urokinase plasminogen activation system and its role in

ACTA
UNI VER SIT ATI S L O D Z I E N S I S
F O L IA B IO C H IM IC A E T B IO P H Y S IC A 14, 1999
Janusz Błasiak, B eata Smolarz, Dagmara Piestrzeniewicz
UROKINASE PLASMINOGEN ACTIVATION SYSTEM
AND ITS ROLE IN CANCER INVASION AND METASTASIS
Invasion and m etastasis are hallm arks o f tu m o r progression and depend o n the
ability o f tu m o r cells b o th to degrade and to m igrate th ro u g h connective tissue
barriers. These processes require com plex interactions betw een tu m o r cells and the
su rro u n d in g extracellular m atrix. T hese interactio n s are m odified by pro teo ly tic
enzym es and their receptors. T h e u rokinase plasm inogen a ctiv ato r system is well
kn o w n to play a n im p o rta n t role in cancer invasion and m etastasis. It co n ta in s the
uro k in ase type plasm inogen activ ato r (uPA ), the uro k in ase recep to r (u P A R ) and
specific plasm inogen activ ato r inhibitors, PAI-1 and PA I-2. T he re ce p to r for uPA ,
u P A R m ay reside on the surface o f tu m o r cells. uPA which is secreted by no rm al
and tu m o r cells binds w ith high affinity and specificity to uP A R . T h e u P A -u P A R
com plex focuses proteolytic activity to the tu m o r cell surface by converting the
p lasm a p ro tein plasm inogen in to the serine protease plasm in. Plasm in degrades
c om ponents o f th e extracellular m atrix in the vicinity o f the tu m o r cells th u s
facilitating tu m o r cell invasion and m etastasis. PAI-1 m ay be needed for the optim al
fu n c tio n o f the uP A system in these processes, by being necessary for the dynam ic
state o f the system , by regulating cell adhesion and for selective p ro tec tio n o f
vitronectin against proteolysis. PAI-1 m ay co u n te rac t m igration and invasion. uPA ,
u P A R a n d PAI-1 can be used as strong independent m ark e rs o f p ro g n o sis in m an y
types o f cancers - high levels o f these p roteins are associated w ith b o th sh o rter
disease-free interval and shorter overall survival o f the subjects w ith cancer.
Key words: cancer, m etastasis, plasm inogen activation system , urokinase, urokinase
receptor, plasm inogen a ctiv ato r inhibitor-1 (PA I-1)
IN T R O D U C T IO N
T he processes o f cancer invasion and m etastasis require the rem odelling
o f the extracellular m atrix (E C M ) (see [10] for review). R em odelling o f the
E C M m ay consist o f its degradation by m eans o f excision and deletion of
E C M com ponents, regeneration o f the EC M com ponents and their spatial
and tem poral reorganization. Several enzymes are know n to be integrated
co m ponents o f the E C M , others are secreted and m ay be associated with
the cell m em brane. T he proteolytic function o f the enzymes are c o u n ter­
balanced and regulated by ap p ro p riate protease inhibitors. T hese proteases
and their inhibitors actively participate in determ ining the com plex structure
and biochem ical characteristics o f the E C M , which lead to the expression
o f specific form s o f biochem ical behavior. In order to establish m etastatic
deposits, the adhesive ability o f cancer cells m ust be regulated. In the initial
stage o f dissem ination, the release o f cells from the prim ary tu m o rs requires
a decrease in intracellular adhesion. T he cells th at arc released have to
acquire the ability to adhere to, and penetrate the barriers presented in the
form o f th e E C M , host tissue stro m a and the vascular en d o th eliu m .
R em odelling o f the EC M [75, 76] provides the adaptability o f the cell to
enter into these interactions with the ECM and other cellular elem ents.
T his process is assisted by the proteolytic enzymes synthesized by the
tu m o r cells.
