On the estimation of earthquake recurrence along faults and the crucial role of intermediate magnitudes in seismic hazard assessment O. Scotti, C. Clement and F. Bonilla Institut de Radioprotection et Sûreté Nucléaire, Bureau d'Evaluation du Risque Sismique BP 17 - 92262 FONTENAY-AUX-ROSES – FRANCE Let us consider, for exemple, the Durance fault system in SE France P Seismological and structural data: • • • • 1999-2004 A length: 60 km segments: 10 km long seismogenic depth :5 to 10 km slip motion: strike-slip to reverse B P • slip rate: 0.07 (GPS) to 0.2 mm/yr (geological markers) • one M>6 paleo-earthquake • four M~5 historical events (~every 100 years ) 1000 years IRSN/BERSSIN permanent GPS Système de failles de la Durance NW A Pli de Manosque 1 0 km Bassin de Valensole Mio-Pliocène Mioc ène inf. Oligocène 1 B Crétacé 1 0 km 1 P 2 2 • few 2<M<3 instrumental events in the last 5 years Seismic stations SE 3 3 Jurassique 4 4 Trias 5 Socle varisque 6 5 6 ~25000 years old M>6 event From Ghafiri, 1995 Adapted from Benedicto 1996 On the difficulty of choosing the appropiate earthquake recurrence model truncated exponential (GR), characteristic (YC) and maximum magnitude (CE) Let us assume that activity rates, l, can be deduced from slip rates using : probzility density fonctions - Maximum magnitude Mmax = 4.33 + 0.90 log10(S) Mmax - Seismic moment rate M0 μ Si vi λi Mmin f(m)M0(m)dm - Seismic moment Mo(m)=10(cM+d) where v is the slip rate, S is the surface of the fault, m the rigidity modulus. We then apply three models available in the literature to compute the probability density functions for magnitude (as defined by Stewart et al., 2001). The seismologiacl and structural data allows to formulate a variety of hypotheses on the geometry and slip rates. Here we show the resulting return period estimates of M>=5 events for a 10 km long segment. In spite of the important uncertainty in the seismological data, the key uncertainty is the choice of the most adequate earthquake recurrence model. The GR model, which is rarely used in practice, leads to Moment rate (Nm/yr) slip rate (mm/yr) fault depth (km) the highest return period estimates in this approach.Which is the most adequate recurrence model that best describes Durance-type faults? GR, YC or CE? On the difficulty of estimating activity rates: which is more reliable, catalogue data or slip rates? Let us now use instead the historical record, which suggests M~5 events recur every 100 years along a segment of the fault. Assuming such events can occur anywhere along the fault and that they represent the maximum magnitude events, then their return period on a single fault segment can lower to 500 years. But which is the physical reason to limit Mmax at M~5? Fault maturity? Strain rate? Which seismic hazard level and scenarios for such faults? Assuming a 10 km long and 10 km deep vertical fault segment and a slip rate of 0.07 mm/yr, seismic hazard is calculated for a site located at a distance of 10 km, using the activity rates and recurrence models discussed above. Annual occurrence 1E-2 GR CE YC Mmax=5.0 1E-3 1E-4 1E-5 1E-6 Attenuation relationship Abrahamson and Silva (1997) 1E-7 Reverse faulting ; 3 0 s 50 100 150 200 Peak Ground Acceleration (cm/sec2) Hazard levels and hazard scenarios vary strongly due to uncertainty in both recurrence models and activity rate estimates of intermediate magnitude events Deagregation of hazard for a 10-5 annual probability level GR CE YC Conclusions Using the Durance fault segment as an example we showed -that it is the uncertainty in earthquake recurrence models that has the greatest impact on return period estimates compared to seismicl data. - that the large contribution to the hazard of low probability ground motions allows lower magnitude bins to contribute down to very low probability levels. We thus emphasize the crucial role of intermediate magnitude earthquakes in hazard assessment as well as the need to find measurable field parameters that may be