New Progress in Junior Mathematics 3B (b) 9 Area and Volume (III) Total surface area of the hemisphere 1 4 2.52 2.52 cm 2 2 58.9 cm 2 (cor. to 1 d.p.) p.127 p.99 1 Volume of VABCD (6 6) 5 cm 3 3 60 cm 3 Type of Measurement Dimension 1. Linear 1 2. Quadratic 2 3. Cubic 3 4. Linear 1 p.130 p.108 (a) (b) (c) Area of quadrilateral ABCD 16 Area of quadrilateral PQRS 24 1 Volume of the right circular cone 62 11 cm 3 3 132 cm 3 2 4 9 1 Volume of the right circular cone 8.52 12 m3 3 289 m3 9.1 1 Volume of the right circular cone 7 2 9.6 mm 3 3 156.8 mm3 p.112 Curved surface area 1013 cm 2 Let s cm2 be the base area of VABCDE . p.99 1 Volume of VABCDE Base area Height 3 1 310 s 15 3 s 62 Base area of VABCDE is 62 cm2. (a) In ABC, AC 2 AB 2 BC 2 (Pyth. theorem) 130 cm 2 Base area 10 cm 2 9.2 2 100 cm Total surface area (130 100π) cm2 2 AC 6 2 82 cm 230 cm 2 10 cm 1 EC AC 5 cm 2 p.119 In VEC, VC 2 EC 2 VE 2 (Pyth. theorem) 3 (a) 4 11 Volume of the sphere cm 3 3 2 VE 132 5 2 cm 696.9 cm3 (cor. to 1 d.p.) (b) 12 cm Volume of the hemisphere 1 4 23 cm 3 16.8 cm3 (cor. to 1 d.p.) 2 3 (b) p.121 (a) Surface area of the sphere 2 14 4 cm 2 615.8 cm 2 (cor. to 1 d.p.) 2 © Hong Kong Educational Publishing Co. 58 1 Volume of VABCD (6 8) 12 cm 3 3 192 cm 3 p.100 9 Area and Volume (III) 9.3 1 Volume of pyramid VEFGH 4.52 5 cm 3 3 9.6 p.101 33.75 cm 3 1 Volume of pyramid VABCD 10.82 (5 7) cm 3 3 r 8 466.56 cm 3 Let r cm be the base radius of the circular cone. p.108 1 r 2 15 320 3 r 2 64 Volume of ABCDEFGH Volume of VABCD Volume of VEFGH 9.7 The base radius of the circular cone is 8 cm. (a) In VOA, p.109 1 1 OA AB (12) cm 6 cm 2 2 2 2 (Pyth. theorem) VO OA VA 2 (466.56 33.75) cm 3 432.81 cm 3 9.4 VO 10 2 6 2 cm 1 Area of VAB 11 8 cm 2 2 p.102 8 cm 44 cm 2 Base area 1111 cm 2 (b) 121 cm 2 Total surface are of VABCD (121 44 4) cm2 1 Volume of the cone 62 8 cm 3 3 96 cm 3 301.44 cm 3 297 cm 2 9.5 In VAB, let M be the mid-point of AB. 1 MB 18 cm 9 cm 2 9.8 p.103 (a) Since VAB is an isosceles triangle, VM AB (property of isos. ) MB 2 VM 2 VB 2 (Pyth. theorem) VM 202 92 cm 319 cm 1 Area of VAB 18 319 cm 2 2 (b) 9 319 cm 2 In VBC, let N be the mid-point of BC. 1 NB 12 cm 6 cm 2 Since VBC is an isosceles triangle, VN BC (property of isos. ) Volume of the smaller right circular cone 1 4.5 2 3 cm 3 20.25 cm 3 3 Volume of the larger right circular cone 1 12 2 (3 5) cm 3 384 cm 3 3 NB 2 VN 2 VB 2 (Pyth. theorem) VN 202 62 cm 9.9 364 cm Area of VBC (a) 1 12 364 cm 2 2 Volume of the frustum (384 20.25) cm 363.75 cm 3 In VOA, VA2 VO 2 OA2 (Pyth. theorem) p.113 VA 4.8 2 3.6 2 m 6m 6 364 cm 2 p.110 VAB ~ VCD (AAA) VA AB (corr. sides, ~ s) VC CD VA 4.5 cm VA 5 cm 12 cm 12VA 4.5(VA 5 cm) 7.5VA 22.5 cm VA 3 cm Total surface area of VABCD (b) (18 12 2 9 319 2 6 364 ) cm 2 Total surface area 3.6 6 m 2 3.6 2 m 2 766 cm (cor. to 3 sig. fig.) 2 34.56 m 2 109 m2 (cor. to the nearest m2) 9.10 (a) Let r cm be the base radius. r 14 56 r4 59 p.113 The base radius is 4 cm. © Hong Kong Educational Publishing Co. 3 New Progress in Junior Mathematics 3B (b) Mark the points V, O and A as shown in the 9.14 figure. In VOA, VO 2 OA2 VA2 (Pyth. theorem) Base area of the cylindrical container 5 2 cm 2 180 cm 25 cm 2 Rise in the water level 121.5 25cm Height of the right 4.86 cm 180 cm . Volume of the right circular cone 1 42 180 cm 3 3 225 cm3 (cor. to 3 sig. fig.) (b) p.120 VO 142 42 cm circular cone is 9.11 (a) Volume of the sphere 4 4.53 cm 3 3 121.5 cm 3 1 (7 cm ) 2 VO 147 cm 3 3 VO 9 cm 9.15 (a) Let r cm be the radius of the hemisphere. p.122 1 4 r 2 r 2 147 2 3r 2 147 r 2 49 r 7 p.114 (b) In VOA, VA2 VO 2 OA2 (Pyth. theorem) The radius of the hemisphere 7 cm. Volume of the hemisphere 1 4 7 3 cm 3 718 cm3 (cor. to 3 sig. fig.) 2 3 VA 92 7 2 cm 130 cm 9.16 Let r cm be the base radius of the hemisphere. 1 4 1024 r3 2 3 3 r 3 512 Curved surface area of the circular cone OAVA 7 130 cm 2 r 8 7 130 cm 2 Area of the sector Curved surface area of ( 130 ) 2 The base radius of the hemisphere is 8 cm. Side length of the cube 8 cm 2 16 cm the circular cone 360 Total surface area of the whole solid Total surface area of the cube Base area of the hemisphere 7 130 221 Curved surface area of the hemisphere (cor. to 3 sig. fig.) 9.12 Let r cm be the radius of the sphere. 