Primary tumor
Invasion <=0- Extravasation «=£> Metastasis
directed tumor celt invasion
Fig. 1. T u m o r invasion and m etastasis o f solid m alig n an t tu m o rs
(reproduced w ith perm ission from S c h m i t t et al., 1997)
T u m o r invasion and m etastasis o f solid m alignant tum ors involves
invasion and extravasation o f tu m o r cells into and ou t o f vessels and into
the E C M (Fig. 1). T hree steps control tum or spreading: attach m en t to and
in teractio n o f tu m o r cells with com ponents o f the basem ent m em brane and
the E C M , local proteolysis and tu m o r cell m igration [73], F o u r different
classes o f proteases are know n to be correlated with local proteolysis:
m atrix m etallproteases including collagenases, gelatinases and strom elysins
[46, 47, 53, 83], cysteine proteases including cathepsin B and L [5, 51, 77,
78, 79], the aspartyl protease cathepsin D [52, 69, 71] and serine proteases
including com ponents o f the plasm inogen activation system [8, 19, 48-50].
T h e suggestion th at the com ponents o f the urokinase plasm inogen activation
system m ay play an im p o rtan t role in the processes o f cancer invasion and
m etastasis goes back several decades [18].
U R O K IN A S E PA TH W A Y OK P L A S M IN O G E N A C T IV A T IO N
T he m ain com ponents o f the urokinase plasm inogen activation system
are displayed in Fig. 2.
plasminogen------------------------ ► plasmin
pro-uPA — ------------------------- ► uPA
/
PAI-1
/
/
f
\
\
\
\
PAI-2
Fig. 2. Sim plified scheme o f th e urokinase plasm inogen activ atio n system
U rokinase plasm inogen activ ato r (uPA ) is a serine protease, which is
released from cells as a single polypeptide-chain, virtually inactive proenzym e
(p ro-uP A ) [61]. pro-uP A is proteolytically converted into a tw o chain,
active form o f uPA , which in tu rn activates plasm inogen into plasm in.
p ro -u P A itself is efficiently activated by plasm in, leading to am plification
o f the overall reaction. H ow ever, the m echanism o f the initial activation
o f p ro -u P A under physiological conditions is not yet clarified. P ro-uP A
an d uPA can bind to a specific cell surface receptor, uP A R [19, 70, 85]
and co n co m itan t binding o f pro-uP A to uP A R and o f plasm inogen to as
yet unidentified cell surface binding sites strongly enhances plasm in generation
[19, 27], uP A activity is regulated by two inhibitors, plasm inogen activator
inhibitors type 1 (P A M ) and type 2 (PAI-2) [2], The complexes uPA -inhibitor
are internalized in a process dependent on both uP A R an d the a-m acroglobulin receptor [17, 57].
Fig. 3. T u m o r cell-associated proteolysis
(reproduced w ith perm ission from S c h m i t t e t a!., 1997)
In m odel system s, uP A an d u P A R are required for invasion and
m etastasis [15, 42, 44], T he recep to r for uPA , uP A R resides on the
surface o f tu m o r cells (Fig. 3). uPA which is secreted by norm al and
tu m o r cells binds with high affinity and specificity to uP A R . T he uPA-uP A R com plex focusses proteolytic activity to the tum or cell surface by
converting the plasm a protein plasm inogen into the serine protease plasm in. Plasm in degrades com ponents o f the EC M (tu m o r strom a) in the
vicinity o f the tum or cells thus facilitating tum or cell invasion and m e ta ­
stasis [73],
U R O K IN A S E -T Y P E P L A S M IN O G E N A C T IV A T O R
The protein and the gene
U rokinase-type plasm inogen activator, uPA , is a serine protease o f
m o lecu lar w eight o f approxim ately 50 000. T he m olecule consists o f
2 disulfide bridge-linked polypeptide chains, a C -term inal serine proteinase
d o m ain , and a N -term inal chain which contains a kringle dom ain and
a grow th factor-like dom ain. uPA converts the inactive zym ogen plasm inogen
into plasm in th at has tripsine-like activity. Plasm in is involved in degradation
o f ex tracellular m atrix p ro tein s such as fibronectin, type IV collagen,
