0+#
7$0 #
$<<B02<
B*<B0+
*#<20$+
% 20+
*% 2**B<0%B
220#
+0#$
70BB
$0++
$0*<
220#<
*70%B
#0<*
2<0B<
**0*B
270#2
*70$7
<70%%
#$0*7
$B027
2B0%7
<B0#7
%%0<7
% 0%7
B70#7
B<0+7
<+0+7
%<0#7
B$0B7
2+B0 7
<< 02+
2<*07*
<**0*+
#220+#
2$%0
<#%02$
$2%0$<
*2*0$B
#
0$7
+%%0B7
&
&
7077
++$#0$<
077
70<7
< 0$%
707#
+
#%0<
+072
0$7
<<02%
70 2
$<2#
2$
$<2+0B+
077
2%02
70 7
70+<
#*27
B
#*270$+
B077
70 7
%07%
707*
70B2
% 7B
% *0$<
0*+
*+0 7
*<0*+
70<B
70++
7B$+
+
7B$+0#
+077
70$7
B0<B
707+
70$+
2%B
$
*B70+%
#0*2
%*0B7
<#02
70%<
70+#
+*+#
2$
+<7*0 %
2$0$*
$ 077
< 0#$
70$<
02*
2 < 2
*2 2 $7+0**
*20$$
<B0+7
#70*<
70#7
077
2 7+
+
2 %0#7
+07#
#0 7
#B0B$
702#
0 %
%+7%
2+
%+ +0#
2+072
20 7
+<0*2
70 <
02$
22%7*
*# 22%<+0$%
*#0 *
20B7
*B0*+
70*#
70+$
<*$$
2
2 0B%
+ 0#7
+0%7
70+%
<<**0%
2$07
07$
2 <2
** 2 $7*0#+
**0*%
*#077
%B0$*
70$*
0$%
2+ #%
<* 2+22#0B$
<*0$
<%077
2<0BB
70$$
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
APPENDIX 4: COMPUTATIONAL TIME
$ % !.' !
'
?,
+ ! 0σ
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
,
2
*
<
$
#
+
%
B
7
2
*
<
$
#
+
%
B
27
2
22
2*
40
3
3
# 07%
#*0 *
$$0$#
<<02*
#20*B
$<0B2
$*07%
2*
*+02$
$<02#
#0$$
$#0+$
#70B2
<B0+2
#%072
#707%
##0B+
% 0#<
*+0%%
<%0 2
+ 0$$
7%0<<
2B0%
+20<
3
%0%<
<0$B
*0<<
<70%
*0#
+07%
70%*
B702#
<%0*+
#0*
B0*#
2 0%
< 072
*0B+
70 2
0#<
70 2
202*
707B
0$*
0%<
2$022
B207$
%07$
3
3
<B0%<
+$0**
$+0+#
$70+$
#B0++
$B0*B
$<07%
*70#
$B0#<
$<0#+
<0+$
#$0*B
##0<2
$70#B
$%0$#
+*0+
+20*
%#0%<
*20$
$+07#
B#0**
$
$*0+%
+%0<B
70$#
#0+*
02
<07$
20$%
702
0+
+<0%
$B0*#
207*
<0##
70<+
<0$B
2B07*
70$2
#0%
70**
702%
7072
0<<
<0#2
%#0<%
$20<
2<0BB
2B
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
$ % !#' !
'
4
+ ! 0σ
3
2
2
2
*
*
*
<
<
<
<
$
$
$
$
#
#
#
+
+
+
%
%
%
B
B
B
B
7
7
7
7
, 40
*7
3
707$
770*#
B$0+
B202$
%<0+$
%+0+%
BB0%
B*0 #
%*0$2
2#*0$B
2*<0<
22+0B+
22 0%B
2*<0%B
2<#0 +
2 <0*
2 $0+*
$+0%*
<202+
<*0#<
22%0<2
2 $0$*
++0B
22%0 2
2 70B%
#$0+
$<707%
<<<0$$
<#<0#B
*<%0++
$%*07#
<<<0B
< 0#
*%B0$$
2%B0$7
3
3
707*
02
*70$B
70**
70+
B0B2
70 B
*0<%
$ 0$#
B0%
+0##
% 0B
#+0##
<
$70%%
B 0B%
%<0$$
+0%#
<0$%
#0#B
20**
20$#
++0<
*%02
220#
#20B+
%702*
*%B0++
#<0<2
<B0*
$%07*
2#+0#B
#<0**
B$0B
B$0B
3
707*
70B2
*702$
BB0*B
B20*B
%0$
7*02+
7 0%B
B 0*
2#<0$*
2+ 0**
2$+0B+
2<*07#
2<202%
22+0%+
27+0$B
2 +0B2
#20+
<202%
$$0B$
2<70 #
22#02+
B+0<2
2220B%
2 B0B$
27%0*
$270$$
<*#022
*B%0+*
*%70*B
$%20*#
<+B02*
<+#07$
*B%0*#
2B+0$B
3
707*
702$
702*
702
2#07*
+0B%
702
20+$
0#2
B02
*0*<
$*0%*
2+0*
$0$%
<07%
# 0*#
7<07*
70#2
0B<
+0 *
$#07$
20 B
B%0 <
27$07$
#0B$
*70#*
2#$0$#
$0*<
2<0 *
+#
<B0##
*<0$#
2*022
*# 0$2
%<0 *
STOCHASTIC CAPACITATED ARC ROUTING PROBLEM*
$ % ! '!
'
64
+ ! 0σ
3
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
,
1,
1
1!
21,
21
21!
*1,
*1
*1!
<1,
<1
<1!
1,
1
1!
21,
21
21!
*1,
*1
*1!
<1,
<1
<1!
40
3
3
2270*+
#%0*#
#<0%*
2#70%<
2B70B2
2%<0%
**%0#+
<< 0$*
*++0%
$*+0
$7*02*
<7%0<+
*<+0+#
*7 02
* 07*
**0<$
B#20+#
<2$0%
+#0**
B7#0%<
0+2
<#20<<
<%B0%%
#%$02$
#BB0#
3
7#07
<+0%*
*B0##
B#0+
2+#0%*
2<+0+$
$$07B
<< 0*<
*$ 0<$
$*#0<%
$770 +
*220+<
*7$0 *
%B0$%
2+072
B7702%
%2%0+
< 0+
#%707B
%<20%B
$7 0B
2*<0%#
2%B02
$*+07$
$270 B
3
3
#%0*<
<202%
%707*
2**0<
*+70+$
2#<0%
*$+02+
$%+072
$+70*<
<<B02*
<##0%
$#*07$
*2%0+*
*%#0%*
2B#07#
%B0
B%+0*
B*<0<2
7 %0$B
2270%<
7#70
*B%0$B
*<#+0$
+270*#
+B 072
#$02+
%0<%
2%0B+
2 20B+
% 0B
#0B<
2$+0++
#$02$
%+0**
2 0*<
* B0$$
2+0%B
22$07$
B%0$%
2 0B2
+% 0#B
B7%0<<
+2<0%B
%270B
$B0 +
7<+0$B
$%$0 #
2+2+0B
** 0B2
$*20#%
*