4 r 3 972 3 r 3 729 1 6 16 2 8 2 4 8 2 cm 2 2 1740 cm 2 (cor. to 3 sig. fig.) p.119 r 9 9.17 The radius of the sphere is 9 cm. 1 4 83 cm 3 p.120 2 3 1024 cm 3 3 1 Volume of the right circular cone 8 2 7 cm 3 3 448 cm 3 3 9.13 Volume of the hemisphere p.123 Area of the smaller circle 80 2 p.131 16 cm 2 25 51.2 cm 2 1024 448 Volume of the whole solid cm 3 3 3 1472 cm3 3 © Hong Kong Educational Publishing Co. Area of the smaller circle 4 Area of the larger circle 5 Area of the smaller circle 16 80 cm 2 25 60 Area and Volume (III) 2 3 Perimeter of the larger rectangle 25 9.18 16 Perimeter of the smaller rectangle Slant height of A 125 9.21 512 Slant height of B 24 cm 5 Slant height of B 8 p.131 2 25 Perimeter of the larger rectangle 40 cm 16 8 Slant height of B 24 cm 5 38.4 cm Perimeter of the larger rectangle 5 40 cm 4 Perimeter of the larger rectangle 50 cm 9.19 AEF ~ ABC (AAA) Area of AEF AE Area of ABC AB 1 2 9.22 Let d1 and A1 be the diameter and surface area p.132 surface area of the new sphere. A2 (1 19%) A1 0.81A1 1 4 Area of BCFE 4 1 Area of ABC 4 3 4 CGH ~ CAD (AAA) Area of CGH CG Area of CAD AC d2 d 1 2 A 2 A1 0.81A1 A1 d2 0 .9 d1 2 d 2 0.9d1 Percentage decrease in its diameter 2 d1 d 2 100% d1 d1 0.9d1 100% d1 10% 1 16 Area of AGHD 16 1 Area of CAD 16 15 16 ABC CDA (ASA) 3 Area of BCFE 4 Area of AGHD 15 16 4 5 Area of BCFE : Area of AGHD = 4 : 5 p.135 of the original sphere. Let d 2 and A2 be the diameter and 2 2 1 4 p.135 9.23 (a) Volume of the smaller pyramid 1 Volume of the larger pyramid 26 1 p.136 1 27 3 Height of the smaller pyramid 1 Height of the larger pyramid 27 Height of the smaller pyramid 1 Height of the larger pyramid 3 Height of the frustum 3 1 Height of the larger pyramid 3 2 3 Height of the frustum 2 12 cm 3 2 Height of the frustum 12 cm 8 cm 3 2 9.20 Base area of the smaller pyramid 10 cm p.134 Base area of the larger pyramid 15 cm Base area of the smaller pyramid 4 108 cm 2 9 4 Base area of the smaller pyramid 108 cm 2 9 48 cm (b) 2 Area of VAD 1 Area of VBC 3 2 1 9 Area of ABCD 9 1 Area of VBC 9 8 9 61 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B Example 9.4T p.102 1 5 9 cm 2 2 22.5 cm 2 Base area 5 5 cm 2 Area of VAB Example 9.1T p.99 Let a cm be the length of each side of the base of VABCD. 1 Volume of VABCD Base area Height 3 1 72 a 2 6 3 115 cm 2 Example 9.5T a 2 36 a6 MB 1 12 cm 6 cm 2 Since VAB is an equilateral triangle, p.100 VM AB . In ABC , MB 2 VM 2 VB 2 (Pyth. theorem) AC 2 AB 2 BC 2 (Pyth. theorem) VM 12 2 6 2 cm AC 8 2 8 2 cm 108 cm 8 2 cm EC 1 AC 4 2 cm 2 Area of VAB VE 2 EC 2 VC 2 (Pyth. theorem) Total surface of VABC 4 6 108 cm 2 VE 9 (4 2 ) cm 2 2 7 cm 249 cm 2 1 (8 8) 7 cm 3 3 448 cm 3 3 Volume of VABCD Example 9.3T p.108 Let r cm be the base radius of the right circular cone. 1 r 2 6 72 3 r 2 36 p.101 r 6 245.76 cm 3 1 Volume of pyramidVABCD 16.8 2 (8 6) cm 3 3 1317.12 cm Volume of ABCDEFGH Volume of pyramidVABCD (cor. to 3 sig. fig.) Example 9.6T 1 Volume of pyramidVEFGH 9.6 2 8 cm 3 3 1 12 108 cm 2 2 6 108 cm 2 In VEC , (b) p.103 In VAB , let M be the mid-point of AB. The length of each side of the base of VABCD is 6 cm. Example 9.2T (a) 25 cm 2 Total surface area of VABCD (25 22.5 4) cm 2 The base radius of the right circular cone is 6 cm. Example 9.7T (a) 3 p.109 1 AB 8 cm 2 In VOB , OB OB 2 VO 2 VB 2 (Pyth. theorem) VO 17 2 82 cm 15 cm Volume of pyramidVEFGH (1317.12 245.76) cm 3 1071.36 cm 3 (b) Volume of the circular cone 1 82 15 cm 3 3 320 cm 3 1004.8 cm 3 © Hong Kong Educational Publishing Co. 62 Area and Volume (III) Example 9.8T (a) (b) p.110 VAB ~ VCD (AAA) VA AB (corr. sides, ~ s) VC CD VA 6 cm VA 6 cm 18 cm VA 1 VA 6 cm 3 3VA VA 6 cm 2VA 6 cm VO 152 52 cm 200 cm Volume of the right circular cone 1 52 200 cm 3 3 370 cm 3 (cor. to 3 sig. fig.) Volume of the smaller circular cone Example 9.11T 1 6 2 3 cm 3 36 cm 3 3 Volume of the larger circular cone 1 18 2 (3 6) cm 3 972 cm 3 3 Volume of the frustum (972 36) cm 3 Curved surface area of the circular cone 511 m 2 936 cm 3 Example 9.9T 55 m 2 Let be the angle of the sector of the curved surface. 112 55 360 164 (cor. to 3 sig. fig.) p.112 1 AB 5 cm 2 In VOB , OB Example 9.12T VB 2 VO 2 OB 2 (Pyth. theorem) VB 12 2 52 cm 13 cm (b) r 6 65 cm 2 Base area 52 cm 2 25 cm 2 Total surface area (65 25) cm2 4 4 3 cm 3 3 256 cm 3 3 Volume of the cube 93 cm 3 283 cm (cor. to 3 sig. fig.) p.113 Let l cm be the slant height. 5 l 5 2 100 5l 75 l 15 p.119 Volume of the sphere 2 (a) The radius of the sphere is 6 m. Example 9.13T 90 π cm 2 Example 9.10T p.119 Let r m be the radius of the sphere. 4 r 3 288 3 r 3 216 Area of the curved surface 5 13 cm 2 p.114 Let l m be the slant height. 5 l 5 2 80 5l 55 l 11 (a) The height of the right circular cone is 200 cm . VA 3 cm (b) Mark the points V, O and A as shown in the figure. VO 2 OA2 VA 2 (Pyth. theorem) 729 cm 3 The volume of the empty space in the container 256 3 729 cm 3 (cor. to 3 sig. fig.) 461 cm3 The slant height is 15 cm. 63 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B Example 9.14T p.120 Volume of the sphere Example 9.17T p.130 2 Area of ABC 3 Area of PQR 7 Area of ABC 9 84 cm 2 49 9 Area of ABC 84 cm 2 49 108 cm 2 7 4 7.53 cm 3 3 562.5 cm 3 Let h cm be the decrease in the water level. Decrease in the volume of water 10 2 h cm 3 100h cm 3 Volume of the sphere Decrease in the volume of water 562.5 100h h 5.625 The decrease in the water level 5.625 cm. Example 9.18T p.131 2 Example 9.15T (a) Perimeter of the larger pentagon 49 Perimeter of the smaller pentagon 36 35 cm 7 Perimeter of the smaller pentagon 6 6 Perimeter of the smaller pentagon 35 cm 7 30 cm p.122 Let r m be the radius of the hemisphere. 