1 Supplementary materials 2 Rapid evolution of Wolbachia incompatibility types 3 Olivier Duron , Jennifer Bernard, Célestine M. Atyame, Emilie Dumas and Mylène Weill 1 4 Abbreviations Culex pipiens lines wPip strains Origins References Lv LaVar wPip(Lv) France (Duron et al. 2006a) Is Istanbul wPip(Is) Turkey (Duron et al. 2006a) Ko Kol wPip(Ko) Crete (Duron et al. 2006a) Tn Tunis wPip(Tn) Tunisia (Duron et al. 2006a) Sl-TC SlabTC uninfected derived from the Slab line (California) (Duron et al. 2006a) 5 6 Table S1. Description of the Culex pipiens lines and the wPip strains. 2 7 Genes Culex pipiens (nuclear genome) Putative products Primers (5'-3') Size (bp) References ace-2 Acetylcholinesterase 2 (AChE2) 700 (Bourguet et al. 1998) Ester2 Carboxylester hydrolase F1457-GAGGAGATGTGGAATCCCAA B1246-TGGAGCCTCCTCTTCACGGC Bdir1530-CTCCAGATCAACCCTTC MMI_R-CAGCTTCGGGTCGATCATCAT 1100 (Ben Cheikh et al. 2008) Cytochrome b 10366F-CTTTATTAGTAACTGTAAAAATTAC 11217R-ACTAAAGGATTAGCAGGAATGA 852 (Atyame et al. 2011a) pk1 Ankyrin domain protein 1,334-1,349 (Duron et al. 2007; Sinkins et al. 2005) ank2 Ankyrin domain protein 313-511 (Duron et al. 2007) vrlC (=GP15) Phage related probable secretory protein 1,511-1,538 (Atyame et al. 2011b; Duron et al. 2006b) WPa_679 Guanylate kinase F-CCACTACATTGCGCTATAGA R-ACAGTAGAACTACACTCCTCCA F-CTTCTTCTGTGAGTGTACGT R2-TCCATATCGATCTACTGCGT F1-ACCATTACAGAACTTGAGGA R1-TAGACGTTCATAGGCAACCA F2-ACCTGACTCTGCAGTACTTGA R2-ACTGCTTCTCTCATAAATTCA F- TATCCTCTCCTTCTGGAGCT R- CTTCCATTGAGGGAGGTAGT 360 This study 16S rRNA Small ribosomal subunit ChF-TACTGTAAGAATAAGCACCGGC ChR-GTGGATCACTTAACGCTTTCG 396 (Zchori-Fein & Perlman 2004) yaeT Outer membrane protein assembly factor yaeTf-GCATACGGTTCAGACGGGTTTG yaeTr-GCCGAAACGCCTTCAGAAAAG 473 (Duron et al. 2010) 16S rRNA Small ribosomal subunit SpixoF-TTAGGGGCTCAACCCCTAACC SpixoR-TCTGGCATTGCCAACTCTC 810 (Duron et al. 2008) gltA Citrate synthetase RICS741F-CATCCGGAGCTAATGGTTTTGC RCIT1197R-CATTTCTTTCCATTGTGCCATC ca.450 (Davis et al. 1998) Culex pipiens (mitochondrial genome) cytB Wolbachia (wPip) Cardinium Arsenophonus Spiroplasma (ixodetis group) Rickettsia 8 9 Table S2. Genes and primers used for detection diagnosis tests. 10 3 11 Allelic profiles Mosquito lines Culex pipiens n nuclear genes ace-2 Wolbachia (wPip) mitochondrial gene Ester2 cytb pk1 ank2 vrlC WPa_679 2005 Lv 10 a a pi7 c e b a Is 10 a b pi12 d c d a Ko 10 a b pi4 a a a a Tn 10 a b pi4 a a a b Sl-TC 10 b c pi11 _ _ _ _ Lv 12 a a pi7 c e b a Is 12 a b pi12 d c d a Ko 12 a b pi4 a a a a Tn 12 a b pi4 a a a b Sl-TC 12 b c pi11 _ _ _ _ SlwLv 10 b c pi7 c e b a SlwIs 10 b c pi12 d c d a wKo 10 b c pi4 a a a a SlwTn 10 b c pi4 a a a b 2009 (original nuclear background) 2009 (Sl-TC nuclear background) Sl 12 13 Table S3. Allelic profiles of Culex pipiens lines and wPip strains. The allelic profiles of mitochondrial and wPip genes were assessed by direct 14 sequencing and the profiles of nuclear genes by PCR/RFLP tests. Nomenclatures for mitochondrial and wPip alleles are those used by Atyame et 15 al. (2011a). Sl-TC is a Wolbachia-uninfected line. n: number of individuals typed; dash: absence of PCR product. 16 4 17 References 18 Atyame, C., Delsuc, F., Pasteur, N., Weill, M. & Duron, O. 2011a Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. 