Welcome any forms of ideas and advices! 0917-3272388 [email protected] Chapter 2 mathematical models of control systems 1.what is mathematical models of control systems? Used to describe the relation among input,output and internal variables. Two kinds:static model and dynamic model 2. mathematical models: time domain:differential equation complex domain:transfer function different forms frequency domain: frequency transfer function 3.how to construct mathematical models: analysis:analyze wok principles experiment:system identification. in fact,only small part system mathematical models can be gotten by analysis。 2.1 construct time第一节 domain differential equation 线性系统的微分方程 Assume loop current to be i (t) (internal variable),every component is linear,and load effects is not considered. According to Kichoof rule,we get from(2-2),we can solve the relation between i(t) and uo(t) : i(t) =Cdu0/dt substitute into(2-1),and input ui(t), output uo(t), the differential equation is following: d 2u0 (t ) du0 (t ) L ( ) ( RC ) RC u0 (t ) ui (t ) 2 R dt dt Assuming T1=L/R,T2=RC which are the time constant in this circuit.thus the differential equation is Summary: a differential equation is a description among various variables.the reference command is the input,the variables to controlled is the output。 1、列写线性系统微分方程的主要过程和举例: (1)define input and output; (2)analyze work principle,write differential equation . (3)eliminate internal variables. ( 4 ) write input in the right side,output in the left in decreasing power. Assume the body mass to be m,the displacement 、velocity and acceleration relative to the initial position x、dx/dt and d2x/dt2。Spring force to m is k·x,and in the reverse direction to the displacement; the force to m acceleration is m · d2x/dt2 , and in the reverse direction to the displacement;damped force is f · dx/dt , and in the reverse direction to the displacement 。According to Newton second rule,we get: Fig 2-3 shows armature control DC motor, input– armature voltageUa(t) (v),output—motor revolution ωm(t) (rad/s),write its differential equ. 。In fig. Ra(Ω)、La(H) are armuture loop resistance and inductance, Mc(N·M) is total load torque。If=const。 £« if La £« Ra ia Ua Wm Ea SM ¸º Jm, f m ÔØ ͼ2- 3 µçÊà¿Ø ÖÆ Ö±Á÷µç¶¯»úÔ-Àíͼ armature control DC motor is to transform electrical energy into mechanical energy. armature Ua(t) → armature ia(t) →electrical-magnetic torque Mm(t) →force load move。Its motion equ. Includes: • armature loop voltage equilibrium equ. • electrical-magnetic torque equ. • torque equilibrium equ in motor axis. •armature loop voltage equilibrium equ. : dia (t ) U a (t ) La Ra ia (t ) Ea dt ① Ea---armature electromotive force whose direction is opposite to Ua(t) ,that is Ea=Ceωm(t) ② Ce-coefficient(v/rad/s) •electrical-magnetic torque equ. : M m (t ) Cmia (t ) Cm ③ -coefficient (N·m/A) • torque equilibrium equ in motor axis. d (t ) M m (t ) J m m f m m (t ) M m (t ) M c (t ) dt Jm-revolving initia kg·m· fm-friction efficient(N·m/rad/s) ④ ③、④ solve ia(t),substitute : d 2 m (t ) d m (t ) La J m ( La f m Ra J m ) ( Ra f m C m C e ) m (t ) dt dt dM c (t ) C mU a (t ) La Ra M c (t ) ⑤ dt If La is small, Equ. ⑤ can be reduced as dm (t ) Tm m (t ) K1U a (t ) K 2 M c (t ) dt Tm Ra J m Ra f m C m Ce Cm K1 Ra f m Cm Ce ⑥ Motor time constant(s) Ra K2 Raf m Cm Ce If Ra and Jm are all small,equ. ⑥ can reduced to Ce m (t ) U a (t ) ⑦ m (t ) is proportional to U a (t ) ,the motor can be used to a generator to measure revolution. The system is the most basic differential equation. chief procedures : ① define system's input and output . ② divide system into some parts,from the input, according to signal sequence,list each part differential equ.。 ③write outs differential equ.by cancelling middle variables 。 2.2 some other examples Exam.2-1 R1 • fig.2-1 is a passive U1 network of RC。 