1 4 r 2 4.5 2 r 2 2.25 r 1.5 (b) The radius of the hemisphere is 1.5 m. Example 9.19T Volume of the hemisphere 1 4 1.53 m 3 2 3 AB : AD : AF 1 : (1 2) : (1 2 3) 1: 3 : 6 2.25 m 3 7.07 m 3 (cor. to 3 sig. fig.) Example 9.16T p.122 Let r cm be the radius of the hemisphere. 1 4 r 3 486 2 3 r 3 729 r 9 The radius of the hemisphere is 9 cm. 1 Curved surface area of the hemisphere 4 9 2 cm 2 2 162 cm 2 1 : 9 : 36 Area of ABC:Area of BDEC:Area of DFGE 1 : (9 1) : (36 9) 1 : 8 : 27 p.134 2 Base area of the smaller cuboid 12 cm Base area of the larger cuboid 30 cm 28 cm 2 4 Base area of the larger cuboid 25 25 Base area of the larger cuboid 28 cm 2 4 175 cm 2 Let l cm be the slant height of the right circular cone. l 2 10 2 24 2 (Pyth. theorem) l 10 2 24 2 26 The slant height of the right circular cone is 26 cm. Example 9.21T Curved surface area of the right circular cone 10 26 cm 2 260 cm 2 Area of the ring ( 10 2 9 2 ) cm 2 ABC, ADE and AFG are similar triangles. Area of ABC:Area of ADE:Area of AFG 12 : 32 : 6 2 Example 9.20T p.132 3 The corresponding slant height in A 216 The slant height in B 343 19 cm 2 2 Total surface area (162 260 19) cm 441 cm The corresponding slant height in A 6 28 cm 7 6 The corresponding slant height in A 28 cm 7 24 cm 2 © Hong Kong Educational Publishing Co. p.134 64 Area and Volume (III) Example 9.22T p.135 pp.104 – 106 9.1 Let l1 and V1 be the length of one edge and the area of one Level 1 face of the original cuboid respectively. Let l2 and V2 be the length of one edge and the area of one face of the new cuboid 1. respectively. l 2 (1 20%)l1 1 3 Volume of the pyramid 28 15 cm 3 140 cm 3 0.8l1 V2 l 2 V1 l1 3 2. 0.8l1 l1 0.83 3 3. Percentage decrease in its volume V1 V2 100% V1 V 1 2 100% V1 [1 (0.8) 3 ] 100% 48.8% 4. Example 9.23T (a) 1 3 Volume of the pyramid 33 13 cm 3 143 cm 3 1 Volume of VABCD 8 2 18 cm 3 3 384 cm 3 1 10 8 Area of ABCD 4 cm 2 2 2 2 40 cm 2 1 Volume of VABCD 40 9 cm 3 3 120 cm 3 p.136 Volume of the smaller pyramid 64 37 Volume of the larger pyramid 64 5. 1 1 3 Volume of VABCD (3 6) 5 7 cm 3 2 52.5 cm 3 27 64 6. 3 Height of the smaller pyramid 27 Height of the larger pyramid 64 15 cm 3 Height of the larger pyramid 4 4 Height of the larger pyramid 15 cm 3 20 cm Height of the frustum (20 15) cm 5 cm 7. Let h m be the height of VABC. 1 128 h 256 3 h6 The height of VABC is 6 m。 (a) Let s cm2 be the area of ABCD. 1 s 7 105 3 s 45 The area of ABCD is 45 cm2. 2 (b) Area of VAD 15 Area of VBC 20 9 16 Area of VAD 9 Area of ABCD 16 9 9 7 (b) 9 cm BC 45 cm 2 BC 5 cm 8. 1 Volume of VABCD (6 8) 14 cm 3 3 224 cm 3 3 Volume of ABCDEFGH (224 28) cm 196 cm 3 65 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B 1 20 18 cm 2 2 180 cm 2 13. Area of VBC 9. Total surface area of VABCD (20 20 180 4) cm 2 Let a cm be the side length of the square. 1 1000 a 10 3 3 a 2 100 1120 cm 2 a 10 AB BC 10 cm In ABC , 10. AC 2 AB 2 BC 2 (Pyth. theorem) 1 5.9 7.5 cm 2 2 22.125 cm 2 Area of VPQ AC 10 2 10 2 cm 200 cm Total surface area of VPQRS (5.9 5.9 22.125 4) cm 2 123.31 cm 2 10 2 cm 1 1 OC AC (10 2 ) cm 5 2 cm 2 2 In VOC , 11. VC 2 VO 2 OC 2 (Pyth. theorem) 1 Area of VAB 10 15 cm 2 2 75 cm 2 1 Area of VBC 18 13 cm 2 2 117 cm 2 VC 10 2 (5 2 ) 2 cm 150 cm 12.2 cm (cor. to 3 sig. fig.) Total surface area of VABCD (10 18 75 2 117 2) cm 2 14. 564 cm 2 Volume of the larger pyramid 1 18 2 18 cm 3 1944 cm 3 3 Level 2 12. Volume of the smaller pyramid 1 6 2 (18 12) cm 3 72 cm 3 3 Volume of ABCDEFGH (1944 72) cm 1872 cm 3 Mark the centre of ABCD as O and the mid-point of BC as E as shown in the figure. Since VBC is an isosceles triangle, VE BC . 1 CE BC 7.5 cm 2 2 15. Area of VBC 1 12 12 18 2 cm 2 2 2 6 288 cm 2 2 Area of VCD 8 260 cm 2 In VCE , VE 2 CE 2 VC 2 (Pyth. theorem) Total surface area of VABCD (12 16 2 6 288 2 8 260 ) cm 2 VE 152 7.52 cm 654 cm 2 (cor. to 3 sig. fig.) 168.75 cm 1 1 OE AB (20 cm ) 10 cm 2 2 16. In AFG , AG 2 AF 2 FG 2 (Pyth. theorem) In VOE , AG 6 2 6 2 cm VO 2 OE 2 VE 2 (Pyth. theorem) 72 cm 1 Area of AFG 6 6 cm 2 18 cm 2 2 1 Area of AGH 72 6 cm 2 3 72 cm 2 2 VO 168.75 10 2 cm 68.75 cm 1 16 16 18 2 cm 2 2 2 Volume of VABCD 1 (20 15) 68.75 cm 3 3 829 cm 3 (cor. to 3 sig. fig.) Total surface area of pyramid AFGHE (6 6 18 2 3 72 2) cm 2 123 cm 2 © Hong Kong Educational Publishing Co. 66 (cor. to 3 sig. fig.) 3 Area and Volume (III) 17. (a) Let h cm be the height of VABCD. 