19 20 21 22 23 24 Molecular Biology and Evolution 28 , 2761-2772. Atyame, C., Duron, O., Tortosa, P., Pasteur, N., Fort, P. & Weill, M. 2011b Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations. Molecular Ecology 20 , 286-298. Ben Cheikh, R., Berticat, C., Berthomieu, A., Pasteur, N., Ben Cheikh, H. & Weill, M. 2008 Characterization of a novel high-activity esterase in Tunisian Populations of the mosquito Culex pipiens . Journal of Economic Entomology 101 , 484-491. Bourguet, D., Foncesca, D., Vourch, G., Dubois, M. P., Chandre, F., Severini, C. & Raymond, M. 1998 The acetylcholinesterase gene ace: a 25 diagnostic marker of the pipiens and quinquefasciatus forms of the Culex pipiens complex. J. Amer. Mosq. Control Assoc. 14 , 390- 26 396. 27 28 29 30 31 32 Davis, M. J., Ying, Z., Brunner, B. R., Pantoja, A. & Ferwerda, F. 1998 Rickettsial relative associated with Papaya bunchy top disease. Current Microbiology 26 , 80–84. Duron, O., Bernard, C., Unal, S., Berthomieu, A., Berticat, C. & Weill, M. 2006a Tracking factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens . Molecular Ecology 15 , 3061-3071. Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstadter, J. & Hurst, G. D. 2008 The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology 6 , 27. 5 33 34 35 36 37 38 39 40 41 Duron, O., Boureux, A., Echaubard, P., Berthomieu, A., Berticat, C., Fort, P. & Weill, M. 2007 Variability and expression of ankyrin domain genes in Wolbachia variants infecting the mosquito Culex pipiens. J Bacteriol 189 , 4442-8. Duron, O., Fort, P. & Weill, M. 2006b Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proc Biol Sci 273 , 495-502. Duron, O., Wilkes, T. E. & Hurst, G. D. 2010 Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett 13 , 1139-48. Sinkins, S. P., Walker, T., Lynd, A. R., Steven, A. R., Makepeace, B. L., Godfray, H. C. & Parkhill, J. 2005 Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 436 , 257-60. Zchori-Fein, E. & Perlman, S. J. 2004 Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13 , 2009-16. 6 42 Figure legends 43 Figure S1. Hatching rates from crosses (A) between ♀Lv and ♂Tn in 2005 and 2009, and 44 between ♀SlwLv and ♂SlwTn; and (B) between ♀Is and ♂Ko in 2005 and 2009, and between 45 ♀SlwIs and ♂SlwKo. y axis indicates hatching rates. The number of clutches observed (n) is 46 indicated for each cross (2000-3600 eggs were examined per cross). a and b represent 47 statistical groups (Wilcoxon two sided-tests). 48 49 Figure S2. Crossing relationships of a Wolbachia-uninfected line (Sl-TC) with four infected 50 lines (Lv, Is, Ko and Tn) of Cx. pipiens in 2005 and 2009. A, crosses of uninfected males with 51 infected and uninfected females; B, crosses of uninfected females with infected males. 52 Histograms give the distribution of hatching rates (HR) (x axis, HR; y axis, proportion of 53 clutches). The number of clutches observed (n) is indicated for each cross (a minimum of 54 1000 eggs was examined per cross). For each cross, no significant variation of HR was found 55 between 2005 and 2009 (Fisher exact tests; a refers to statistical group). 56 57 Figure S3. Hatching rates from crosses of (A) ♀Lv-sub12 and ♀Lv-sub10 with ♂Tn; and (B) 58 ♀Is-sub5 and ♀Is-sub2 with ♂Ko. The number of clutches observed (n) is indicated for each 59 cross (1500-4200 eggs were examined per cross). y axis indicates hatching rates. a and b 60 represent statistical groups (Wilcoxon two sided-tests). 61 62 Figure S4. Hatching rates from reciprocal crosses between (A) Lv-sub12 and Lv-sub10, and 63 (B) Is-sub5 and Is-sub2. The number of clutches observed (n) is indicated for each cross (800- 64 3800 eggs were examined per cross). y axis indicates hatching rates. a represents statistical 65 group (Wilcoxon two sided-tests). 