From ecosystem processes to material and energy flows – a perspective • Samuli Launiainen 1 Mallinnusseminaari 2015 01.04.2015 ©©Luonnonvarakeskus Luonnonvarakeskus Environment and processes interact via flows Functional agents • Plant individuals, species • Forest floor, mosses, litter • Soil layers Physical environment • Light, T, CO2, O3, pollutants • Precipitation, soil water flows Processes Flows • Physical, physiological, biological – e.g. Photosynthesis, respiration – Transpiration, evaporation, root uptake • Create flows (fluxes) of C, H2O, energy F = −k 2 Mallinnusseminaari 2015 ∂s ∂x 01.04.2015 © Luonnonvarakeskus Water, carbon and energy cycles coupled Bonan, 2008 Science. 3 Mallinnusseminaari 2015 Complex? 01.04.2015 © Luonnonvarakeskus APES – Atmosphere-Plant Exchange Simulator A multi-species, multi-layer soil-vegetation-atmosphere transfer model (Launiainen et al., 2015, in review) Elementary scale: a horizontally homogenous canopy or soil layer Upscaling from ’element scale’ processes to stand scale exchange Backbones: biophysical theory, conservation of mass and energy 4 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus APES – Atmosphere-Plant Exchange Simulator Prosess-based, object-oriented – objects are instances of classes • PlantTypes – vascular plants • BryophyteTypes – mosses, lichens • SoilProfile – soil domain • Bedrock – below soil profile; mainly for boundary condition • Stand – consists on PlantTypes, BryophyteTypes, SoilProfile Classes contain • Properties - physical, structural, physiological • Functions/methods – ”processes specific to respective ecosystem compartment” • State variables – e.g. T, water content, LAI, stage of development,… 5 Viinipalaveri 13.2.2015 13.2.2015 © Luonnonvarakeskus PlantType -class Leaf gas exchange, leaf temperature, root uptake • Vascular plant species, age cohorts etc. • Structural properties – LAI, WAI, PAI and their vertical profiles – Fine root area, vertical profile • Physical properties – Leaf/needle dimension (for boundary layer cond.) – Water storage capacity (interception, mm/LAI) – (Optical properties) • Ecophysiology – Photosynthesis (Farquhar-model),f(TL, ΨL, z) – Stomatal control (Medlyn et al. 2011), f(ΨL) – Seasonal cycle (”S”) • Phenology Feedbacks – LAI –dynamics (”DDsum”) 6 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus Example: SoilProfile -class Soil layers, horizons • Water flow & conservation of mass; Richard’s eq. ψs(z), θ(z) • Heat flow & conservation of energy; Fourier eq. Ts (z) Soil respiration Rs=f(Ts, θ) Soil state variables • • SoilProfile object • Parameters ”soil type specific” • Measurements / literature (pFcurves, Sat. Hydr. Cond., thermal conductivity 7 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus Objects linked by • Transport phenomena – Micrometeorologic sub-models • Feedbacks – e.g. soil water status impacts leaf functioning; microclimate affects leaf processes; leaf fluxes affect microclimate… Modular • Classes & sub-processes are mostly independent • Structure is modular – easy to modify, extend and use components in other models Biophysical theory; classes are ’generic’ • Parameters can be measured or independently estimated. • Easy (?) to apply for different type of ecosystems In Matlab, partly Python 8 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus Timescale ½ h: SW [Par,Nir (direct/diffuse)], LWdn, ea, Ta,Ca,Prec,U, (u*) Site parameterization Upper boundary conditions (meteorology) Radiation Air flow Scalar transport • • • Qp(z),Qn(z),Rn*(z) Canopy Reynolds’stress, U(z), Km(z) h, LAI, Λl, Λr Physiology Phenology BryophyteTypes (mosses) Ta(z), ca(z), ea(z) Iteration I Iteration II: canopy water budget; interception & wet leaf energy balance momentum Sink/source & profiles PlantTypes • • • Forest-atm flows Iteration II: dry leaf energy balance & gas exchange Iteration II: moss energy & water balance, gas exchange SoilProfile • • Physical properties (heat and water balance) Soil respiration Iteration III: soil water and heat balance, Soil respiration Lower boundary conditions (at bottom of SoilProfile) 9 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus CO2 H2O Heat Examples 10 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus Heat, H2O and CO2 sinks/sources 11 Mallinnusseminaari 2015 01.04.2015 ecosystem scale flows © Luonnonvarakeskus Model Hyytiälä SMEAR II: stand NEE May-Sept 2005 ½ h flux Measured Source Sink 12 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus ”Thinning” Pine: LAI 3.0 2.0 m2m-2 Understory: LAI 0.3 0.1 m2m-2 Field layer: LAI 0.7 m2m-2 13 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus Thinning impact on GPP Total GPP May-Sept • • • drought THINNED • Removal of 33% of pine LAI -24% GPP • …but +15% if scaled per unit remaining pine LAI • … + ~25% if scaled per nr. trees remaining • Observations: increase in annual volume growth >= 20% during first 5 yr after thinning Light competition Water resources Fertilization effect not considered UN-THINNED 14 Mallinnusseminaari 2015 01.04.2015 © Luonnonvarakeskus Kalevansuo, ground water level • 15 Mallinnusseminaari 2015 Horizontal flow to ditches: Hooghoud drainage equation 01.04.2015 © Luonnonvarakeskus 16 Mallinnusseminaari 2015 01.04.2015 [email protected] © Luonnonvarakeskus
© Copyright 2026 Paperzz