Benchmark # 4 2014_ 2015 PLEASE Do NOT write on this test Part 1: No Calculator =================================================================== 1) Evaluate the following: π ππ (A) 0 (B) 11π 4 β3 2 (C) β β2 2 (D) β2 2 (C) β β2 2 (D) 1 (C) β β2 2 (D) β 2 (E) β (C) 2 (D) β 2 (E) (C) 2 (D) (E) β β3 2 2) Evaluate the following: πππ 3π (A) 0 (B) β3 2 3) Evaluate the following: πππ β (A) 1 (B) 2 7π 3 β3 2 4) Evaluate the following: π ππ β 5) Evaluate the following: πππ‘ 2β3 3 5π 3 6) Evaluate the following: π‘ππ β β3 3 (E) β 2 β3 3 7π 6 (B) ββ2 (A) β2 β3 2 4 (B) ββ2 (A) β2 1 π (B) ββ2 (A) β2 (E) β 1 (C) β3 3 (D)β β3 3 (E) β 2 β3 3 β2 ) 2 7) Find π΄πππ ππ ( (A) β π (B) β 6 π (C) 3 2π (D) 3 5π (E) answer not here 3 8) What are the solutions to: 2π ππ2 π₯ + 3π πππ₯ + 1 = 0 (A) 7π 11π 6 , 6 (B) π 3π 5π 6 , 2 , 6 (C) 7π π 11π 6 , , 2 6 (D) 7π 3π 11π 6 , 2 , 6 (E) No solutions 9) What are the solutions to: 3π ππ 2 π₯ β 4 = 0 (A) π (B) 6 π 5π 7π 11π 6 , 6, , 6 , 6 (C) π 2π 4π 5π 3 , 3 , 3 , 3 (D) 10) Identify the following function as: (A) π(π₯) = π‘ππβ1 (π₯) π 5π 6 , 6 (E) π 5π 7π 11π 6 , 6 , 6 , 6 (B) π(π₯) = πππ β1 (π₯) (C) π(π₯) = π ππβ1 (π₯) (D) π(π₯) = tan(π₯) (E) ππππ ππ π‘βππ π 11) What is the range of # 11 above? π π (A) [β 2 , 2 ] π π (B) (β 2 , 2 ) 12) Identify the following function as: (C) [0, π] (D) (0, 2π) (E) none of these (A) π(π₯) = π‘ππβ1 (π₯) (B) π(π₯) = πππ β1 (π₯) (C) π(π₯) = π ππβ1 (π₯) (D) π(π₯) = tan(π₯) (E) ππππ ππ π‘βππ π 13) What is the domain of # 13 above? π π (A) [β 2 , 2 ] π π (B) (β 2 , 2 ) (C) [0, π] 14) Constructed response. See additional sheet for details (D) (0, 2π) (E) all reals BLANK UNIT CIRCLE 14) Constructed Response: Graph and find all characteristics of the following π π(π) = β πππ ( π β π ) + π π Amplitude Frequency Period Critical Values Phase Shift Vertical Shift 15) Which matrix equals 2 [ 2 β7 0 β5 ]+ [ ] β4 3 β3 6 4 β4 A) [ ] β2 18 B) [ β24 60 D) [ ] β6 30 E) [ β1 0 16) What is the product of [β2 1 3 2 4 1 3 ] and [0 β1 5 19 β2 A) [ 13 2 ] β2 β3 19 β2 B) [ 13 β6] β2 β3 19 D) [13 2 21 β2 E) [ 13 8] β2 β3 β2 2] β3 4 β24 ] β14 18 C) [ 6 β22 ] β12 20 42 β104 ] β18 76 β2 1] β1 19 β2 C) [ 13 2 ] β2 β7 Part 2: With a calculator PLEASE do NOT write on the test ============================================================================== A = βπ (π β π)(π β π)(π β π) π€βπππ π = π+π+π 1 A = πππ πππΆ 2 2 π π2 = π 2 + π 2 β 2πππππ (π΄) π πππ΄ π π Use the following equations for # 16 - # 18 π(π) = βπππ¨ π¬ ( π β ππ π = π π πππ΅ = π π πππΆ ) + ππ 16) The period of the function is: (A) 4π (B) 4 (C) π (D) π 2 (E) None of these 17) The phase shift of the function is: (A) right 4 (B) left 4 3 (C) left 4π 3 (D) right 4 3 (E) None of these 18) The vertical shift of the function is: (A) up 21 (B) down 2 (C) up 2 (D) down 21 (E) None of these 19) Identify the function that accompanies the following graph: (A) π(π₯) = 4 sin(π₯) β 1 (B) π(π₯) = 4 cos(π₯) β 1 (D) π(π₯) = β4 cos(π₯) + 1 (E) None of these (C) π(π₯) = β4sin(π₯) β 1 20) Find the standard form of the equation of the specified ellipse: Vertices (0, ±5); Foci (±7, 0) π₯2 (A) 25 + π¦2 =7 74 π₯2 (B) 74 + π¦2 25 =7 π₯2 (C) 74 + π¦2 π₯2 =1 25 (D) 25 + π¦2 74 =1 (E) None of these 21) Find the