assume input---U1(t), output---U2(t),give it’s differential equ. C1 ͼ2- 1 R2 C2 RC×é³ÉµÄËÄ ¶ËÍøÂç U2 Assume loop current i1、i2,from Kichihuff rules: U 1 R1i1 U c1 U c1 1 (i1 i2 )dt C1 U c1 R2 i2 U c 2 U c2 1 i2 dt C2 U 2 Uc2 由④、⑤得 ① ② ③ i1 U1 R1 C1 i2 R2 C2 ④ ⑤ ͼ2- 1 RC×é³ÉµÄËÄ ¶ËÍøÂç U2 dU c 2 dU 2 i2 C 2 C2 dt dt From ② we get dU c1 dU c1 dU 2 i1 C1 i2 C1 C2 dt dt dt Substitute i1、i2 to ①、③,we get U 1 R1 R2 i2 U c 2 dU c1 dU 2 dU 2 R1 (C1 C2 ) R2 C2 U2 dt dt dt R1[C1 dU 2 dU 2 d ( R2 i2 U 2 ) C2 ] R2 C2 U2 dt dt dt d 2U 2 dU 2 dU 2 dU 2 R1C1 R2 C 2 R1C1 R1C 2 R2 C 2 U2 2 dt dt dt dt d 2U 2 dU 2 R1 R2 C1C 2 ( R1C1 R1C 2 R2 C 2 ) U 2 U1 2 dt dt It is a second-order differential equ. 。 Exam. 2-2 have a try to illustrate two system in fig.2-2(a)、 (b) to be similar system (same math model)。 ͼ2- 2 »úµçÏàËÆ ϵͳ R2 B1 B2 K1 Xr C2 R1 Ur C1 K2 Xc ( a) »úеϵͳ ( b) µçÆø ϵͳ Uc Mechanical system (a): input--Xr,output --Xc, from force equilibrium: • Electrical system (b), from current and voltrage equilibrium : R2 i K 1 (X r - X c ) B1 (X r - X c ) K 2 X c B 2 X c ( B1 B2 ) X c ( K1 K 2 ) X c B1 X r K1 X r 1 1 idt R i idt U r 1 C2 C1 C1U c1 C 2U c2 ② U c R1i U c1 ③ (R 1 R2 )i U c1 U c2 U r ④ From ②、③、④ we get C1 )Uc C2 i C1 R1 R 2 (1 ) R1 C2 Ur (1 Substitute into ①,differentiate ① we get 1 1 1 ( R1 R2 ) U c ( )U c R1 U r U r C1 C 2 C1 force-voltage similarity Electrical system resistance R1 mechanical ramp system B1 resistance R2 ramp B2 elastic elastic coefficient coefficient K1 K2 1/C1 1/C2 • mechanical system (a)Electrical system(b)have same math model,so called similar system。( Electrical system is equivalent to mechanical system ) • similar system shows similar relation among different physical value。 • We may utilize simple system to study complex system In following system,there are two inputs(ua and ML),The output is ωc.give its mathematical model. R2 ug R3 R1 R1 R4 -k1 u1 ω – u2 功放 ua -k2 kf k3 cf SM n ωc Ce, cm, J,f, ML R2 amplifier1 : u1 k1 (u g u f ) (u g u f ) R1 u1 du1 amplifier 2 : u2 R4 ( C ) R3 dt gears : c / n techogenerator : u f k f c Finally,we can get the relation between ug and ωc. dug d 2 d T1 2 T2 k1 ' k2 ' ug kc ' M c dt dt dt Solve differential equation: Exam. in exam.2-1,assume when U 1(t ) (t ) R1 20K, R2 3K, C1 0.1F , C2 20F and the initial value is 0,solve From exam. 2-1 R1 U1 C1 ͼ2- 1 R2 C2 RC×é³ÉµÄËÄ ¶ËÍøÂç U2 U 2 (t ) d 2U 2 dU 2 R1 R2 C1C 2 ( R1C1 R1C 2 R2 C 2 ) U 2 U1 2 dt dt R1 R2 C1C 2 S 2U 2 ( s ) ( R1C1 R1C 2 R2 C 2 ) SU 2 ( s) U 2 ( s) U 1 ( s ) U 2 ( s) 1 S[ R1 R2C1C2 S 2 ( R1C1 R1C2 R2C2 ) S 1] 1 S (1.2 10 4 S 2 0.462S 1) 10 4 a b c 1.2S ( S 2.166)( S 3847.85) S S 2.166 S 3847.85 a U 2 ( s) S s 0 1 10 4 c 1.2S ( S 2.166) 10 4 b 1.2S ( S 3847.85) s 3847.85 s 2.166 1 S 1.000043 5.63 10 4 U 2 (t ) 1 1.00043e 2.166t 5.63 10 4 e 3847.85t Exam. in exam.2-1,assume L 1H , C 1F , R 1 when U1(t)=I(t), and the initial value is uc(0)=0.1V,i(0)=0.1A, solve u0 From exam. 2-1 LC[ s 2U 2 ( s ) su2 (0) u2 (0)] RC [ sU 2 ( s ) u2 (0)] U 2 ( s ) U1 ( s ) ' du2 du2 i ( 0) ' i i iC , u2 (0) C , C , | t 0 dt dt C U ( s) 0.1s 0.2 1 0.1s 0.2 U 2 ( s) 2 1 2 s s 1 s s 1 s( s 2 s 1) s 2 s 1 1 1 1 0 .3 s 0 . 1 ( s ) 1 s 1 0.1s 0.2 1 2 2 2 2 [ 2 ] 2 [ ] s s s 1 s s 1 s 1 3 1 3 ( s )2 ( )2 ( s )2 ( )2 2 2 2 2 1 3 0 .3 2 3 1 1 s 0.1( s ) 1 2 2 3 3 2 2 2 s 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2 (s ) ( ) (s ) ( ) (s ) ( ) (s ) ( ) 2 2 2 2 2 2 2 2 A s 1 1 1 1 L ( ) I, L ( 2 ) sin At, L ( 2 ) cos At, 2 2 s s A s A A s t 1 t L1[ ] e sin At , L [ ] e cos At 2 2 2 2 (s ) A (s ) A u2 (t ) 1 e 1 1.15e 1 t 2 1 t 2 1 1 t t 3 1 12 t 3 3 0 . 3 3 cos t e sin t 0.1e 2 cos t e 2 sin t 2 2 2 2 3 3 1 t 3 3 sin( t 120 ) 0.2e 2 sin( t 30 ) 2 2 Zero state response Zero input response chief procedures : ① consider initial value,transfer differential equ.into algebraic equ. in sdomain . ②solve output in s-domain. ③ transfer inversely the equ. in s-domain into the form in the time-domain .
© Copyright 2026 Paperzz