Photonic strategies for light trapping in nanostructured solar cells Otto L. Muskens School of Physics and Astronomy, University of Southampton, UK Acknowledgements • AMOLF Ad Lagendijk Jaime Gómez Rivas • Philips Research George Immink Erik Bakkers (Eindhoven) Integrated Nanophotonics Group Started in 2009 Group leader Otto Muskens Postdoc Fedor Tikhonenko PhD students Martina Abb Natasha Fairbairn Tom Strudley Integrated Nanophotonics Group Current projects Integrated Nanophotonics Plasmonic Nanoantennas - M. Abb - F. Tikhonenko Bio-applications - N. Fairbairn with A. Kanaras 579 nm 691 nm 819 nm Light trapping - T. Strudley Outline Omnidirectional AR-coatings Light trapping by multiple scattering Plasmonic solar cells Outline Photonics challenges in PV - Minimize reflective losses Reduce absorption length (in parts of the spectrum) Do not compromise electrical performance Cost-effective Different systems require different approaches - Crystalline Si (Generation 1) - Planar thin-film: a-Si, CdTe, CIGS (Generation 2) - Nanostructured thin films, Dye-sensitized TiO2, polymer,... - Nanomaterials: nanowires, quantum dots, ... Graded-index AR-coating ‘Moth-eye’ coating - Gradual increase of refractive index from 1.0 (air) to 3.5 (Si) - Tapered nanostructures d << λ (n1 − n2 ) 2 RFresn = (n1 + n2 ) 2 Diedenhofen et al., Adv. Mater. 2009 Clapham & Hutley, Nature 1973 Huang et al., Nature Nanotech. 2007 Low-index effective medium Ultrablack CNT film - Material volume fraction < 10% - Effective refractive index ~1.01 - Long absorption length (10-100µm) Ayajan et al., Nano Lett. 2008 Photonic crystals 1D, 2D, or 3D periodicity - On scale of wavelength (λ/2) - In 3D using spheres: opals - Effect of Bragg reflections: slow light Stop band Dye absorption: Opal Normal TiO2 Nishimura et al., JACS 2003 Photonic crystals Our work: 3D opals - Combination of band structure & light scattering Muskens et al., Arxiv 2011 (PRB in press) Random media Vapor-Liquid-Solid growth of nanowire photonic materials VLS: 1050 s Lateral: 0 s <d> = 24 nm φ ~ 5% L = 1.3 µm 420 oC Muskens et al, Appl. Phys. Lett. (2006) 630 oC VLS: 1050 s Lateral: 1400 s <d> = 109 nm φ ~ 55% L = 1.8 µm Random media Light trapping in nanowire layers - Multiple scattering random walk - Folding of absorption length Muskens et al., Nano Lett. 2008 Random media Light trapping in random media - Multiple scattering random walk light diffusion - Folding of absorption length Absorption length Labs = cTabs Diffusive light transport during Tabs ∆xdiff = DTabs Definition of diffusion constant D D = 13 clmfp ∆xdiff = 1 3 Labs lmfp e.g. if Labs=10 µm, lmfp=0.5µm then ∆xdiff= 1.3 µm Random media Light trapping in random media - Light scattering leads to diffuse reflection - Trade-off: diffuse absorption vs. reflective losses - Possible to reduce device size by factor 3 with R<10% ∆xdiff/Labs 1 0.1 0.01 1 10 Labs/lmfp 100 Labs / lmfp Muskens et al., Nano Lett. 2008 Random media Light trapping in random media - Example: nanowires of GaP, InP, silicon Light trapping by nanowires Resonant optical modes in nanowires Resonant modes of a single Ge nanowire for perpendicular illumination. Cao et al. Nature Mater. (2009) Light trapping by nanowires • Resonant extinction of GaP NW, increasing wire diameters <d>=51 ± 9 nm <d>=85 ± 12 nm <d>=118 ± 19 nm Weak scattering (Rayleigh) Resonant scattering (Mie) Muskens et al., Nano Lett. 2009 Dynamic transport Question: how much time does the light stay trapped? - Dynamical transport measurements - Look at the frequency distribution of scattered light Light trapping modes ∆ν = T −1 diff D = 2 Lslab Dynamic transport measurements Fit of speckle correlation to C1 correlation (Genack EPL 1990; Van Albada PRL 1991; De Boer PRB 1992) Experimental parameters: L = 6.0 ± 0.5µm l = 0.3 ± 0.04 µm Fitting result: D = 21 ± 4 m2/s Muskens, Lagendijk, Opt. Lett. 2009 Plasmonic solar cells Using strong light scattering and field enhancement by metal nanoparticles Atwater, Polman, Nature Mater. 2010 Plasmonic solar cells Enhanced photocurrent by silver particle scattering Stuart, Hall, Appl. Phys. Lett. 1998 Plasmonic solar cells Our work: nanoantennas for fluorescence enhancement Muskens et al., Nano Lett. 2007 Conclusions Photonic strategies - Minimize R - Maximize absorption length: slow light, folding, trapping of light Some examples of our work - Characterize light trapping in nanomaterials - Broadband techniques covering VIS & NIR 500-2000nm - New directions: ultrafast, microscopic mode mapping
© Copyright 2026 Paperzz