lam inin and fibrin [18, 48] and activates latent collagenase to p o ten tate
th eir lytic activity [74, 85]. uPA is produced and released by n orm al cclls
like pneum ocytes, fibroblasts, keratinocytes or phagotic cells and from
tu m o r cells as a single-chain zym ogen (pro-uPA ) with very low o r w ithout
any activity. P ro-uP A is converted to active-high m olecular-w eight tw o
chains form o f uPA (IIM W ) [19] by cleavage o f the peptide bond. T his
reactio n m ay be catalyzed by plasm in [18] and o th e r m olecules, like
kallikrein and blood coagulation factor X lla [18] therm olysin, nerve grow th
factor-)’ [20], cathepsin B [41], cathepsin L [18], p ro state specific antigen
[33], T-cell associated serine proteinase [5], hum an m ast cell tryptase [81]
o r tripsine-like proteinases isolated from hum an ovarian tu m o r [54]. Pro-uPA m ay be converted to inactive IIM W uPA by th rom bin and elastase
from granulocytes [74], IIM W uPA can be fu rther degraded by plasm in
and o th er proteinases such as unknow n proteinase [63] existing in the urine
o r m atrix m etalloproteinase Pum p I [34], These reactions produce low-m olecular-w eight tw o-chain form o f uPA (L M W ) and am ino-term inal-fragm ent containing kringlc dom ain and the grow th factor-like dom ain
[73], C o n cen tratio n o f uPA in the blood is ab o u t 20 pM . M ost o f it is
com plexed with its type 1 inhibitor, the rest is in the p ro -u P A form [3],
P ro -u P A and uPA can be bound, through its grow th factor dom ain, to
a specific cell surface receptor uPA R with the sam e affinity. A ctivation o f
p ro -u P A can occur on binding to uPA R . T he binding strongly accelerates
activation o f pro -u P A and increases the enzym atic activity o f uP A itself
[27], C onversion o f pro-uP A into uPA is inhibited by specific plasm inogen
ac tiv ato r in h ib ito r type 1 and 2 or protein C and nexin proteinase (PN -1)
b u t reactions with these factors are m uch slower [81]. uPA has m itogenic
activity for som e cell lines [52]. U rokinase with plasm in are involved in
proteolytic activation o f grow th factors: hepatocyte grow th facto r/scatter
facto r (H G F /S F ), m acrophage stim ulating protein, transform ing grow th
facto r fi o r basic fibroblast grow th factor but these are devoid o f p ro te o ­
lytic activity [3].
T h e hu m an uPA gene is located on the 10-th chrom osom e, organized in
11 exons and is 6.4 kb long. A t the pro m o ter region there are repeated
A LU -type sequences, the enhancer and negative-regulation regions. A fragm ent
w hich show s p ro m o te r activ ity co n ta in s the h ex a n u cleo tid e sequence
G G C G G G th a t is repeated three times between the C A A T -box and the
T A T A -b o x and m ay play im p o rtan t role for pro m o ter activity [65]. Tw o
polym orphism s o f the uPA gene are know n: m ore frequent one near the
beginning o f exon 8 and less frequent resulted in the replacem ent o f leucine
residue by proline in the kringle dom ain [14],
uPA and cancer
uPA is involved in the cell m igration by plasm in generation on a cell
surface by uP A R bound to uPA over ECM substrate. D uring this process
uPA and its receptor are found at the leading cell edge. It was reported
th a t inactive variants o f uPA , bound to uP A R , m ay inhibit cell m igration
[3]. T h e cell m igration m ay be stim ulated by at least two m echanism s:
a proteolytic one and non-proteolytic. Proteolytic m echanism m ay involve
plasm in generation at focal adhesion sites, catalysed by uPA R bound uPA
and m ay initiate ECM degradation. Second m echanism m ay stim ulate cell
m ig ratio n by changes in the adhesion at the leading edge. T u m o r cells
secret large am ounts o f plasm inogen activators and evoke increased cell
m igration and developm ent o f secondary tum or focus. M oreover, uPA/plasm in
system m ay play a role o f the m ediator in tu m o r invasion and p ro pagation