1 (16 16) h 1280 3 h 15 (b) 2. Let h cm be the height of the circular cone. 1 9 2 h 216 3 h8 The height of VABCD is 15 cm. Mark the mid-point of AB as N and the centre of 3. ABCD as O as shown in the figure. Since VAB is an isosceles triangle, VN AB . The height of the circular cone is 8 cm. Let r cm be the base radius of the circular cone. 1 r 2 6 50 3 r 2 25 r 5 4. The base radius of the circular cone is 5 cm. (a) Mark points V, O and A as shown in the figure. In VON , VO 15 cm 1 1 ON BC (16) cm 8 cm 2 2 2 VN VO 2 ON 2 (Pyth. theorem) VN 152 82 cm (c) 18. VO 2 OA2 VA 2 (Pyth. theorem) 17 cm The height of VAB with base AB is 17 cm. VO 20 2 12 2 cm 16 cm Total surface are of VABCD 1 16 16 4 16 17 cm 2 2 800 cm 2 (b) Height of the circular cone is 16 cm. 1 Volume of the circular cone 12 2 16 cm 3 3 768 cm 3 2411.52 cm 3 Volume of the pyramid above the water 1 4.5 4.5 6 m 3 40.5 m 3 3 1 Volume of the large pyramid 12 12 16 m 3 3 768 m 3 Volume of the frustum inside the water 5. h 132 5 2 cm 12 cm Volume of the right circular cone 1 5 2 12 cm 3 3 1 cm 3 (768 40.5) m 3 727.5 m 3 Capacity of the tank 20 18 (16 6) m 3 3600 m 3 Volume of water inside the tank Curved surface area of the right circular cone 5 13 cm 2 (3600 727.5) m 3 2872.5 m 3 9.2 Let h cm be the height of the right circular cone. 5 2 h 2 13 2 (Pyth. theorem) 65 cm 2 pp.115 117 Level 1 1. 1 2 3 Volume of the circular cone 12 10 cm 3 480 cm 3 67 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B 6. Let r m be the base radius of the right circular cone. r 2 9 2 15 2 (Pyth. theorem) 11. r 15 2 9 2 m 12 m Volume of the right circular cone 1 12 2 15 m 3 3 432 m 3 12. Curved surface area of the right circular cone 12 15 m 2 180 m 2 7. Let r cm be the base radius of the circular cone. r 12 84 r 7 13. The base radius of the circular cone is 7 cm. Let l cm be the slant height of the circular cone. 8 l 8 2 176 8l 112 l 14 The slant height of the circular cone is 14 cm. (a) Let l cm be the slant height of the circular cone. 1 radius 30 cm 15 cm 2 2 l 20 2 15 2 (Pyth. theorem) Let l cm be the slant height of the right circular cone. 7 2 24 2 l 2 (Pyth. theorem) l 20 2 15 2 l 7 2 24 2 cm 25 25 cm Volume of the right circular cone 1 7 2 24 cm 3 3 3 cm 3 (b) The slant height of the circular cone is 25 cm. Total surface area ( 15 2 15 25) cm 2 600 cm 2 1880 cm 2 (cor. to 3 sig. fig.) Curved area of the right circular cone 7 25 cm 2 14. 175 cm 2 Volume of the smaller circular cone 2 8. 1 21 7 cm 3 3 2 Let r m be the base radius of the right circular cone. 1 600 m 3 r 2 8 m 3 r m 257.25 cm 3 Volume of the frustum (750 257.25) cm 3 492.75 cm 3 1548 cm 3 Let l m be the slant height of the right circular cone. 15 2 8 2 l 2 (Pyth. theorem) (cor. to the nearest cm3) l 152 8 2 m 17 m Level 2 15. Curved surface area of the right circular cone 15 17 m 2 255 m 9. 10. (a) (i) 2 OA 28 cm 14 cm 4.46 cm OA 2 (cor. to 3 sig. fig.) Curved surface area of the circular cone 14 9 cm 2 2 63 cm 2 (ii) VO 2 OA2 VA 2 (Pyth. theorem) 2 14 VO 12 2 cm 11.1 cm (cor. to 3 sig. fig.) Curved surface area 2.7 4.5 cm 2 12.15 cm 2 Base area 2.7 cm 2 (b) 2 7.29 cm 2 Total surface area (12.15 7.29) cm 2 19.44 cm 2 © Hong Kong Educational Publishing Co. In VOA , 68 Curved surface area OA VB 14 12 cm 2 168 cm 2 Area and Volume (III) (c) Volume of the circular come 1 OA2 VO 3 2 18. Let r be the base radius of the right circular cone, then 2r be the slant height. Curved surface area r (2r ) 2r 2 2 1 14 14 12 2 cm 3 3 Area of the sector ( 2r ) 2 232 cm (cor. to 3 sig. fig.) 3 16. (a) VAB ~ VCD AB VB (corr. sides, ~ s) CD VD 6 cm VB 9 cm VB 5 cm 6VB 30 cm 9VB 3VB 30 cm VB 10 cm 19. (a) Area of the sector 8 2 h cm be the height. Curved surface area r 8 cm 2 VA 10 2 6 2 cm 8 cm Volume of the smaller circular cone 1 6 2 8 cm 3 3 96 cm 3 VA AB (corr. sides, ~ s) VC CD 8 cm 6 cm VC 9 cm 98 VC cm 6 12 cm Volume of the larger circular cone (a) 6.4 (b) 20. 1 9 2 12 cm 3 324 cm 3 3 Volume of the frustum (b) Height of the paper cup 6.4 cm. 1 Volume of the cup 4.8 2 6.4 cm 3 3 49.152 cm 3 154 cm 3 (cor. to 3 sig. fig.) Let r cm be the radius of the water surface. r cm 18 cm 7.5 cm 20 cm 7.5 18 r cm 20 6.75 cm Let l1 cm be the slant height of the circular cone formed Let h cm be the height of the circular cone. 1 112 h 605 3 h 15 Curved surface area = Area of the sector r 8 38.4 r 4.8 2 2 4.8 h 8 2 (Pyth. theorem) h 8 2 4.8 2 (324 96) cm 3 228 cm 3 17. 216 cm 2 360 38.4 cm 2 Let r cm be the base radius of the paper cup, VA 2 AB 2 VB 2 (Pyth. theorem) 4r 2 360 Curved surface area = Area of the sector 4r 2 2r 2 360 180 In VAB , (b) 360 by the water and l2 cm be the slant height of the container. l12 6.75 2 18 2 (Pyth. theorem) The height of the circular cone is 15 cm. l1 6.75 2 18 2 369.5625 Let l cm be the slant height. l 2 15 2 112 (Pyth. theorem) l22 7.52 20 2 (Pyth. theorem) l2 7.5 2 20 2 l 152 112 456.25 346 Total surface area ( 11 11 346 ) cm 2 2 Inner surface area of the container that is not wet 1022.9 cm 2 (cor. to 1 d.p.) = Curved surface area of the container – Curved surface area of the circular cone formed by the water ( 7.5 456.25 6.75 369.5625 ) cm 2 95.6 cm 2 (cor. to 3 sig. fig.) 69 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B 7. pp.123 – 125 9.3 (a) Level 1 1. 