PHY 745 Group Theory 11-11:50 AM MWF Olin 102 Plan for Lecture 36: 1. Summary of what we learned about linear Lie groups, especially SO(3) and SU(2), their direct products and Clebsch-Gordan coefficients 2. Review of topics in Group Theory 3. Course evaluation Ref. J. F. Cornwell, Group Theory in Physics, Vol I and II, Academic Press (1984) 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 1 Jason and Ahmad Taylor 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 2 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 3 SO(3) – all continuous linear transformations in 3dimensional space which preserve the length of coordinate vectors -- R (w , nˆ ) SU(2) – all 2x2 unitary matrices u(w , nˆ ) z w n̂ y x 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 4 z w n̂ V V’ y x cos w n12 1 cos w n3 sin w n1n2 1 cos w n2 sin w n1n3 1 cos w R (w , nˆ ) n3 sin w n1n2 1 cos w cos w n22 1 cos w n1 sin w n2 n3 1 cos w 2 n2 sin w n1n3 1 cos w n1 sin w n2 n3 1 cos w cos w n 3 1 cos w cos w sin w 0 For example: R (w , zˆ ) = sin w cos w 0 0 0 1 4/17/2017 w PHY 745 Spring 2017 -- Lecture 34 5 z w V V’ n̂ y x cos w2 in3 sin w2 u(w , nˆ ) w in n sin 2 1 2 in1 n2 sin w2 w w cos 2 in3 sin 2 eiw / 2 For example: u(w , zˆ ) = 0 4/17/2017 0 iw / 2 e PHY 745 Spring 2017 -- Lecture 34 2 w 2 6 Class structure of these groups cos w n12 1 cos w n3 sin w n1n2 1 cos w n2 sin w n1n3 1 cos w R (w , nˆ ) n3 sin w n1n2 1 cos w cos w n22 1 cos w n1 sin w n2 n3 1 cos w 2 n2 sin w n1n3 1 cos w n1 sin w n2 n3 1 cos w cos w n 3 1 cos w Tr R (w , nˆ ) 3cos w n12 n22 n32 1 cos w 1 2cos w depends on w and not on nˆ cos w2 in3 sin w2 in1 n2 sin w2 u(w , nˆ ) w w w i n n sin cos in sin 3 2 2 2 1 2 Tr u(w , nˆ ) 2cos w2 depends on w and not on nˆ 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 7 “Generators” of the groups cos w n12 1 cos w n3 sin w n1n2 1 cos w R (w , nˆ ) n3 sin w n1n2 1 cos w cos w n22 1 cos w n2 sin w n1n3 1 cos w n1 sin w n2 n3 1 cos w 0 lim R (w , nˆ ) 1 a n1a1 n2a 2 n3a3 n3 w 0 w n 2 n3 0 n1 n2 n1 0 cos w2 in3 sin w2 in1 n2 sin w2 u(w , nˆ ) w w w in n sin cos in sin 3 2 2 2 1 2 lim u(w , nˆ ) 1 a n1a1 n2a 2 n3a3 w 0 w 4/17/2017 n2 sin w n1n3 1 cos w n1 sin w n2 n3 1 cos w cos w n32 1 cos w PHY 745 Spring 2017 -- Lecture 34 1 in3 2 in1 n2 in1 n2 in3 8 Irreducible representations of SO(3) and SU(2) -- focusing on SU(2) Consider the generator matrices lim u(w , nˆ ) 1 1 in3 a n1a1 n2a 2 n3a3 w 0 w 2 in1 n2 1 0 i 1 0 1 1i 0 a1 a2 a3 2 i 0 2 1 0 2 0 i Commutation relations: [a1 , a 2 ]= a3 in1 n2 in3 In order to determine irreducible representations of SU(2), determine eigenstates associated with generators. 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 9 Eigenfunctions associated with generator functions of SU(2) 1 0 i 1 0 1 a1 a2 a3 2 i 0 2 1 0 Commutation relations: [a1 , a 2 ]= a3 1i 0 2 0 i It is convenient to map these generators into Hermitian matrices A p ia p = 12 σ p 1 0 1 1 0 i A1 A2 2 1 0 2 i 0 Commutation relations: [A1 , A 2 ]=iA 3 1 1 0 A3 2 0 1 3 1 0 Define A =A +A A = 4 0 1 0 0 0 1 A A1 iA 2 A A1 iA 2 1 0 0 0 2 4/17/2017 2 1 2 2 2 3 PHY 745 Spring 2017 -- Lecture 34 10 Eigenfunctions associated with generator functions of SU(2) Relationships between operators: [A 2 , A p ] 0 A A A 2 A 32 A 3 A A A A A3 2 2 3 Note that this "algebra" is identical to that of the total angular momentum operators J x A1 J y A2 J z A3 Leap to eigenstates of J 2 and J z : A 2 jm jm j ( j 1) jm A 3 jm m jm 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 11 Eigenfunctions associated with generator functions of SU(2) Additional relationships: A jm j m j m 1 j m 1 A jm j m j m 1 j m 1 1/ 2 1/ 2 Mapping the representations back to the original generators a p iA p of SU(2): j Dmm (a p ) jm a p jm ' j0 j 1 2 4/17/2017 j Dmm (a p ) 0 j mm D 1 0 i (a1 ) 2 i 0 j mm D 1 0 1 a2 2 1 0 PHY 745 Spring 2017 -- Lecture 34 j mm D 1i 0 a3 2 0 i 12 Comment of