by changes o f cell surface and by hydrolysis o f fibrin deposition around
the tum ors. uPA m ay break norm al cell barriers and decrease cellular
attach m en t to EC M by affecting E C M and cytoskeleton proteins. P roteinase
secretion and tissue d egradation are elem ents o f the invasive and m etastatic
ph en otype and correlate directly with tum or cells invasiveness. T he level o f
uP A activity is significantly higher in the m alignant tum ors in com parison
to n o rm al tissues or in benign tum ors o f the same tissue [22, 23]. uPA
was the first proteinase which was used as a prognostic m ark e r in hum an
m alignancy. T he results o f studies have shown th a t patients with tum ors
displaying high level o f uPA activity have shorter disease-free survival than
p atients w ith low level. T he level o f the uPA antigen ap p ear to be one of
the strongest prognostic m arkers in the m ultivare analysis com prising node
statu s, tu m o r size, estrogen receptor status and cathepsin D levels [24, 25,
74]. Increased level o f uPA have been proposed as a prognostic m ark er in
m an y cancers including cancers o f breast [8, 39], lung [58, 59], bladder [34],
stom ach [55], colorectum [53], cervix [42], ovary [45], kidney [36], brain [7],
p ro state [1] and m any soft tissue sarcom as [14]. Elevated level o f uPA and
PAI-1 m ay be prognostic m ark er for patients survival such as in the
cancers o f ovary like endom etrial carcinom a [43], gastric [13], colorectal
and dedifferentiated chondrosarcom a [33]. F o r o th er types o f cancer level
o f uP A is independent prognostic facto r in a case o f breast, p ro state and
kidney cancer. In only a few studies o f colon [67], breast [21], ovarian [72]
and p an creatic carcinom as [30] uPA was show n to be uP A R -dependent
pro g n o stic m arker.
P L A S M IN O G E N A C T IV A T O R IN H IB IT O R T Y P E 1
The protein and the gene
Plasm inogen activator inhibitor type 1, PA I-1, is a 50 k D a glycop­
ro tein , which belongs to the serine protease inhibitor (Serpin) superlam ily
[81], It contains 379 am ino acids and is a fast-acting inhibitor o f both
tissue-type and urokinase-type plasm inogen activators. T h e deduced am ino
acid sequence o f PAI-1 reveals a signal peptide o f 23 am ino acid residues
and a m a tu re p ro tein co n tain in g 379 am ino acid residues w ith three
p otential sites o f N-linked glycosylation [9], PAI-1 is produced by platelets,
endothelial cells, granulosa cells, hepatocytes and sm ooth m uscle cells [9].
Insulin and triglyceride rich lipoproteins stim ulate PAI-1 p ro d u ctio n by
cultured endothelial cells or hepatocytes [40]. Insulin resistance syndrom e,
w hich predisposes to diabetes and ischemic h eart disease, m ay be a m ajo r
reg u lato r o f PAI-1 expression [40]. T here are tw o distinct pools o f PAI-1:
one in the a-granules o f blood platelets and the o ther in plasm a. PAI-1
is ra th e r unstable but the form ation o f com plex w ith vitronectin stabilizes
PAI-1 activity [68], T he expression o f PAI-1 is enhanced in several situ a­
tions. E levated level o f PAI-1 was observed after m ajo r surgery, tra u m a
and m yocardial infarction. Its activity is correlated w ith body m ass index
(B M I) and serum trigliceride levels [87]. Plasm a PAI-1 level is positively
correlated with plasm a insulin level. Insulin and trigliceride rich lipo­
p roteins stim ulate PAI-1 production by cultured endothelial cells or h ep a­
to cy tes [40], Its biosynthesis is regulated by a n u m b er o f h o rm o n es,
cytokines, glucocorticoids, throm bin [20]. PAI-1 activity in plasm a is also
induced by agents such as interleukin-1 (IL-1), tu m o r necrosis fa cto r
(T N F ), tran sfo rm in g grow th factor (T G F). T he level o f antigens against
PAI-1 o f hepatocytes was stim ulated by cytokines (IL-6, IL-1, T G F /f) [20].
It is likely, th a t cytokines can effect in regulation o f the PAI-1 gene
tran scrip tio n .