4 4 3 cm 3 3 256 cm 3 3 Volume Let r cm be the radius of the sphere. 4 500 r3 3 3 r 3 125 r 5 (b) Surface area 4 4 cm 2 The radius of the sphere is 5 cm. Surface area 4 5 2 cm 2 100 cm 2 2 64 cm 2 8. 3 2. Volume 4 15 cm 3 3 2 562.5 cm 3 Let r m be the radius of the hemisphere. 1 4 r 2 50 2 r 2 25 r 5 2 15 Surface area 4 cm 2 2 225 cm 2 3. 9. The radius of the hemisphere is 5 m. (a) Let r cm be the radius. 4 r 2 81 1 4 12 3 m 3 2 3 1152 m 3 81 4 r 4.5 Volume r2 1 Surface area 4 12 2 12 2 m 2 2 432 m 2 4 4.53 cm 3 3 121.5 cm 3 (b) Volume (a) Let r cm be the base radius. 2 r 17 r 8.5 3 4. Volume 1 4 21 cm 3 2 3 2 10. 771.75 cm 3 2 2 1 21 21 Surface area 4 cm 2 2 2 2 2 330.75 cm (b) 5. The base radius is 8.5 cm. 1 4 8.5 2 cm 2 2 144.5 cm 2 Curved surface area Volume of the white chocolate 4 4 1.83 1.53 cm 3 3 3 3.276 cm 3 10.3 cm 3 (cor. to 3 sig. fig.) 6. The radius is 4.5 cm. 11. Let r cm be the radius of the hemisphere. 1 4 128 r3 2 3 3 r 3 64 600 cm 3 r4 The radius of the hemisphere is 4 cm. © Hong Kong Educational Publishing Co. 4 2 3 cm 3 3 32 cm 3 3 Capacity of the container 10 4 15 cm 3 Volume of the sphere Volume of the empty space in the container 32 600 cm 3 3 566 cm 3 (cor. to 3 sig. fig.) 70 Area and Volume (III) 12. Curved surface area of the hemisphere 1 4 6 2 cm 2 2 72 cm 2 16. Area of the lateral face of the cylinder 2 6 5 cm 2 60 cm The radius of the hemisphere is 10 cm. Base radius of the cylinder 10 cm 3 cm 13 cm 2 Base area 6 2 cm 2 Curved surface area of the hemisphere 1 4 10 2 cm 2 200 cm 2 2 Area of the lateral face of the cylinder 36 cm Total surface area (72 60 36) cm 2 2 168 cm 2 13. 2 13 6 cm 2 156 cm 2 Base area of the cylinder 132 cm 2 Let r cm be the radius of the sphere. Surface area of the sphere 4 r 2 cm 2 169 cm 2 Area of the ring ( 13 102 ) cm2 69 cm2 Total surface area 2 Curved surface area of the circular cone 7 12 cm 2 84 cm 2 Surface area of the sphere = Curved surface area of the circular cone 4 r 2 84 Let r cm be the radius of the hemisphere. 1 4 2000 r3 2 3 3 r 3 1000 r 10 (200 156 169 69) cm 2 594 cm 2 r 2 21 17. (a) 4 (33 4 3 53 ) cm 3 3 288 cm 3 Volume of the larger ball r 21 4.58 (cor. to 3 sig. fig.) 14. Let r cm be the radius of the larger ball. 4 r 3 288 3 r 3 216 Radius of the sphere 4.58 cm. 4 64003 km 3 3 1.10 1012 km 3 (cor. to 3 sig. fig.) Volume r 6 The radius of the larger ball is 6 cm. 2 2 Surface area 4 6400 km 5.15 108 km 2 (cor. to 3 sig. fig.) (b) Total surface area before the recasting process 4 (32 4 2 5 2 ) cm 2 200 cm 2 Level 2 15. Total surface area after the recasting process 4 6 2 cm 2 144 cm 2 4 3 3 Volume of the 4 spheres 4 2 cm 3 128 cm 3 3 Percentage change of the total surface area 144 200 100% 200 28% Let h cm be the decrease in the water level. Decrease in the volume of water 4 2 h cm 3 Volume of the 4 spheres 18. = Decrease in the volume of water 128 42 h 3 8 h 3 (a) Let r cm be the outer radius of the bowl. 1 4 (r 2 112 ) (r 2 112 ) 517.75 2 3r 2 121 517.75 3r 2 396.75 r 2 132.25 2.67 (cor. to 3 sig. fig.) r 11.5 Decrease in the water level is 2.67 cm. 71 The outer radius of the bowl 11.5 cm. © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B (b) Volume of the bowl 1 4 1 4 11.53 113 cm 3 2 3 2 3 2. (a) 2 (b) 1 (c) 3 (a) 2 (b) 3 (a) Area The radius of the sphere is 7 m. (b) Length Total surface area (4 7 2 6 14 2 ) m 2 (c) Area (196 1176) m Cost of plating $60 (196 1176) $108000 (cor. to 3 sig. fig.) (d) Volume (e) Length (f) Area 398 cm 3 19. (a) Let r m be the radius of the sphere. 4 3 r 3 14 3 6 8r 3 14 3 3. 14 3 8 r 7 r3 (b) 4. 2 20. (a) Radius of the ice-cream ball 1 5 5 cm cm 2 2 4 Volume of the ice-cream ball 3 4 125 5 cm 3 cm 3 3 4 48 Level 2 5. (b) melts and r cm be the base radius of the ice-cream circular cone. r h (corr. sides, ~ s) 6 12 2 1 r h 4 (b) 2 2 1. Area of A 4 cm Area of B 8 cm 2. 1 3. (c) 2 © Hong Kong Educational Publishing Co. 2 16 9 Area of A:Area of B 16 : 9 3 1 4 Area of A:Area of B 1 : 4 Area of A 12 cm Area of B 9 cm p.128 Level 1 (b) 2 Height of the ice-cream in the cone is 5 cm. 9.4 pp.137 139 Level 1 1 h 3 1 h h cm 3 cm 3 3 48 4 h 3 125 48 48 3 h 125 h5 (a) 3 9.5 Volume of the ice-cream circular cone 1. (a) Let h cm be the height of the ice-cream after it Volume of A 6 cm Volume of B 10 cm 27 125 Volume of A:Volume of B 27 : 125 72 3 Area and Volume (III) 3 4. 2 Volume of A 7 cm 343 Volume of B 2 cm 8 Volume of A:Volume of B 343 : 8 11. (a) 2 5. 18 cm 2 3 cm x cm 2 4 cm 9 18 16 x x 32 20 cm 2 y cm 45 cm 2 9 cm 2 4 y 9 9 y 2 9 3 2 y 9 3 6 12. Volume of the football 5 125 Volume of the basketball 6 216 Volume of the football:Volume of the basketball 125 : 216 Time taken to walk around the garden is proportional to the perimeter of the garden. 