Benchmark # 4 2014_ 2015 PLEASE Do NOT write on this test Part 1

Benchmark # 4 2014_ 2015
PLEASE Do NOT write on this test
Part 1: No Calculator
===================================================================
1) Evaluate the following: 𝑠𝑖𝑛
(A) 0
(B)
11πœ‹
4
√3
2
(C) βˆ’
√2
2
(D)
√2
2
(C) βˆ’
√2
2
(D) 1
(C) βˆ’
√2
2
(D) βˆ’ 2
(E) βˆ’
(C) 2
(D) – 2
(E)
(C) 2
(D)
(E) βˆ’
√3
2
2) Evaluate the following: π‘π‘œπ‘ 3πœ‹
(A) 0
(B)
√3
2
3) Evaluate the following: π‘π‘œπ‘  βˆ’
(A)
1
(B)
2
7πœ‹
3
√3
2
4) Evaluate the following: 𝑠𝑒𝑐 βˆ’
5) Evaluate the following: π‘π‘œπ‘‘
2√3
3
5πœ‹
3
6) Evaluate the following: π‘‘π‘Žπ‘› βˆ’
√3
3
(E) βˆ’
2 √3
3
7πœ‹
6
(B) βˆ’βˆš2
(A) √2
√3
2
4
(B) βˆ’βˆš2
(A) √2
1
πœ‹
(B) βˆ’βˆš2
(A) √2
(E) – 1
(C)
√3
3
(D)βˆ’
√3
3
(E) βˆ’
2 √3
3
√2
)
2
7) Find π΄π‘Ÿπ‘π‘ π‘–π‘› (
(A) βˆ’
πœ‹
(B) βˆ’
6
πœ‹
(C)
3
2πœ‹
(D)
3
5πœ‹
(E) answer not here
3
8) What are the solutions to: 2𝑠𝑖𝑛2 π‘₯ + 3𝑠𝑖𝑛π‘₯ + 1 = 0
(A)
7πœ‹ 11πœ‹
6
,
6
(B)
πœ‹ 3πœ‹ 5πœ‹
6
,
2
,
6
(C)
7πœ‹ πœ‹ 11πœ‹
6
, ,
2
6
(D)
7πœ‹ 3πœ‹ 11πœ‹
6
,
2
,
6
(E) No solutions
9) What are the solutions to: 3𝑠𝑒𝑐 2 π‘₯ βˆ’ 4 = 0
(A)
πœ‹
(B)
6
πœ‹ 5πœ‹ 7πœ‹ 11πœ‹
6
,
6,
,
6
,
6
(C)
πœ‹ 2πœ‹ 4πœ‹ 5πœ‹
3
,
3
,
3
,
3
(D)
10) Identify the following function as: (A) 𝑓(π‘₯) = π‘‘π‘Žπ‘›βˆ’1 (π‘₯)
πœ‹ 5πœ‹
6
,
6
(E)
πœ‹ 5πœ‹ 7πœ‹ 11πœ‹
6
,
6
,
6
,
6
(B) 𝑓(π‘₯) = π‘π‘œπ‘  βˆ’1 (π‘₯)
(C) 𝑓(π‘₯) = π‘ π‘–π‘›βˆ’1 (π‘₯)
(D) 𝑓(π‘₯) = tan(π‘₯)
(E) π‘›π‘œπ‘›π‘’ π‘œπ‘“ π‘‘β„Žπ‘’π‘ π‘’
11) What is the range of # 11 above?
πœ‹
πœ‹
(A) [βˆ’ 2 , 2 ]
πœ‹
πœ‹
(B) (βˆ’ 2 , 2 )
12) Identify the following function as:
(C) [0, πœ‹]
(D) (0, 2πœ‹)
(E) none of these
(A) 𝑓(π‘₯) = π‘‘π‘Žπ‘›βˆ’1 (π‘₯)
(B) 𝑓(π‘₯) = π‘π‘œπ‘  βˆ’1 (π‘₯)
(C) 𝑓(π‘₯) = π‘ π‘–π‘›βˆ’1 (π‘₯)
(D) 𝑓(π‘₯) = tan(π‘₯)
(E) π‘›π‘œπ‘›π‘’ π‘œπ‘“ π‘‘β„Žπ‘’π‘ π‘’
13) What is the domain of # 13 above?