PAI-1 gene is localized to 7q21.3-q22 ad its 12,3 kb D N A contains
n in e exons and eight in tro n s [9]. E xons range from 84 to 1823 bp,
in tro n s from 119 to 1764 bp in length. 12 A lu elem ents and 5 repeats
o f a long polypurine elem ent are present in PAI-1 gene. 8 polym orphism s
o f PAI-1 are currently know n: tw o G /A substitutions at positions -844
and + 9 7 8 5 , 4 G /5 G insertion/deletion at position -675, tw o polym orphism
in the 3’ untran slated region - substitution T /G at position + 1 1 053
and a 9-nucleotide insertion/deletion located between nucleotides + 1 1 320
an d + 1 1 345, tw o (CA)„ rep eat polym orphism s, one in th e p ro m o te r
and one in in tro n 4, and HindlW restriction fragm ent length polym orphism
[35]. Several polym orphic sites in the PAI-1 gene can be associated with
circulating levels o f the inhibitor, including a 3’ Hin&Ul restriction site and
an in tronic dinucleotidc (CA ) repeat [12]. It has also been show n th at the
polym orphism 4G /5G found in the prom oter region o f the PAI-1 gene is
o f functional im portance in regulating PAI-1 gene expression [35], This
polym orphism can be associated with elevated level o f the protein. PAI-1
m ay be an im p o rtan t com ponent in the regulation o f a variety o f both
physiological and pathological processes.
The role in cancer invasion and metastasis
C onsiderable evidences su p p o rt the view th a t elevated plasm a PAI-1
activity is often observed in individuals with angina pectoris, deep vein
throm bosis, diabetes and in survivors o f m yocardial infarction [13, 87],
T he increase o f plasm a PAI-1 activity is associated with early recurrence
o f m yocardial infarction [87], PAI-1 m ay play an im p o rtan t role in the
developm ent o f ath ero tro m b o tic diseases. Patients with o th er th ro m b o tic
disorders such as deep vein throm bosis and stroke have higher PAI-1
levels th a n controls. Increased level o f PAI-1 is com m only found in
patients w ith coronary heart disease [28]. M oreover, PAI-1 m ay have
functions o th er th an intravascular control o f plasm inogen activators ac­
tivity. Epidem iological studies have revealed th at plasm a PAI-1 activity
is positively co rrelated w ith body m ass index and serum triglyceride
levels [87],
PAI-1 is involved in tu m o r invasion and m etastasis. M oreover, invasion
and m etastasis o f solid tu m o rs require the concerted action o f various
proteolytic enzyme systems, which degrade the basem ent m em branes [84],
As m entioned above uPA m ay play a key role am ong the proteases and
the activity o f uP A during m etastasis is regulated by PAI-1 th at inhibits
uPA th ro u g h the form ation o f a covalent inhibitor-enzym e com plex. PAI-1
is an in h ib itor o f bo th free and receptor bound uPA [54], T he role o f
PAI-1 in tu m o r biology has no t been defined clearly. Several studies have
suggested th at PAI-1 protects the tum or tissue against the proteolytic
d eg rad atio n th a t the tum or im poses upon the surrounding n orm al tissue
[54], PAI-1 m ay bind to the cell surface associated u P A R /u P A com plex
form ing an enzymatically inactive trim eric receptor-protease-inhibitor com plex
which is internalized by the tu m o r cell [73], In addition, PAI-1 m ay be
involved in the m odulation o f u P A R binding to EC M com ponents and
interfere with cell attachm ent to the m atrix. PAI-1 has strong effect o n the
m alig n an t phenotype o f tu m o r cells [74], H igh level o f PAI-1 in tu m o rs
predicts p o o r prognosis for the patient. Increased levels PAI-1 m ay be
a cause for the developm ent o r the progression o f cancer [82]. H igh level
o f PAI-1 is observed in a variety o f m alignancies including cancer o f the
breast, cervix uteri, ovary, stom ach, colon, lung, brain, kidney [73]. C ancer
p atients m ay be defined as low- or high-risk patients depending on the
am o u n t o f PAI-1 in prim ary tu m o r [74]. R ecently, it has been proposed
th a t PAI-1 is a potentially im p o rtan t prognostic factor in breast carcinom a
[74], In tu m o r tissues from patients with cancer elevated levels o f PAI-1
are observed when com pared with norm al tissues.