2 Time taken to walk around garden A 25 Time taken to walk around garden B 49 2 3 7. Radius of the football:Radius of the basketball 5 : 6 3 (b) 2 6. 25 Radius of the football Radius of the basketball 36 Radius of the football 5 Radius of the basketball 6 x cm 3 2 cm 64 cm 3 4 cm 1 x 8 64 x8 3 minutes 25 49 Time taken to walk around garden B 3 minutes 5 Time taken to walk around garden B 7 Time taken to walk around garden B 7 3 minutes 4.2 minutes 5 Level 2 3 8. 10 cm 16 cm 3 54 cm 3 y cm 2 13. (a) 3 10 8 y 27 10 2 y 3 3 y 10 2 15 Perimeter of ABCD 16 8 Perimeter of QBRP Perimeter of ABCD 2 Perimeter of QBRP 1 Perimeter of ABCD:Perimeter of QBRP 2 :1 (b) Perimeter of the larger rectangle 5 2 cm 9. Total surface area of the smaller pyramid 2 Total surface area of the larger pyramid 5 3 14. Total surface area of the larger pyramid 10. (a) 25 40 cm 2 250 cm 2 4 Volume of the bus model 1 Volume of the real bus 8 2 1 Perimeter of the larger rectangle 2 5 2 cm 10 cm 2 40 cm 2 4 Total surface area of the larger pyramid 25 Height of the smaller bottle 216 729 Height of the larger bottle Height of the smaller bottle 6 Height of the larger bottle 9 3 Height of the smaller bottle:Height of the larger bottle 2 : 3 3 0.15 m3 1 1 Volume of the real bus 8 512 Volume of the real bus 512 0.15 m3 76.8 m3 2 (b) Surface area of the smaller bottle 2 4 Surface area of the larger bottle 3 9 Surface area of the smaller bottle:Surface area of the larger bottle 4 : 9 73 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B 15. Let r1 cm and r2 cm be the base radius of the metallic 17. bar before and after heating. r1 50 r2 52 16. (a) 1 25 1 1 24 Area of A:Area of B 1 : 24 25 26 (b) Percentage change of the volume 1 1 r22 52 r12 50 3 3 100% 1 2 r1 50 3 r 2 52 2 1 100% r1 50 26 2 26 1 100% 25 25 12.5% (cor. to 3 sig. fig.) 24 49 25 24 24 1 1 Area of B:Area of C 1 : 1 18. ABC ~ ADE (AAA) Area of ABC AB Area of ADE AD 1 1 4 r22 49% r12 r2 7 r1 10 Percentage change of the radius r r 2 1 100% r1 1 25 BDF ~ ADE (AAA) Area of BDF BD Area of ADE AD 2 4 1 4 2 2 BD AB BD r 2 1 100% r 1 7 1 100% 10 30% 2 2 16 25 Area of BDF Area of BFEC Area of BDF Area of ADE Area of ABC Area of BDF Percentage change of the volume 4 3 4 3 r2 r1 3 3 100% 4 3 r1 3 r 3 2 1 100% r1 16 25 1 16 16 8 2 1 Area of BDF:Area of BFEC 2 : 1 7 3 1 100% 10 65.7% © Hong Kong Educational Publishing Co. 2 AB AB BD be the new radius. 4r22 1 51% 4r12 (b) Area of B (2 1 2) 2 12 Area of C (1 2 1 2 1) 2 (2 1 2) 2 Let r1 be the radius of the original sphere and r2 Area of A 12 Area of B ( 2 1 2) 2 12 1 Volume of the bar after heating r22 52 cm 3 3 1 Volume of the bar before heating r12 50 cm 3 3 (a) 74 Area and Volume (III) 2 19. (a) Length of the base of the smaller pyramid 9 64 Length of the base of the larger pyramid (b) Area in contact with the water after addition of water Area in contact with the water before addition of water Length of the base of the smaller pyramid 3 Length of the base of the larger pyramid 8 Volume of the smaller pyramid 3 Volume of the larger pyramid 8 2 9 12 8 4 3 27 512 21. (a) = Volume of the larger pyramid Increase in the volume of water Volume of the larger cuboid Increase in the volume of water Volume of the smaller pyramid = Volume of the larger pyramid 27 Volume of the larger pyramid 512 485 Volume of the larger pyramid = 512 485 Volume of the larger pyramid 776 cm 3 512 Volume of the larger pyramid Volume of the smaller cuboid 1680 cm 3 60 cm 3 1620 cm 3 3 Height of the smaller cuboid 60 1 Height of the larger cuboid 1620 27 Height of the smaller cuboid 1 Height of the larger cuboid 3 512 776 cm 3 485 2 Surface area of the smaller cuboid 1 1 Surface area of the larger cuboid 9 3 Ratio of the surface area 1 : 9 819.2 cm 3 Volume of the smaller pyramid 27 819.2 cm 3 512 2 (b) 43.2 cm 3 smaller pyramid respectively. 1 90 h2 43.2 3 h2 1.44 20. (a) The square of the ratio of the heights of the their surface areas because the square of the ratio of their decrease in heights is h2 3 h1 8 equal to the ratio of their surface areas. Hence they are still similar. 8 h1 1.44 3 3.84 Height of the frustum (3.84 1.44) cm 2.4 cm p.143 1. B Mark points V, A, B, O and M as shown in the figure, in which M is the mid-point of AB. Since VAB is an isosceles triangle, VM AB . Let x cm3 be the extra water needed. In VOM , VO 3 cm 1 OM 8 cm 4 cm 2 VM 2 VO 2 OM 2 (Pyth. theorem) 3 360 8 360 x 12 360 8 360 x 27 360 27 360 8 8 x 8 x 360 19 x 855 Surface area of the smaller cuboid Surface area of the larger cuboid remaining parts is equal to the ratio of 1.44 3 h1 8 2 1 0.5 cm 1 9 1.5 cm 3 Let h1 and h2 be the height of the larger and the 94 100% 125% 4 15 10 11.2 cm 3 1680 cm 3 Volume of the frustum (b) Percentage increase VM 32 42 cm• 5 cm 1 Area of VAB 8 cm 5 cm 20 cm 2 Total surface area (8 8 20 4) cm 2 144 cm 2 The extra water needed is 855 cm3. 