analogous equations for SO(3) -Eigenfunctions associated with generator functions of SO(3) cos w n12 1 cos w n3 sin w n1n2 1 cos w n2 sin w n1n3 1 cos w R (w , nˆ ) n3 sin w n1n2 1 cos w cos w n22 1 cos w n1 sin w n2 n3 1 cos w 2 n2 sin w n1n3 1 cos w n1 sin w n2 n3 1 cos w co s w n 1 cos w 3 0 lim R (w , nˆ ) 1 n a n a n a n a 3 3 1 1 2 2 3 w 0 w n 2 0 0 0 a1 0 0 1 0 1 0 [a1 , a 2 ] a3 4/17/2017 n3 0 n1 n2 n1 0 0 0 1 a 2 0 0 0 1 0 0 PHY 745 Spring 2017 -- Lecture 34 0 1 0 a3 1 0 0 0 0 0 13 0 0 0 0 0 1 a1 0 0 1 a 2 0 0 0 0 1 0 1 0 0 Commutation relations: [a1 , a 2 ]= a3 0 1 0 a3 1 0 0 0 0 0 It is convenient to map these generators into Hermitian matrices A p i a p 0 0 0 0 0 i A1 0 0 i A 2 0 0 0 0 i 0 i 0 0 Commutation relations: [A1 , A 2 ]=iA 3 Define 4/17/2017 0 i 0 A 3 i 0 0 0 0 0 1 0 0 A 2 =A12 +A 22 A 32 =2 0 1 0 0 0 1 PHY 745 Spring 2017 -- Lecture 34 14 However, in this case A3 is not diagonal; using a similarity transformation: 12 † A 3 U A 3U 0 1 2 12 † A1 U A1U 0 1 2 12 † A 2 U A 2U 0 1 2 0 0 1 i 0 2 i 0 2 0 1 i 0 2 i 2 i 2 0 i 2 0 1 0 1 0 i 0 2 i 0 0 i 2 0 0 0 0 1 0 0 0 2 0 0 i i 2 0 i 0 0 0 0 i 0 0 0 i 0 0 12 i 2 0 1 0 0 i 0 2 = 0 0 0 1 0 0 0 1 0 21 0 2i 0 i i i 0 2 = 2 0 2 i 1 0 0 0 2 0 1 2 0 1 2 0 1 0 1 i = 2 2 0 0 1 2 0 1 2 0 1 2 0 In accordance with the usual convention: J z A3 4/17/2017 J y A1 J x A2 PHY 745 Spring 2017 -- Lecture 34 15 In general, we can form a representation for SU(2) by w D j ( a3 ) evaluating e : The character of this representation is j j (w ) eimw m j sin j 12 w sin 12 w j1 j2 D and D Direct product of irreducible representations It can be shown that D j1 j2 D j1 j2 D j1 j2 1....D j1 j2 This follows from the character relationships: j1 j2 4/17/2017 (w ) sin j1 12 w sin j2 12 w si n 2 1 2 w PHY 745 Spring 2017 -- Lecture 34 j1 j2 j (w ) j j1 j2 16 For example: j1=1/2 and j2=1/2 It can be shown that D j1 j2 D j1 j2 D j1 j2 1....D j1 j2 This follows from the character relationships: 1/ 2 1/ 2 (w ) 1 (w ) 0 (w ) j1m1 j2 m2 j1 j2 jm 1 2 12 12 12 1 2 12 12 12 1 2 12 12 12 1 1 2 2 10 1 1 2 2 1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 12 1 1 2 2 11 1 10 1 2 11 1 00 1 1 1 2 2 2 12 1 1 2 2 00 1 2 Review -- 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 17 Group theory An abstract algebraic construction in mathematics Definition of a group: 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 18 Definition: An element B XAX 1 is defined as conjugate to element A, where X is any element of the group. Definition: A class is composed of members of a group which are generated by the conjugate construction: C = X i1YX i where Y is a fixed group element and X i are all of the elements of the group. 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 19 The great orthogonality theorem Notation: h order of the group R element of the group ( R ) ith representation of R i denote matrix indices li dimension of the representation ( R) ( R) i R 4/17/2017 * j h ij li PHY 745 Spring 2017 -- Lecture 34 20 Character of a representation: ( R) ( R) j j In terms of classes C , each with N C elements : N (C ) i C 4/17/2017 C * j (C ) h ij PHY 745 Spring 2017 -- Lecture 34 21 Some further conclusions: j N ( C ) (C ) h ij C * i C The characters i behave as a vector space with the dimension equal to the number of classes. The number of characters=the number of classes Second character identity: h i (Ck ) (Cl ) N kl Ck i 4/17/2017 * i PHY 745 Spring 2017 -- Lecture 34 22 Example of character table for D3 “Standard” notation for representations of D3 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 23 Extension of group notions to continuous groups Introduced notion of mapping group members to finite number of continuous parameters Introduced notion of “metric” Introduced notion of connected subgroups “Algebraic” properties of group generators 4/17/2017 PHY 745 Spring 2017 -- Lecture 34 24
© Copyright 2026 Paperzz