A n insertion/deletion polym orphism in the prom oter o f the PAI-1 gene
m ay have an influence on plasm a PAI-1 level. W e studied frequency o f
4 G /5 G g enotype in subjects with cancer. Blood was d raw n from 53
p atients (9 gastric cancers, 16 breast cancer, 9 m elanom as, 12 colorectal
cancers, 7 head and neck cancers) and 53 m atched controls [80]. O ur
study show ed th a t the genotype distribution differed significantly between
these tw o groups. T he 4 G /5 G genotype was observed m o re frequently in
p atien ts with cancer th a n in the controls. T hese results suggest th at
4 G /5 G genotype m ay be associated with elevated PAI-1 level in cancer,
w hat predicts p o o r prognosis. F u rth e r studies are needed to check w hether
the prevalence o f the 4 G /5 G genotype m ay influence an in d iv id u al’s
plasm in o g en activ ation system capacity and thereby co n trib u te to the
cancer risk profile.
It is n o t easy to understand why the elevated tu m o r tissue content o f
PAI-1 indicates a p o o r prognosis for the cancer patients. PAI-1 m ay be
involved in th e m o d u la tio n o f uP A R binding to extracellular m atrix
co m ponents and interfere with cell attachm ent to the extracellular m atrix.
PAI-1 has strong effect on the m alignant phenotype o f the tu m o r cells.
In cancer, the increase o f PAI-1 is associated with tu m o r progression
and w ith shortened disease-free an d /o r overall survival in patients afflicted
with m alig n an t solid tum ors. Strong correlation betw een elevated PAI-1
values in prim ary cancer tissues and the tum or invasion/m etastasis capacity
o f cancer cells, PAI-1 has been selected as target for anticancer therapy.
U R O K IN A S E -T Y P E P L A S M IN O G E N A C T IV A T O R R E C E P T O R
The protein and the gene
T he receptor for uP A R was first identified on m onocytes and the
m on o cy to id cell line U937 as a m em brane p rotein th at binds the am ino-term inal fragm ent o f uPA with high affinity (5 x 10 10 M ) [13, 56, 85].
uP A R consist o f a single polypeptide chain and behaves as a n am phiphilic
m em b ran e protein [29, 56].
T h e specific cellular receptor for uPA, uP A R binds its ligands th ro u g h
a high affinity interaction with the N -term inal epiderm al grow th factor
(E G F )-like dom ain o f uPA [27], uP A R is a glycolipid-anchored m em brane
glycoprotein encoded as a 335-residue polypeptide th a t is p osttranslationally
processed to approxim ately 283 residues by rem oval o f the N -term inal
signal sequence and a C -term inal sequence responsible for the ad d itio n of
the glycosylphosphatidylinositol (G P I) m oiety [64], It is established th at
u P A R is com posed o f three dom ains th a t are tho u g h t to share a com m on
stru ctu re and form a p art o f the Ly-6/uPA R superfam ily o f G P I-anchored
proteins, characterized by a highly conserved spacing and disulfide bonding
o f cysteine residues. T he solution stru ctu re o f the L y -6 /u P A R fam ily
m em ber C D 59 was solved by nuclear m agnetic resonance [30] and confirm s
a prediction based on a variety o f considerations th at these proteins share
a com m on structural fram ew ork w ith the large fanily o f structurally defined
snake venom a-neurotoxins [62, 63], D efinitive p ro o f o f this as a m odel
for uP A R aw aits its direct structural determ ination, but the m odel has
already been useful in tentatively identifying a hydrophobic binding site in
uP A R [62, 63],
T h e un ique m u ltid o m ain stru ctu re o f uP A R an d its p o ten tial role
in the binding o f uPA and other putative uPA R ligands are o f c o n ­
tin u in g interest, as this m ultidom ain structure has proved to be essential
for uPA binding function. It was originally considered th a t the N-term inal do m ain 1 o f uP A R contained all the determ inants necessary for
uPA binding [4]. T he direct involvem ent o f this dom ain in ligand bin ­
ding is also supported by o th er observations, including the recent iden­
tification o f T y r57 as p art o f the uPA binding site [63]. It has been
show n in com petitive binding studies with recom binant C -term inally tru n ­
cated soluble uP A R (term ed s-uPA R ), however, th at liberation o f d o ­
m ain 1 reduces its uP A binding affinity by at least 1500-fold, from
0.1 nM to greater than 150 nM [62]. This suggests th a t it ca n n o t be
excluded th a t the o th er do m ain s o f u P A R directly co n trib u te to the
in teraction with uPA.