πœ‹
πœ‹
(A) [βˆ’ 2 , 2 ]
πœ‹
πœ‹
(B) (βˆ’ 2 , 2 )
(C) [0, πœ‹]
14) Constructed response. See additional sheet for details
(D) (0, 2πœ‹)
(E) all reals
BLANK UNIT CIRCLE
14) Constructed Response: Graph and find all characteristics of the following
𝟏
𝒇(𝒙) = βˆ’ π’”π’Šπ’ ( 𝒙 βˆ’ 𝝅) + πŸ‘
𝟐
Amplitude
Frequency
Period
Critical Values
Phase Shift
Vertical Shift
15) Which matrix equals 2 [
2 βˆ’7
0 βˆ’5
]+ [
]
βˆ’4 3
βˆ’3 6
4 βˆ’4
A) [
]
βˆ’2 18
B) [
βˆ’24 60
D) [
]
βˆ’6 30
E) [
βˆ’1 0
16) What is the product of [βˆ’2 1
3 2
4
1
3 ] and [0
βˆ’1
5
19 βˆ’2
A) [ 13 2 ]
βˆ’2 βˆ’3
19 βˆ’2
B) [ 13 βˆ’6]
βˆ’2 βˆ’3
19
D) [13
2
21 βˆ’2
E) [ 13
8]
βˆ’2 βˆ’3
βˆ’2
2]
βˆ’3
4
βˆ’24
]
βˆ’14
18
C) [
6
βˆ’22
]
βˆ’12 20
42 βˆ’104
]
βˆ’18
76
βˆ’2
1]
βˆ’1
19 βˆ’2
C) [ 13 2 ]
βˆ’2 βˆ’7
Part 2: With a calculator
PLEASE do NOT write on the test
==============================================================================
A = βˆšπ‘ (𝑠
βˆ’ π‘Ž)(𝑠 βˆ’ 𝑏)(𝑠 βˆ’ 𝑐) π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑠 =
π‘Ž+𝑏+𝑐
1
A = π‘Žπ‘π‘ π‘–π‘›πΆ
2
2
π‘Ž
π‘Ž2 = 𝑏 2 + 𝑐 2 βˆ’ 2π‘π‘π‘π‘œπ‘ (𝐴)
𝑠𝑖𝑛𝐴
𝝅𝒙
Use the following equations for # 16 - # 18 𝒇(𝒙) = βˆ’πŸπœπ¨ 𝐬 ( 𝟐 βˆ’
πŸπ…
πŸ‘
=
𝑏
𝑠𝑖𝑛𝐡
=
𝑐
𝑠𝑖𝑛𝐢
) + 𝟐𝟏
16) The period of the function is:
(A) 4πœ‹
(B) 4
(C)
πœ‹
(D) πœ‹
2
(E) None of these
17) The phase shift of the function is:
(A) right 4
(B) left
4
3
(C) left
4πœ‹
3
(D) right
4
3
(E) None of these
18) The vertical shift of the function is:
(A) up 21
(B) down 2
(C) up 2
(D) down 21
(E) None of these
19) Identify the function that accompanies the following graph:
(A) 𝑓(π‘₯) = 4 sin(π‘₯) βˆ’ 1
(B) 𝑓(π‘₯) = 4 cos(π‘₯) βˆ’ 1
(D) 𝑓(π‘₯) = βˆ’4 cos(π‘₯) + 1
(E) None of these
(C) 𝑓(π‘₯) = βˆ’4sin(π‘₯) βˆ’ 1
20) Find the standard form of the equation of the specified ellipse: Vertices (0, ±5); Foci (±7, 0)
π‘₯2
(A) 25 +
𝑦2
=7
74
π‘₯2
(B) 74 +
𝑦2
25
=7
π‘₯2
(C) 74 +
𝑦2
π‘₯2
=1
25
(D) 25 +
𝑦2
74
=1
(E) None of these
21) Find the standard from of the equation of the specified ellipse: Foci (3, 3), (- 1, 3); Major axis length of 6
(A)
(C)
(π‘₯βˆ’1)2
5
(π‘₯βˆ’1)2
9
+
+
(π‘¦βˆ’3)2
9
(π‘¦βˆ’3)2
5
=1
(B)
=1
(D)
(π‘₯βˆ’3)2
5
(π‘₯βˆ’3)2
9
+
+
(π‘¦βˆ’1)2
9
(π‘¦βˆ’1)2
5
=1
=1
(E) None of these
22) What type of conic is the following: 9𝑦 2 βˆ’ π‘₯ 2 + 2π‘₯ + 54𝑦 + 62 = 0
(A) parabola
(B) ellipse
(C) circle
(D) hyperbola
(E) None of these
23) What type of conic is the following: 9π‘₯ 2 + 4𝑦 2 βˆ’ 54π‘₯ + 40𝑦 + 37 = 0
(A) parabola
(B) ellipse
(C) circle
24) Identify the foci from the following ellipse:
(A) (±2, 0)
(B) (0, ±2)
π‘₯2
5
+
𝑦2
9
(D) hyperbola
(E) None of these
(D) (0, ±βˆš13)
(E) None of these
=1