66 7 67 Figure S5. Transgenerational survey of crosses (A) between ♀Lv-sub12 and ♂Tn males; (B) 68 between ♀Lv-sub10 and ♂Tn; (C) between ♀Is-sub5 and ♂Ko; and (D) between ♀Is-sub1 69 and ♂Ko. For each cross, no significant variation of hatching rates was observed over 10 70 generations but note in (C) the appearance of few compatible clutches (visualized by outliers). 71 The number of clutches observed (n) is indicated for each cross (1900-5400 eggs were 72 examined per cross). y axis indicates hatching rates. a represents statistical group for 73 transgenerational comparisons (Wilcoxon two sided-tests). 74 8 75 76 77 Figure S1 9 ♀Sl-TC 80 2009 (n = 16) 2005 (n = 20) 2009 (n = 9) 2005 (n = 49) 2009 (n = 11) 2005 (n = 22) 2009 (n = 23) a a a a a a a a 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 1.0 0.8 0.6 0.4 0.2 0.0 2005 (n = 50) 0.00 0.25 0.50 0.75 1.00 78 2005 (n = 37) 2009 (n = 10) 2005 (n = 29) 2009 (n = 14) 2005 (n = 10) 2009 (n = 10) 2005 (n = 27) 2009 (n = 19) 2005 (n = 35) 2009 (n = 12) a a a a a a a a a a 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 1.0 0.8 0.6 0.4 0.2 0.0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 ♂Sl-TC 0.00 0.25 0.50 0.75 1.00 A ♀Lv ♀Is ♂Lv ♀Ko ♂Is ♀Tn ♂Ko ♀Sl-TC B ♂Tn 79 Figure S2 10 81 A A AA Lv[w Pip(Lv)] sublines ♀ Lv[w sublines ♀♀Lv[w Pip(Lv)] sublines ♀Pip(Lv)] Lv[w Pip(Lv)] sublines Lv-sub12 Lv-sub10 ♀ Lv-sub12 ♀ Lv-sub10 ♀♀Lv-sub12 ♀♀Lv-sub10 ♀ Lv-sub12 ♀ Lv-sub10 n = 21 14 n = 21n = 21 n = 21n = 14n = 14 nn==14 1.0 1.0 1.0 1.0 0.8 0.8 0.8 Tn[wPip(Tn)] Pip(Tn)] 0.6 ♂ Tn[w 0.6 ♂♂Tn[w ♂ Pip(Tn)] Tn[w Pip(Tn)] 0.6 0.6 0.8 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 A BBB a b a b bb aa ♀ Is[w sublines ♀Pip(Is)] Is[w Pip(Is)] sublines ♀ Lv[w Pip(Lv)] sublines ♀ Is[w Pip(Is)] sublines 1.0 0.8 ♀ Is-sub5 ♀ Is-sub1 ♀♀ Is-sub5 ♀ Is-sub1 ♀ Lv-sub12 Lv-sub10 ♀ Is-sub5 ♀ Is-sub1 =n30 = 24 n = 21 n =n30 = 14 n =n24 =n30 =n24 b b b 1.0 1.0 1.0 b 0.8 0.8 0.8 0.6 0.6 0.6 Ko[w Pip(Ko)] 0.6 ♂ Ko[w Pip(Ko)] ♂ Tn[w ♂ Pip(Tn)] ♂ Ko[w Pip(Ko)] 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 a a a a 82 83 84 Figure S3 11 A ♀ Lv-sub12 1.0 ♀ Lv-sub10 n = 32 n = 16 a a B 1.0 0.8 ♂ Lv-sub12 ♂ Is-sub5 n = 20 n=7 a a n = 12 n = 31 0.6 0.4 0.4 0.2 0.2 0.0 0.0 n = 13 a n = 26 a 1.0 0.8 85 ♀ Is-sub1 0.8 0.6 1.0 ♂ Lv-sub10 ♀ Is-sub5 a a 0.8 ♂ Is-sub1 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 86 87 Figure S4 12 AA ♀ Lv-sub12 ♀ Lv-sub12 1.0 0.8 ♂ Tn[w Pip(Tn)]0.6 ♂ Tn[w Pip(Tn)] 0.4 0.2 0.0 1.0 G1 G1 n = 21 n = 21 G2 G2 n = 19 n = 19 G3 G3 n = 22 n = 22 G4 G4 n = 30 n = 30 G5 G5 n = 18 n = 18 0.8 0.6 0.4 0.2 a a a a a a a a a a a ♀ Lv-sub12 ♀ Lv-sub10 G1 G1 n = 14n = 21 1.0 1.0 0.8 0.8 ♂ Pip(Tn)] Tn[w Pip(Tn)]0.6 ♂ Tn[w 0.6 0.4 0.4 0.2 0.2 0.0 0.0 a G2 G2 n = 20n = 19 a a a CC G3 G3 n = 26n = 22 a G4 G4 n = 21n = 30 a a G5 G5 n = 24n = 18 a G10 G10 n = 26n = 36 a a a a ♀ Is-sub5 ♀ Is-sub5 G1 G1 n = 21n = 21 1.0 1.0 0.8 0.8 0.6 ♂ Ko[w Pip(Ko)] ♂ Ko[w Pip(Ko)] 0.6 0.4 0.4 0.2 0.2 0.0 0.0 a a G2 G2 n = 30n = 30 a G3 G3 n = 37n = 37 a a G4 G4 n = 51n = 51 a G5 G5 n = 31n = 31 G10 G10 n = 48n = 48 a a a a a a DC ♀ Is-sub1 ♀ Is-sub5 1.0 1.0 0.8 0.8 0.6 ♂ Ko[w ♂ Pip(Ko)] Ko[w Pip(Ko)] 0.6 0.4 0.4 0.2 0.2 0.0 0.0 G1 G1 n = 30n = 21 a G2 G2 n = 24n = 30 a G3 G3 n = 31n = 37 a a G4 G4 n = 27n = 51 a G5 G5 n = 17n = 31 a a 89 a 0.0 BA 88 G10 G10 n = 36 n = 36 G10 G10 n = 26n = 48 a a a a a Figure S5 13
© Copyright 2026 Paperzz