Weighting functions (Box AMFs) for Limb measurements of stratospheric trace species using 3D Monte Carlo RTM Christoph v. Friedeburg, A. Butz, F. Weidner, S. Sanghavi, K. Pfeilsticker, U. Platt and T. Wagner •Box AMF and profile retrieval •3D Monte Carlo RTM „AMFTRAC“ •AMF investigation example •Balloon-borne limb geometry •Outlook [email protected] IUP University of Heidelberg Box AMF and profile retrieval •SCD and AMF do not tell us where along the light path the trace gas is located •But this is what we’d like to know. •Discretization of atmosphere into boxes i=1,..,n •SCD box-wise •AMF box-wise: A(i) •Weighting Function •S(i) = c(i) * d(i) •V(i) = c(i) * v(i) •S(i) = V(i) * A(i) Altd [m] c(i),σ(c,i) d(i) v(i) •SCD = Σ S(i) •SCD = Σ c(i) * v(i)* A (i) •=> into equation system C [cm-3] Box AMF and profile retrieval Box AMF defined as: •sum over all intensity having traversed the layer/cell •divided by total intensity received by detector Altd [m] c(i),σ(c,i) d(i) •divided by layer‘s/cell‘s v(i) vertical extension C [cm-3] Box AMF and profile retrieval •Multiple scattering increases retrieval difficulty since •geometrical approximations/estimations not valid and misleading •AMF and A(i) must be modelled with RTM •Behaviour of A(i) with relevant parameters must be investigated & understood θ ε 3D Monte Carlo RTM „AMFTRAC“ (working title) features e.g. v. Friedeburg EGS 2002 •spherical 3D geometry •supports arbitrary platform positions and viewing geometries ai •full MS by Rayleigh, aerosols, clouds, albedo •refraction, polarization and solar CLD (limb) principle vv,i di •backward Monte Carlo technique •N photon launched out of telescope •random numbers, scatt. centre ND & c/s govern light path => establish path sun->detector •molecular absorption calculated analytically •AMF computed from modelled av. intensity with/without absorber detector 3D Monte Carlo RTM „AMFTRAC“ output •SCDs, SODs, AMFs, Box AMFs (A(i)) for a specified set of boxes/layers •abs. radiances •geometrical path length, traversed air column, O4 •number of Rayleigh, Mie and albedo scattering events •altitudes of first and last scattering event, distance detector-last scattering event •entry angle of light into atmosphere, first scattering angle •Solar CLD effect parameter, polarization (under testing) •parameters as intensity weighted means •errors as intensity weighted std dev. 3D Monte Carlo RTM „AMFTRAC“ -2 -1 -1 Radiance [Wcm nm sr ] radiance validation 7.0x10 -8 6.0x10 -8 5.0x10 -8 4.0x10 -8 3.0x10 -8 2.0x10 -8 1.0x10 -8 Radiance 22.2.2003 roof IUP Heidelberg from 5° around zenith measured 420 nm modelled 420 nm measured 350 nm modelled 350 nm 0.0 60 65 70 75 80 85 90 SZA [°] •In addition to validation against AMF by other RTMs: •validation against measurements with calibrated spectro-radiometer AMF investigation example •λ = 352 nm ground based MAX DOAS scenario •atmosphere: 1 km vertical discret., 0-70 km •ε = 2°, 5°, 10°, 20°, 45°, 90°; 5 •azimuth α to sun 90°, aperture 0.1° 4 •albedo values 0%, 30%, 50%, 70% •BrO near ground: 3 profiles 3 Altd [km] •standard aerosol scenario P1 P2 P3 2 1 0 0.0 8 2.0x10 8 4.0x10 8 6.0x10 8 8.0x10 -3 [BrO] [cm ] investigation of total AMFs in relation to scattering parameters 9 1.0x10 AMF investigation example Albedo 0 % P1 P2 P3 12 AMF [] 10 8 10 P3:? 