Lecture,Mar.1 ThermalConductivityduetoConductionElectronsinMetals OnMonday,Iderivedκ=(1/3)<v2>τcVfromtheDrudemodel. YoumightobjectthatIshouldhavetakenintoaccountthatthevelocityofelectrons comingfromthehighertemperaturesideshouldbehigherthanthatofelectrons comingfromthelowerTside,onaverage.Thereare2reasonswhythisisn’ta problem: 1) OnlyelectronsclosetotheFermienergycontributetothethermal conductivityandthevariationintheirvelocitiesissmall 2) Thermalconductivitymeasurementsareusuallydoneon“opencircuit” samplesinwhichnoelectricalcurrentisflowing.Iftherewasanon-zero averagevelocityfromthehighertolowerTend,therewouldbeanelectrical current.Whenthetemperaturegradientisfirstappliedsomeelectrical currentdoesflowbutthenchargebuildsuponthesurfacesofthesample, creatingauniformelectricfieldinthesamplewhichcancelsthiselectrical currentsothat,inthesteadystatethereisnoelectricalcurrent.Thisiscalled athermoelectricfieldandtheSeebeckeffect.Thisleadstoacancellation whichallowsustoignorethevariationofvx. AnotherthingIhavebeenignoringisthermalexpansionofthesolid.Thiscould maketheelectrondensityvaryslightlywithtemperature.Thiscouldmakeτvary also.Thisisgenerallyleadstoonlysmallcorrectionstothethermalconductivity. Ihavegivenarathersketchy,non-rigorousderivationofthermalconductivity.Fora morerigorousone,seeAshcroftandMermin,chapter13. ThermalConductivityduetoPhonons Vibrationofionsalsocontributestothethermalconductivityinmetals,andisthe onlysourceininsulators.Althoughtheionsdon’thaveanynetmotionthroughthe crystal,wecanthinkofthephonons,correspondingtoquantizedionvibrationsas transportingenergythroughthecrystalinasimilarwaytotheconductionelectrons. Phononsalsosuffer“collisions”.Thesecaninvolvescatteringoffimpurities,the surfacesofthesampleandinteractionwithotherphonons(andelectrons). Impuritiescanincludeamixtureofdifferentisotopesofatomsinthecrystal,since theyhavedifferentmasses,affectingtheclassicalvibrationmodes.Inalargepure samplephonon-phononinteractionsusuallyplaythedominantrole.Ifweinclude cubictermsintheion-ioninteractionpotential,thisleadstoprocesseswheretwo phononscollideandturnintoasinglephonon,andasinglephonondecaysintoa pairofphonons.Thisisanalogoustohighenergyphysicsprocesseswhereunstable particlescanbeproducedandcanannihilate.Wecanagainwritethesameformula asforthermalconductivityduetoconductionelectrons:κ=(1/3)<v2>τcVbutnowall parametersrefertophonons,notelectrons,includingthecollisiontime,τ.The 1 phonon-phononcontributiontoτturnsouttohaveastrongtemperature dependence,becomingverysmallatT<<TDwheresurfacescatteringdominatesand growingatlargerTastheaveragenumberofphononsgrows.Iwillreturntothis later. ThermalconductivityofisotopicallypureLiF.AtlowT,itisdominatedbyscattering offthesurfaces,asindicatedbythestrongdependenceonthecross-sectionalareaof thesampe.AthighTitisdominatedbyphonon-phononscatteringandthe dependenceoncross-sectionalareadisappears. 2 Semiconductors Metalshavepartiallyfilledbandswhereasinsulatorsusuallyhaveonlyfilledor emptybandsinthegroundstate(T=0).However,notallinsulatorsarethesame. Thesizeoftheenergygapbetweenthehighestfilledband(valenceband)and lowestemptyband(conductionband)isextremelyimportant.Ifthisgapisnottoo 1 large,asignificantnumberofelectronswillbeexcitedfromthevalencebandtothe conductionbandatroomtemperature.Thustheconductivitycanbesignificantat roomtemperature.Suchmaterialsarecalledsemiconductors.ThegapinSiis1.12 eV,itis.37eVinPbS.ItcanbeseveraleVingoodinsulators.Thebehaviordepends 9. Semiconductors exponentiallyonthegap,EGsince,asweshallsee,theconcentrationofelectrons andholesis~exp[-EG/(2kBT)].Furthermore,suchmaterialsareextremely