(C) (±βˆš13, 0)
25) The center and vertices of the following hyperbola:
(π‘₯βˆ’1)2
4
βˆ’
(𝑦+2)2
=1
1
(A) (1, - 2) and vertices (3, - 2), (-1, - 2)
(B) (- 2, 1) and vertices (3, - 2), (- 1, - 2)
(C) (1, - 2) and vertices (- 2, 3), (- 2, - 1)
(D) (2, - 1) and vertices (- 2, 3), (- 2, - 1)
(E) None of these
26) Find the equations of the asymptotes of the hyperbola: βˆ’25π‘₯ 2 + 4𝑦 2 βˆ’ 150π‘₯ βˆ’ 8𝑦 βˆ’ 321 = 0
2
5
(A) Asymptotes: y = ± 5 π‘₯
2
(C) Asymptotes: y = 5 π‘₯ +
(B) Asymptotes: y = ± 2 π‘₯
11
5
2
,𝑦 = βˆ’5π‘₯ βˆ’
1
5
5
(D) Asymptotes: y = 2 π‘₯ +
17
2
5
,𝑦 = βˆ’2π‘₯ βˆ’
13
2
(E) None of these
27) Identify the equations that represent hyperbolas.
(i) 4π‘₯ 2 + 6𝑦 2 + 3π‘₯ + 4𝑦 βˆ’ 7 = 0
(ii) 4π‘₯ 2 βˆ’ 6𝑦 2 + 2π‘₯ + 7𝑦 βˆ’ 2 = 0
(iii) 8π‘₯ 2 + 10𝑦 2 + 4π‘₯ + 8𝑦 + 19 = 0
(A) iii only
(B) i and iii only
(C) i only
(D) ii only
(E) None of these
28) Find the area of the triangle given a = 12.32, b = 8.46, and c = 15.05
(A) 52.11
(B) 2715.21
(C) 12.31
(D) 151.56
(E) None of these
29) If < A = 10°, < C = 135°, and c = 45, find a from the oblique triangle.
(A) 16.28
(B) .06
(C) 11.05
(D) 183.24
(E) None of these
(D) 12
(E) None of these
30) If a triangle has < B = 120°, a = 4, and c = 6, find its area.
(A) 6
(B) 10.39
(C) 20.78
31) Find the remaining side of a triangle if < A = 115°, b = 15 cm, and c = 10 cm.
(A) 19.71
(B) 13.75
(C) 53.11
(D) 21.26
(E) None of these
32) How many solutions exist given the following information: < A = 58°, a = 4.5 and b = 5
(A) 0
(B) 1
(C) 2
(D) 3
(E) None of these
33) How many solutions exist given the following information: < A = 60°, a = 4 and b = 14
(A) 0
(B) 1
(C) 2
(D) 3
(E) None of these
34) Find the area of a triangular lot containing side lengths that measure 24 yards and 18 yards and form an
angle of 80°.
(A) 212.72
(B) 37.52
(C) 425.44
(D) 75.02
(E) None of these
Constructed Response
==============================================================================
35) Graph the equation:
π’šπŸ βˆ’ π’™πŸ βˆ’ πŸ’π’š βˆ’ πŸπ’™ βˆ’ πŸπŸ‘ = 𝟏
(Be sure to plot the center, plot the foci, AND the vertices and co-vertices. Then draw the conic)
Center: ______________________________
Vertices ___________________
Co-vertices _________________
Foci: _________________________________
To approximate the length of a marsh, a surveyor walks 425 meters from point A to point B. Then the
surveyor turns 65° and walks 300 meters to point C. (see figure).
36) Approximate the length of AC of the marsh (round answer to the nearest hundredth) ____________
37) Approximate the area of βˆ†π΄π΅πΆ (round answer to the nearest hundredth) ______________