4 8 6 4 2 2 0 0 20 14 40 60 Elev. [°] 80 0 100 0 10 8 6 40 60 Elev. [°] 80 100 Albedo 70 % P1 P2 P3 12 AMF [] 10 20 14 Albedo 50 % P1 P2 P3 12 AMF [] Albedo 30 % P1 P2 P3 12 P1,P2: AMF highest for 2° elev. 6 14 BrO AMF AMF [] 14 8 6 4 4 2 2 0 0 0 20 40 60 Elev. [°] 80 100 0 20 40 60 Elev. [°] 80 100 Results: AMF AMF->f(Albedo), O4 AMF 6 5.5 AMF P3 Albedo 0% 30 % 50 % 70 % 4.5 AMF [] 4.0 3.5 O4 AMF Albedo 0% 30 % 50 % 70 % 5 AMF [] 5.0 3.0 2.5 4 3 2.0 1.5 0 20 40 60 Elev. [°] 80 2 1000 20 40 60 80 Elev. [°] •P3: AMF increases with albedo, but behaviour pertains: •AMF for smallest elevations not highest •same effect for O4 - looks like P1 & 2, but higher proportion (~3/4) located above 1 km. 100 AMF investigation example Number of scatterings 3.0 O N of Rayleigh scatterings Albedo 0% 30 % 50 % 70 % O N of Aerosol scatterings Albedo 0% 30 % 50 % 70 % 2.5 Number 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 Elev. [°] •Single scattering approx. („1/sin(τ)“, „1/cos(θ)“) heavily limited •similar investigations for higher wavelengths useful AMF investigation example Last Scattering Altitude LSA LSA [m] 10 4 10 3 10 2 Last Scattering Altitude 0% 30 % 50 % 70 % LSA 0 20 40 60 80 Elev. [°] •LSA for small elevations between 300 and 400 m =>decreases light path within lowest boxes as comp. to 1/sin(ε) 100 AMF investigation example LSA -> AMF(i) 10 Altd(i) [km] 8 LSA 2 ° Elev. 10 ° Elev. error ~5% 6 4 2 0 2 4 6 8 AMF(i) 10 •LSA for small elevations < 1 km •A(i) for boxes above 1 km decrease for low elevations 12 14 Balloon-borne limb geometry •relevant to SCIAVAL balloon operations •SCIAMACHY limb mode SZA (at altd 0 below instrument position): 70° atmosph. discret. 1 km Variation of •altitude •elevation angle •azimuth angle •aperture angle •cloud cover Balloon-borne limb geometry Error investigation influence of multiple scattering on the way to & within the layer incl. albedo, clouds BOX AMF rel error Box AMF error’s absolute value depends on: Number of paths layer’s/grid cell’s shape & extension layer’s/grid cell’s distances from the instrument 0.14 0-1 km 9-10 km 10-11 km 19-20 km 29-30 km 39-40 km 49-50 km 59-60 km 69-70 km 0.12 0.10 0.08 0.06 0.04 0.02 0.00 2000 PU was used for the calculations to follow. 0 2000 4000 6000 PU modelled 8000 10000 Balloon-borne limb geometry Altitude variation Line Of Sight Parameters: -4° elevation, 90° azimuth, 0.5° 50 aperture, 30% albedo 45 above instrument: Box AMF governed by SZA below altitude of highest Box AMF: fall-off depends on aperture (see aperture var.) floating altd 10 km 15 km 20 km 25 km 30 km 35 km 40 km 35 Altd [km] below instrument: Box AMF increases due to LOS geometry, at altd<25 km LOS hits ground 40 30 25 20 15 10 5 0 0 5 10 15 20 25 Box AMF near ground AMFs dependent on multiple scattering 30 35 40 45 50 Balloon-borne limb geometry Altitude variation: scattering parameters LSD LSA (last sctrg distance) 300000 1.70 200000 1.65 LSA complies well with altitude of highest Box AMF 100000 1.60 1.55 400000 LSD [m] 1.75 NRS Last Scattering Distance (LSD) affected by MS 1.80 NRS 1.50 1.45 1.40 1.35 10000 15000 20000 25000 30000 35000 40000 Altd [km] 25000 20000 15000 10000 5000 0 LSA [m] NRS (MS importance) decreases with increasing altitude Balloon-borne limb geometry LOS Parameters: 90° azimuth, 