injected in numerical models to help discriminate among the different seismicity models for faults in moderate seismicity regions. Benedicto A. ; 1996 : Modèles tectono-sédimentaires de bassins en extension et style structural de la marge passive du Golfe du Lion (partie nord), sud-est de la France. PhD thesis, Univ. Montpellier, 235 pp Ghafiri A. (1995). Paléosismicité de failles actives en contexte de sismicité modérée: application à l'évaluation de l'aléa sismique dans le Sud-Est de la France. Thèse de Doctorat, Univ. Paris XI, 337 pages J. P. Stewart, S.J. Chiou J., D. Bray R.W., Graves, P. G. Somerville and N. Abrahamson (2001) Ground Motion Evaluation Procedures for Performance-Based Design. PEER Report 2001/09. On the estimation of earthquake recurrence along faults and the key role of intermediate magnitudes in estimatic seismic hazard O. Scotti, C. Clement and F. Bonilla The 4th International Workshop on Statistical Seismology 9-13 January 2006 Japan nstitut de Radioprotection et Sûreté Nucléaire, Bureau d'Evaluation du Risque Sismique BP 17 - 92262 FONTENAY-AUX-ROSES – FRANCE Consider, for example, the seismological and tectonic setting of the Durance fault system in SE France Length Depth 60 - 90km Slip motion 5-10 km reverse to strike-slip Slip rate (mm/yr) 5 Segments 0.07 (GPS) to 0.2 (geological) Seismicity ~10 km long (geophys./cartog.) 1999-2004 Location 1 M>6 9000-25000 yrs old Segment 3 4 M~5 in the last 400 yrs Segment 3 < 10 2<M<3 in 5 yrs Mostly on segments 2,3,5 IRSN/BERSSIN 1000 years permanent GPS Seismic stations Choosing the appropriate earthquake recurrence model: GR,YC and/or CE? 1E-2 Input data: Geometry of segment 3 (M~6 vertical fault), slip rates (v) and a regional b-value 1E-3 M0 μ Si vi λi Mmin f(m)M0(m)dm Mmax Mo(m)=10(cM+d) (S = segment surface; m =rigidity modulus; i=segment 3; M=magnitude) and Seismic moment: the activity rate (l) can be estimated by distributing the moment rate following the GR, YC and CE recurrence models. For acceptable depth and slip rates hypothesis, resulting return period estimates vary by 50 to 80% a given recurrence model, Uncertainty in the choice of the recurrence model, however, reaches 100%. Annual probability Given Seismic moment rate: GR CE YC 1E-4 1E-5 truncated exponential (GR) 1E-6 characteristic (YC) Which model is more compatible 100000 with the seismicity catalogue? maximum magnitude (CE) 1E-7 5 10000 CE GR YC 5,5 6 Magnitude 6,5 7 Less than 10 events of 2<M<3 have occured in 5 yrs along segment 3, 2 and 5; 4 M~5 historical events and one M~6 paleoearthquake on segment 3; segment 1 and 4 appear to be “inactive”. Although the seismicity record may not be sufficiently long to capture the steady-state 1000 behaviour of the entire fault system, the seismic behaviour of segment 3 appears more compatible with a GR-type recurrence model. Assuming the entire fault is active, should we 100 Moment rate (Nm/yr) fault depth (km) slip rate (mm/yr) 1,05E+14 2,09E+14 1,49E+14 5 10 5 0,07 2,99E+14 2,99E+14 10 5 0,1 5,98E+14 10 0,2 apply the GR model to the other segments as well? Is this behaviour typical of low strain-rate faults? Alternatively, is the absence of seismicity evidence of their CE-character? Are there parameters other than seismicity that can be considered as indicative of each recurrence model? Impact of recurrence models and on seismic hazard estimations? Conclusions Example of hazard curves for segment 3. Hazard is calculated for a 10 km distant site using the attenuation relationship of Abrahamson and Silva (1997), three recurrence models with Max=6.5 and M 0 = 2,09e+14 Nm/yr. 1E-2 GR CE Annual exceedance 1E-3 YC Uncertainty in recurrence models, as well as in the estimation of “observed” 1E-4 activity rates combined with 1E-5 ground motion variability lead to great differences in hazard estimates and 1E-6 in the scenarii that contribute the most to s 1E-7 0 50 100 150 200 Peak Ground Acceleration (cm/sec2) the hazard. Using the Durance fault as an example we showed that : 1. Using catalogues to estimate return periods of earthquakes in regions of moderate–to-low seismicity is delicate and subjected to the “hazard” of the catalogue window. 