sensitivetorelativelysmallconcentrationsofimpurities,whichcaneffectivelyadd Intrinsic semiconductors are materials where the valence band is full electronsorholes.Interfacesbetweenregionswithdifferentimpurity and the conduction band is empty at T=0. However the band gap is concentrations(suchasdiodes)areamajoringredientofthesemi-conductor so small that there is a significant concentration [n] of thermally industry. excited electrons in the conduction band and a concentration [p] of Gapsinsemiconductorsareoftenintheopticalphotonrange.Thisisalsoimportant “holes” in the valence band near room temperature where [n]=[p]. forapplications.So,adsorbingaphotoncanexciteanelectronfromthevalenceto The “n” and “p” refer to the “negative” and “positive” charge of the conductionband,correspondingtocreatinganelectron-holepair.Thisplaysa carriers respectively. This leads to very T dependent conductivities crucialroleinsolarcellsandotherapplications.Suchprocessesmustconserve which are intermediate between a metal and an insulator, hence crystalmomentumaswellasenergy.Visiblelighthasawavelengtharound500nm 7m-1.(Thecorrespondingenergyisabout called semiconductors. andawave-vectoraround2π/λ=1.3x10 hc/λ~2.4eV.)Thiswave-vectorisusuallyverysmallcomparedtothewidthofthe Semiconductors are distinguished by whether the energy gap is Brillouinzone,2π/asinceaistypically<1nm.So,directexcitationofanelectron fromvalencetoconductionbandmustessentiallypreservethewave-vector. direct or indirect. In a direct gap semiconductor such as GaAs an Semiconductorswherethetopofthevalencebandandbottomoftheconduction electron may be excited from the top of the valence band (valence bandoccuratthesamewave-vectorsaresaidtohaveadirectgap.Otherwise,they band edge) to the bottom of the conduction band (conduction band aresaidtohaveanindirectgap.Aphotoncanexciteanelectronfromvalenceto edge) without change in the crystal momentum. i.e. the maximum in conductionbandinasemiconductorwithanindirectgap,providedthataphononis the valence band and minimum in conduction band occur at the value alsoproducedtoconservemomentum(andenergy).Theadsorptionintensityis of crystal momentum. In an indirect gap material such as Si these weakerinthiscaseandtheadsorptionintensityversusenergyofthephotonis occur at different values of k. broadernearthreshold(bandgap). Fig.1 (a) Direct gap material where the minimum in conduction band (CB) occurs at the same k value as the maximum in the valence band(VB). (b) Indirect gap material where there is some offset in k3 between the CB minimum and VB maximum € € ! Nearthetoporbottomofaband, ε ( k ) canbeapproximatedasquadratic.(Linear termsvanishsinceweareexpandingaroundastationarypoint.)Mostgenerally,the ! k minimum/maximumoccursatsomenon-zero andtheshapeismorecomplicated ! k fromthebandminimum/maximumand thanasimpleparaboloid.Ifwemeasure € assume,forsimplicitythatitisasimpleparaboloid,wecanapproximate ! ! "2k 2 "2k 2 € ε c (k ) ≈ ε c + , ε ( k ) ≈ ε + v 2mc * v 2m€v * butnotethattheeffectivemassesobeymc*>0andmv*<0.Theycanbeverydifferent inmagnitudethanthefreeelectronmass,iftheperiodicpotentialislarge.In dealingwiththevalencebanditismoreconvenienttousetheconceptofholes, discussedinmyJan.27lectureandinKittel,chapter8.Theenergytocreateahole ! inthevalencebandatwave-vector kh ,correspondingtoremovinganelectronwith ! wave-vector −k h is ! "2k 2 ε h ( k ) ≈ −ε v + wheremh*=-mv*>0. 2mh * € Itismoreconvenienttouseholes,partlybecausethevalencebandstaysmainly € filled,sowehavemanyvalenceelectronsbutfewholes. 4
© Copyright 2026 Paperzz