0.5° aperture, altitudes 10 and 30 km Elevation variation 50 strong variation in sensitivity for tangent altitude fltg altd 30 km -4° elev. -2° elev. 0° elev. +2° elev. +4° elev. fltg altd 10 km -4° elev. -2° elev. 0° elev. +2° elev. +4° elev. 45 40 tangent altitude moves upwards important for limb scanning geometry - total Box AMF as weighted average below tangent altitude Box AMF largely unaffected Altd [km] 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 Box AMF 60 80 100 Balloon-borne limb geometry LOS Parameters: 90° azimuth, 0.5° aperture, altitudes 10 and 30 km Elevation variation 50 strong variation in sensitivity for tangent altitude fltg altd 30 km -4° elev. -2° elev. 0° elev. +2° elev. +4° elev. fltg altd 10 km -4° elev. -2° elev. 0° elev. +2° elev. +4° elev. 45 40 tangent altitude moves upwards important for limb scanning geometry - total Box AMF as weighted average below tangent altitude Box AMF largely unaffected Altd [km] 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 Box AMF 60 80 100 Balloon-borne limb geometry Azimuth variation LOS Parameters: -4° elevation, 90° azimuth, 0.5° aperture, altitudes 10 and 30 km 40 fltg altd 30 km 0° az 20° az 45° az 90° az 180° az fltg altd 10 km 0° az 20° az 45° az 90° az 180° az 35 impact small as compared to e.g. elevation influence 25 Altd [km] for az. 90° Box-AMF largest in tangent alt, above for az 180° “sun beam” has to travel longer distance to reach LOS intersection point 30 20 15 10 5 0 0 15 20 Box AMF 25 30 35 Balloon-borne limb geometry Aperture variation LOS Parameters: -4° elevation, 90° azimuth, 0.5° aperture, altitudes 10 km for ap. angles <1° effect small but: fltg altd 10 km ap 0.2° ap 0.3° ap 0.4° ap 0.5° ap 1° ap 5° 25 20 Altd [km] fall-off below tangent altd influenced by aperture for geometrical reasons 30 15 10 5 0 depends on chosen discretization changing elevation (scanning) equals a higher effective ap. angle 0 2 4 Box AMF 16 18 20 Balloon-borne limb geometry Cloud cover variation LOS Parameters: -4° elevation, 90° azimuth, 0.5° aperture, altitudes 10 and 30 km multiple layers, vertical cloud surfaces easy to implement accuracy depends on cloud effects impact on measurement cloud layer altitude 5 km albedo 80%, transmission zero 30 20 Altd [km] cloud cover: 1. grid cell filled with Mie particles - high CPU time 2. layer with altitude, coverage, albedo, transmission 12 10 8 altd 30 km cloud cov 1 altd 10 km cloud cov 1 altd 10 km cloud cov 0.5 altd 10 km cloud cov 0.2 altd 10 km cloud cov 0 6 4 2 0 0 5 10 15 20 Box AMF 25 30 Balloon-borne limb geometry Cloud cover variation: O4, radiance -10 9.5x10 -11 9.0x10 -11 8.5x10 -11 8.0x10 -11 7.5x10 -11 6.0 Rad 5.0 4.5 4.0 3.5 7.0x10 -11 0.0 0.2 0.4 0.6 Cloud cover [] 0.8 3.0 1.0 O4 AMF [] -1 5.5 -2 radiance: smooth increase with cloud cover O4: decrease due to lower troposphere shielding 1.0x10 O4AMF radiance [W cm nm sr ] LOS Parameters: -4° elevation, 90° azimuth, 0.5° aperture, altitude 10 km Conclusion/Outlook •AMFTRAC capable of handling limb geometry in relevant LOS parameters •output parameters help understanding AMF‘s and A(i)‘s behaviour quantitatively •Investigation of use of polarization and CLD effects •Implementation of realistic clouds and aerosols •Inclusion of basic LES-based retrieval module MAX-DOAS, AMF