75 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B 2. B Curved surface area 16 17 cm 2 2 136 cm 2 3. Area of APQ Area of PBCQ (b) Area of APQ Area of ABC Area of APQ 4 94 4 5 Area of APQ:Area of PBCQ 4 : 5 B 2 Surface area 4 12 cm 2 2 144 cm 2 452 cm 2 (cor. to 3 sig. fig.) 4. C 5. D pp.144 – 148 Level 1 Volume of the smaller circular cone 3 Volume of the larger circular cone 9 3 1. 1 27 1200 cm 3 V cm 3 1 Volume of the larger circular cone 27 Volume of the larger circular cone 27V cm 6. 2. 3 1 3 Volume (9 9) 10 cm 3 270 cm 3 Let r cm be the base radius of the circular cone and Mark points V, A, B, C, M and N as shown in the figure, VM AB and VN BC 1 1 MB AB (10) cm 5 cm 2 2 1 1 NB BC (8) cm 4 cm 2 2 In VBM , 2 (Pyth. theorem) 25 h 52 18 2 VM 2 MB 2 VB 2 (Pyth. theorem) VM 152 52 cm 4.80 (cor. to 3 sig. fig.) 8. The height of the circular cone is 4.80 cm. (a) APQ ~ ABC (AAA) Area of APQ AP Area of ABC AB 2 2 1 200 cm 1 Area of VAB 10 200 cm 2 2 5 200 cm 2 2 In VBN , VN 2 NB 2 VB 2 (Pyth. theorem) AP AP PB 2 VN 152 4 2 cm 209 cm 2 Area of VBC 1 8 209 cm 2 2 4 209 cm 2 4 9 Area of APQ:Area of ABC 4 : 9 The side length of the base is 2.5 cm. in which M and N are the mid-points of AB and BC. VAB and VBC are isosceles triangles. h cm be the height. 100 2r 2 5 360 25 r 18 25 h 2 52 18 Let a cm be the side length of the base of the pyramid. 1 2 a 6 12.5 3 a 2 6.25 a 2.5 3. 7. 1 1 3 Volume of the pyramid 15 20 24 cm 3 2 Total surface area of all lateral faces (5 200 2 4 209 2) cm 2 257 cm 2 (cor. to 3 sig. fig.) © Hong Kong Educational Publishing Co. 76 Area and Volume (III) 4. Let h cm be the height of the circular cone. h 2 5 2 132 (Pyth. theorem) 4 4 3 cm 3 3 256 cm 3 3 268 cm 3 (cor. to 3 sig. fig.) (b) Volume (a) Let r cm be the radius of sphere C. Surface area of sphere A 4 9 2 cm 2 h 132 5 2 12 1 2 3 Volume of the cone 5 12 cm 3 100 cm 3 5. 9. 324 cm 2 Surface area of sphere B 4 12 2 cm 2 Let r cm be the base radius of the cone. 1 r 2 16 400 3 1200 r2 16 75 r 900 r 2 225 r 15 75 Base circumference of the cone (b) 75 2 cm 30.7 cm (cor. to 3 sig. fig.) 6. Let r cm be the base radius of the cone and l cm be the slant height. r 2 576 r 2 576 r 24 l 2 24 2 7 2 (Pyth. theorem) 4 9 3 cm 3 3 972 cm 3 4 Volume of sphere B 12 3 cm 3 3 2304 cm 3 4 Volume of sphere C 153 cm 3 3 4500 cm 3 10. 600 cm 2 2 Total surface area (576 600) cm 1176 cm 2 Base area 4.5 2 cm 2 20.25 cm 2 Curved surface area 1 4 4.5 2 cm 2 2 40.5 cm 2 2 Total surface area (20.25 40.5) cm 11. (a) 2 (b) 1 (c) 3 (a) 60.75 cm 2 8. (a) Let r cm be the radius of the sphere. 4r 2 64 18 cm 2 6 cm x cm 2 8 cm 18 9 x 16 16 x 18 9 32 2 3 (b) r 2 16 r4 Total volume of the 3 spheres (972 2304 4500) cm 3 7776 cm 3 25 Curved surface area 24 25 cm 2 7. Radius of sphere C is 15 cm. Volume of sphere A l 24 2 7 2 576 cm 2 4r 324 576 2 16 cm 3 y cm 54 cm 3 12 cm 3 8 y 27 12 y 2 12 3 2 y 12 3 8 The radius of the sphere 4 cm. 77 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B 12. Let r1 and r2 be the radii of the 2 spheres respectively. r1 r 2 (b) 2 16 9 r1 4 r2 3 15. (a) Ratio of their volumes r : r 3 1 4 :3 The following figure shows the base of the right pyramid, mark the mid-point of AB as D and join 3 2 3 1 Volume of the pyramid 32 24 21 cm 3 3 5376 cm 3 CD. 3 64 : 27 13. (a) Let h cm be the height of the smaller pyramid. 3 16 h 9 250 3 8 h 9 125 h 2 9 5 2 h 9 5 3 .6 (b) Since ABC is an equilateral triangle, CD AB . 1 1 AD AB (6) cm 3 cm 2 2 AD 2 CD 2 AC 2 (Pyth. theorem) CD 6 2 32 cm Surface area of the smaller pyramid 3.6 2 : 9 2 Surface area of the larger pyramid 15.6 cm 2 (cor. to 3 sig. fig.) Level 2 (a) 1 6 3 3 cm 2 2 9 3 cm 2 4 : 25 14. 3 3 cm Base area of the pyramid The height of the smaller pyramid is 3.6 cm. (b) Let h cm be the slant height of the pyramid. Height of the lateral surface h 2 32 1 9 3 3 6 h 2 32 2 (4 3 2 3 4 2) 2 h 5.04 cm Mark points V, A, B, C, D, M, N and O as shown in the figure. (cor. to 3 sig. fig.) 16. M is the mid-point of AB and O is the centre of ABCD. MB 1 1 AB (16) cm 16 cm 2 2 VM MB VB 2 2 The height of the smaller pyramid is 19.2 cm. 1 Volume of the smaller pyramid 8 8 19.2 cm 3 3 409.6 cm 3 1 Volume of the larger pyramid 10 10 24 cm 3 3 800 cm 3 3 Volume of the frustum (800 409.6) cm (Pyth. theorem) VM 29 16 2 cm 2 585 cm 1 1 OM BC (24) cm 12 cm 2 2 VO 2 OM 2 VM 2 (Pyth. theorem) 390.4 cm 3 VO 585 12 2 cm 21 cm The height of the pyramid is 21 cm. © Hong Kong Educational Publishing Co. Let h cm be the height of the smaller pyramid. h 8 24 10 8 h 24 10 19.2 Since VAB is an isosceles triangle, VM AB . 