standard from of the equation of the specified ellipse: Foci (3, 3), (- 1, 3); Major axis length of 6 (A) (C) (π₯β1)2 5 (π₯β1)2 9 + + (π¦β3)2 9 (π¦β3)2 5 =1 (B) =1 (D) (π₯β3)2 5 (π₯β3)2 9 + + (π¦β1)2 9 (π¦β1)2 5 =1 =1 (E) None of these 22) What type of conic is the following: 9π¦ 2 β π₯ 2 + 2π₯ + 54π¦ + 62 = 0 (A) parabola (B) ellipse (C) circle (D) hyperbola (E) None of these 23) What type of conic is the following: 9π₯ 2 + 4π¦ 2 β 54π₯ + 40π¦ + 37 = 0 (A) parabola (B) ellipse (C) circle 24) Identify the foci from the following ellipse: (A) (±2, 0) (B) (0, ±2) π₯2 5 + π¦2 9 (D) hyperbola (E) None of these (D) (0, ±β13) (E) None of these =1 (C) (±β13, 0) 25) The center and vertices of the following hyperbola: (π₯β1)2 4 β (π¦+2)2 =1 1 (A) (1, - 2) and vertices (3, - 2), (-1, - 2) (B) (- 2, 1) and vertices (3, - 2), (- 1, - 2) (C) (1, - 2) and vertices (- 2, 3), (- 2, - 1) (D) (2, - 1) and vertices (- 2, 3), (- 2, - 1) (E) None of these 26) Find the equations of the asymptotes of the hyperbola: β25π₯ 2 + 4π¦ 2 β 150π₯ β 8π¦ β 321 = 0 2 5 (A) Asymptotes: y = ± 5 π₯ 2 (C) Asymptotes: y = 5 π₯ + (B) Asymptotes: y = ± 2 π₯ 11 5 2 ,π¦ = β5π₯ β 1 5 5 (D) Asymptotes: y = 2 π₯ + 17 2 5 ,π¦ = β2π₯ β 13 2 (E) None of these 27) Identify the equations that represent hyperbolas. (i) 4π₯ 2 + 6π¦ 2 + 3π₯ + 4π¦ β 7 = 0 (ii) 4π₯ 2 β 6π¦ 2 + 2π₯ + 7π¦ β 2 = 0 (iii) 8π₯ 2 + 10π¦ 2 + 4π₯ + 8π¦ + 19 = 0 (A) iii only (B) i and iii only (C) i only (D) ii only (E) None of these 28) Find the area of the triangle given a = 12.32, b = 8.46, and c = 15.05 (A) 52.11 (B) 2715.21 (C) 12.31 (D) 151.56 (E) None of these 29) If < A = 10°, < C = 135°, and c = 45, find a from the oblique triangle. (A) 16.28 (B) .06 (C) 11.05 (D) 183.24 (E) None of these (D) 12 (E) None of these 30) If a triangle has < B = 120°, a = 4, and c = 6, find its area. (A) 6 (B) 10.39 (C) 20.78 31) Find the remaining side of a triangle if < A = 115°, b = 15 cm, and c = 10 cm. (A) 19.71 (B) 13.75 (C) 53.11 (D) 21.26 (E) None of these 32) How many solutions exist given the following information: < A = 58°, a = 4.5 and b = 5 (A) 0 (B) 1 (C) 2 (D) 3 (E) None of these 33) How many solutions exist given the following information: < A = 60°, a = 4 and b = 14 (A) 0 (B) 1 (C) 2 (D) 3 (E) None of these 34) Find the area of a triangular lot containing side lengths that measure 24 yards and 18 yards and form an angle of 80°. (A) 212.72 (B) 37.52 (C) 425.44 (D) 75.02 (E) None of these Constructed Response ============================================================================== 35) Graph the equation: ππ β ππ β ππ β ππ β ππ = π (Be sure to plot the center, plot the foci, AND the vertices and co-vertices. Then draw the conic) Center: ______________________________ Vertices ___________________ Co-vertices _________________ Foci: _________________________________ To approximate the length of a marsh, a surveyor walks 425 meters from point A to point B. Then the surveyor turns 65° and walks 300 meters to point C. (see figure). 36) Approximate the length of AC of the marsh (round answer to the nearest hundredth) ____________ 37) Approximate the area of βπ΄π΅πΆ (round answer to the nearest hundredth) ______________
© Copyright 2025 Paperzz