and profile retrieval •DOAS: Differential Optical Absorption Spectroscopy •Measured quantity: optical density τ of trace gases investigated •integrated over light path ( ) c( s )ds •σ(λ) absorption cross section c(s) concentration •along “slant” light path : Slant Column Density SCD = τ(λ) / σ(λ) •along vertical path from location: Vertical Column Density VCD •related by Air Mass Factor AMF •VCD=SCD / AMF •Measure of sensitivity for the trace gas profile MAX-DOAS, AMF and profile retrieval •Solar light enters atmosphere on straight path •gets scattered by e.g. Rayleigh, Mie, albedo •enters telescope => AMFs depend on: •Solar Zenith Angle (SZA θ) and Solar Azimuth Angle •scattering centre number density, cross section, phase fct. •elevation ε, aperture angle,... θ ε Investigation: Influence of aerosol how to retrieve aerosol data - radiance? 1.6x10 -2 -1 radiance [Wcm sr ] -11 1.4x10 -11 1.2x10 -11 1.0x10 -12 8.0x10 -12 6.0x10 1.0 rel. radiance (Elev. 90° = 1) no aerosols -1 aerosols 0.03 km ext coeff 0 km -1 aerosols 0.05 km ext coeff 0 km -11 0.9 0.8 0.7 0.6 0.5 0.4 no aerosols -1 aerosols 0.03 km ext coeff 0 km -1 aerosols 0.05 km ext coeff 0 km 0.3 0.2 0.1 0.0 0 20 40 60 Elev.[°] 80 100 0 20 40 60 Elev.[°] 80 100 •radiance series R(ε) : Spectrographs not usually absolutely calibrated •dR/dε not significantly different to allow for concl. on aerosol Investigation: Influence of aerosol LSA aerosols Albedo 10 % 30 % 50 % 70 % no aerosols Albedo 10 % 30 % 50 % 70 % 1000 aerosols Albedo 10 % 30 % 50 % 70 % no aerosols Albedo 10 % 30 % 50 % 70 % LSA [°] LSA [°] 10000 1000 100 0 20 40 60 80 100 5 Elev. [°] 10 Elev. [°] •without aerosol impact effect present, but much weaker •aerosol scenario largely governs AMF -> f(ε) •use of std. scen. Risky => need hard data on local aerosol Investigation: Influence of aerosol albedo in many cases known; aerosol load not. investigation on AMF->f(aerosol) for albedo 30% 18 16 aerosols P1 P2 P3 no aerosols P1 P2 P3 14 AMF [] 12 10 8 6 4 2 0 0 20 40 60 Elev. [°] 80 100 Investigation: Influence of aerosol how to retrieve aerosol data - O4? 6.0 no aerosols -1 aerosols 0.03 km ext coeff 0 km -1 aerosols 0.05 km ext coeff 0 km 5.5 O4 AMF 5.0 4.5 4.0 3.5 3.0 2.5 2.0 0 20 40 60 Elev. [°] 80 100 •But O4-AMF->f(ε) signif.tly different for large aerosol ld. differences •parametrize the O4-AMF(ε) behaviour as f(aerosol ext. coeff.) => scale aerosol ext. coeff. •uncertainties: effect of phase function ? MAX model scenario •aerosols: •continental scenario (F. Hendrick, IASB, pers. comm.) •ext. coeff. Value for 0 km varied for investigation 1.6 60 Altd [km] 50 40 Extinct. coeff Type1 Type2 Type3 30 20 Phase Fct. Value (a.u.) 70 10 0 1E-7 1.4 1.2 Phase function Type 1 Type 2 Type 3 1.0 0.8 0.6 0.4 0.2 1E-6 1E-5 1E-4 -1 Ext. Coeff. [km ] 1E-3 0.01 0.0 0 20 40 60 80 100 120 140 160 180 [°] Monte Carlo Approach for MS • calculation of distance d to next voxel boundary 1. extinctors (Rayleigh, Mie particles) yield probability p(x) for free passage up to x • p(d)=p0 prob. of unscattered passage along d • map random number p‘ to x by the inverse of function p(x): • determines location of scattering event [0,d] • use a second random number to decide between scatterers according to the relative probabilities d p‘ 1 p0 X d
© Copyright 2026 Paperzz