2. On the other hand, return periods of intermediate magnitude events estimated through slip rates and fault geometries depend strongly on the choice of the recurrence model. 3. Segment 3 appears to be more GR-like, but what can be said of the other segments? The GR model is the least commonly used recurrence model in seismic hazard assesment studies. Why? How to discriminate among the different seismicity models for Durance-type faults? Which are the key parameters? Deagregation of hazard for a given target level It is important to provide answers to these questions because: GR CE YC 3. Intermediate magnitude events contribute to the hazard down to very low probabilities due to the strong contribution of high epsilons. 4. Scenarios resulting from GR-models are very different than those resulting from YC or CE recurrence models. Sismicité instrumenta le sur la FMD Benedicto Dcalae de , la base du 0.08Miocene Durance 0.14 1996 depuis 20 (v) (modified ma ) Dcalae verticale Hippolyte de la base Valavoi & du re (NE 0.1 (v) Dumont, chevauxhem Sisteron ent de la ) 2000 nappe de Dine (6ma) Cushin et 0.05Dcalaes de Manosqu al., 0.22 cours deau e 1997 (h) Etude omorpholo ique, modlisation Manosqu Baroux, 0.11 e de la 2000 (v) dformation fold de lanticlinal de Manosque ranche de alosismicit 0.07Ghafiri, Manosqu 0.13 1995 Valvranne, e (v) sisme entre Localisati ons 3D 19992004 . 2. Potentiel sismique de la FMD 1. Paléosismologie 2. Dimension de la faille a) Segmentatio n b) Géométrie 3D c) Enracinement ? 3. Vitesse de la faille Représentation simplifiée du système de failles FMD – support de modélisation - quantification 2. Potentiel sismique de la FMD Exemples d’études permettant de quantifier la vitesse de la faille Auteur 1. Paléosismologie 2. Dimension de la faille a) Segmentation b) Géométrie 3D c) Enracinement ? 3. Vitesse de la faille Marqueur/mét Lieu Vitess hode e mm/a Benedicto, 1996 (modified) Décalage de la base du Miocene depuis 20 ma Durance 0.080.14 (v) Hippolyte & Dumont, 2000 Décalage verticale de la base du chevauxhement de la nappe de Digne (6ma) Valavoir e (NE Sisteron) 0.1 (v) Cushing et al., 1997 Décalages de cours d’eau Manosq ue 0.050.22 (h) Baroux, 2000 Etude géomorphologique, modélisation de la déformation de l’anticlinal de Manosque Manosq ue fold 0.11 (v) Ghafiri, 1995 Tranchée de Paléosismicité à Valvéranne, séisme entre 25 et 9 ka Manosq ue 0.070.13 (v) Siame et al. 2001 Datation de terrasse en utilisant les isotopes cosmogéniques Manosq ue 0,02 – 0,11 (v) GPS permanent depuis 4 ans StMichell’O. Ginasser vis 0,05 (h) Nockey,2005 CONCLUSION Sismicitrguli re modre M ~ 5 5,5 Vitesse de glissement par diffrentes approches de lordre de 1/10e mm/an Faille segmente (10- 20 km) Magnitude >= 6,5 Conditionne par la profondeur dinitiation de la rupture Priode de retour des sismes majeurs de lordre de 10000 ans. ! On ne connat pas le comportement des failles lentes. Si toute la faille casse, la magnitude peut atteindre 7. Priode de retour plus longue Let us consider, for example, the Durance fault system in SE France: Seismological and tectonic setting Length Seismogenic depth (km) Slip motion Slip rate (mm/yr) Number of Segments 60 km Geologic cross-section: 5 km ? Geological:reverse GPS: 0.07 5 geophysical lines Seismicity: 5-10 km Instrumental: s/s Geological: 0.2 ~10 km long 1999-2004 NW Système de failles de la Durance A Pli de Manosque 1 0 km 1 B Bassin de Valensole Mio-Pliocène Mioc ène inf. Oligocène Crétacé A 4 Trias Socle varisque 6 B 1 3 Jurassique 4 5 0 km 2 2 3 SE 1 5 6 Adapted from Benedicto 1996 PP IRSN/BERSSIN Seismicity M>6: 1 permanent GPS M~5: 4 From Ghafiri, 1995 Segment 3 based on paleo Seismic stations P ~25000 years old M>6 event Location Segment 3 in last 400 yrs 1000 years M<3: less than 10 in 5 yrs All segments
© Copyright 2026 Paperzz