2 (a) The slant height of the pyramid is 5.04 cm. 78 Area and Volume (III) (b) Mark points V, A, B, C, D, E, F, G and H. Join Lateral surface area of the frustum (500 320) cm 2 180 cm 2 HF as shown in the figure. Total surface area of the frustum (10 10 8 8 180) cm 2 344 cm 2 17. (a) Volume of the larger cone 1 16 2 24 cm 3 3 2048 cm 3 Volume of the cone above the water 24 6 Volume of the larger cone 24 HF 2 HE 2 EF 2 (Pyth. theorem) HF 10 2 10 2 cm 3 Volume of the cone above the water 3 18 2048 cm 3 24 864 cm 3 200 cm VF VH 2 HF 2 (Pyth. theorem) 2 VF 24 2 200 cm 776 cm Volume of the frustum (2048 864) cm 3 1184 cm 3 VE 2 VH 2 HE 2 (Pyth. theorem) VE 24 2 10 2 cm (b) 676 cm 26 cm In VEF , VE 2 EF 2 676 10 2 Volume of the cylinder below the water level 16 2 6 cm 3 1536 cm 3 Volume of the water (1536 1184) cm 3 352 cm 3 676 100 Height of the water level after the cone is 352 cm taken out 16 2 1.375 cm 776 VF 776 VE 2 EF 2 VF 2 2 VEF 90 (converse of Pyth. theorem) 1 Area ofVEF VE EF 2 1 26 10 cm 2 2 130 cm 2 1 Area of VHE HE VH 2 1 10 24 cm 2 2 120 cm 2 18. Let l cm be the slant height of the cone. Curved surface area of the cone 360 cm 2 rl 360 360 l r Curved surface area of the cone = Area of the sector rl l 2 360 2 VHE VHG and VEF VGF Area of VHG Area of VHE Area of VGF Area of VEF Lateral surface area of the larger pyramid (130 2 120 2) cm 2 500 cm 2 Lateral surface area of the smaller pyramid VD Lateral surface area of the larger pyramid VH 360 360 r 360 360 2 360π 360r 2 r2 19. If the sphere is completely covered by water, then the 2 Lateral surface area of the smaller pyramid 19.2 cm 500 cm 2 24 cm height of the water level is 6 cm. Volume of extra water required 3 4 6 2110 6 400 cm 3 3 2 2 Lateral surface area of the smaller pyramid 320 cm 2 747 cm 3 (cor. to 3 sig. fig.) 79 © Hong Kong Educational Publishing Co. 9 New Progress in Junior Mathematics 3B 20. (a) Let h cm be the height of the cone. 1 2 1 4 9 2 h 93 3 3 2 3 h 12 (b) (b) The height of the cone is 12 cm. Total surface area of the solid = Curved surface area of the cone + Curved Percentage change in the volume 4 3 4 3 r2 r1 3 3 100% 4 3 r1 3 r 3 2 1 100% r1 3 (1.35 1) 100% 146% surface area of the hemisphere 1 9 9 2 12 2 4 9 2 cm 2 2 22. 297 cm 2 (a) (cor. to 3 sig. fig.) Volume of VABC 27 27 Volume of VDEF 27 37 64 3 (c) Volume of the solid Volume of the cone Volume of the hemisphere 1 4 1 9 2 12 9 3 cm 3 3 2 3 810 cm 3 Let r cm be the radius of the sphere formed. 4 3 r 810 3 r 3 607.5 (b) Total surface area of VABC VA Total surface area of VDEF VE 180 cm 2 3 Total surface area of VDEF 4 r 3 607.5 Total surface area of the sphere 4 (3 607.5 ) 2 27 VA VE 64 VA 3 VE 4 VA : AE 3 : (4 3) 3 :1 Total surface area of VDEF Percentage change in the total surface 4 (3 607.5 ) 2 297 100% 297 3.39% (cor. to 3 sig. fig.) (a) Let r1 be the original radius of the balloon and r2 (320 180 45) cm 2 185 cm 2 r1 1 r2 1.5 0.9 1 1.35 r2 1.35r1 23 26 Percentage change in the radius r r 2 1 100% r1 1.35r1 r1 100% r1 35% © Hong Kong Educational Publishing Co. VABC is a regular tetrahedron. Area of ABC 1 180 cm 2 4 45 cm 2 Total surface area of VABC Area of ABC r12 1 r22 225% 81% 16 180 cm 2 9 Total surface area of ABCDEF Total surface area of VDEF be the radius after the change. 4r12 (1 125%) (1 19%) 4r22 2 320 cm 2 area 21. 2 80 (HKCEE Questions) Area and Volume (III) Extended Question 27. Open-ended Question Volume of the cylinder 6 2 3 cm 3 28. 108 cm 3 Volume of the circular cone 1 6 2 12 cm 3 3 144 cm 3 Capacity of the container (108 144) cm 3 Let r1 and r2 be the base radii of the 2 right circular cones formed by A and B respectively. For A, πr118 π182 330 360 r1 16.5 252 cm 3 Volume of water in the container 1 252 cm 3 2 126 cm 3 126 cm 3 108 cm 3 The water level is higher than the height of the Using Pythagoras’ theorem, cylinder when it is placed vertically. Height of container A = 182 16.52 cm 51.75 cm For B, πr2 20 π 20 2 r2 Let h cm be the height of the water level in the cone. 1 Volume of the water Capacity of the container 2 Volume of the empty space in the cone 1 1 Capacity of the container 2 3 Consider 50 . Let A and B be the name of the containers after decreasing the angle of the sector by , and r3 and r4 Volume of the empty space in the cone Volume of the cone be their radii respectively. 12 h 126π cm 3 3 12 144π cm For A, πr318 π18 2 h 0.522 2 100 = 20 2 cm 16.630 cm 9 1 Volume of container A π16.5 2 51.75 cm 3 3 2 3 Height of container B 1 100 3 Volume of container B π 16.630 cm 3 9 2150 cm 3 126 π cm 3 100 9 2051 cm 3 1 252 π cm 3 2 Height of the empty space in the cone Height of the cone 200 360 330 50 360 r3 14 Height of the water level now 3 cm 0.522 cm 3.52 cm (cor. to 3 sig. fig.) For B, πr4 20 π 20 2 r2 200 50 360 25 3 Using Pythagoras’ theorem, Height of container A = 182 142 cm 128 cm 2 25 Height of container B = 20 2 cm 18.181 cm 3 1 Volume of container A π14 2 128 cm 3 3 2322 cm 3 2 1 25 Volume of container B π 18.181 cm 3 3 3 1322 cm 3 Value of 50 (or other reasonable answers) 81 © Hong Kong Educational Publishing Co. 9
© Copyright 2026 Paperzz