T h e uP A R gene is com posed o f seven exons (101, 111, 144, 162, 135,
147 and 563 bp) separated by six introns (approxim ately 2.04, 2.62, 8.42,
0.906, 3.10 and 2,78 kb) [86], E xons 1-7 encode 19, 37, 48, 54, 45, 49 and
83 am ino acid residues, respectively. A C pG -rich islands an d sequences
related to the tran scrip tio n factors AP-1, A P-2 and c-Jun are present, but
no p otential T A T A o r C A A T boxes were found in the proxim al 5’ region
o f the uP A R gene.
Tumor invasion and metastasis
As m entioned above, E M C degradation in cancer is a result o f an
in teraction between the epithelial tum or cells and the infiltrating strom al
cells, so the cellular localization o f uPA R in cancer cells m ay give inform ation
on its potential role in the process o f cancer invasion. In 49 from 60
sam ples derived from p atien ts w ith invasive d u ctal b reast carcinom as,
uP A R reactivity was observed in m acrophages located in close vicinity to
the infiltrating epithelial cancer tissue [66], In an o th er study, the cellular
localization o f uP A R was studied in 59 invasive breast cancer sam ples, 12
n o rm al breast tissue cases and 4 fibroadenom as [6], By using an anti-uP A R
polyclonal antib o d y it was found 49/59 invasive breast carcinom a to express
uP A R im m unoreactivity. S trong surface staining o f tum or-associated m ac­
rophages was evident in m ost o f the cases. Staining o f tu m o r cells was
observed in 21/59 cases while no staining was seen in norm al breast tissue
o r in the fibroadenom as. T he expression o f uP A R in tum or-infiltrating
m acrophages in breast cancer is consistent with the p attern o f uP A R
m R N A expression in hum an colon adenocarcinom as [64],
uP A R also appears to be a prognostic m ark e r in certain tum ors. In
colorectal m alignancies, high levels o f uPA R have been reported to cons­
titu te an independent prognostic m arker [31]. In breast cancer also, high
uP A R levels are associated with both shorter disease-free interval and
sh o rter overall survival [26, 32], F u rth erm o re, uP A R was show n to be an
independent m ark e r o f disease outcom e in squam ous carcinom a o f the lung
b u t n o t in large-cell lung cancer [59], Finally, it was dem o n strated th a t
expression o f uP A R by dissem inated carcinom a cells in bone m arro w of
p atien ts w ith gastric cancer is a highly significant p redictor o f early disease
relapse [34],
C O N C L U D IN G R E M A R K S
T he urokinase plasm inogen activator system consist o f pro-enzym es,
active enzymes and binding protein th at interact in a highly organized way
w ith E C M proteins facilitating cancer invasion and m etastasis.
uP A enhances in vitro cell m ig ratio n and invasion, b u t th ere are
suggestions th a t the function o f the system does n o t rely on the unbrided
enzym e activity o f uPA . T he dynam ic state o f the system at the cell surface
allows spatial and tem poral rearrangem ents o f its com ponents d u rin g these
processes. R ecent w ork has suggested the existence o f n o n -p ro te o ly tic
function o f the system, consisting o f intracellular signal-transduction cascades
being initiated by binding o f uPA to uPA R , o f uP A R as a vitronectin
receptor and as a regulator o f integrin function and o f a function o f PAI-1
as a reg u lator o f binding o f uP A R and o f intcgrins to vitronectin. Some
observations sup p o rt the hypothesis th at PAI-1 is needed for the optim al
function o f the uPA system in these processes, by being necessary for the
d ynam ic state o f the system , by regulating cell adhesion and for selective
protection o f vitronectin against proteolysis. PAI-1 m ay counteract m igration
and invasion.
T h e c o rrelatio n betw een uP A and uP A R c o n c en tratio n s in hum an
tu m o rs and p o o r prognosis is in agreem ent with the basic idea o f uP A R -bo u n d uP A at the surface o f cancer cells being necessary for cancer
invasion and m etastasis. uPA and uPA R engaged in tissue rem odelling
events in the tissues surrounding the cancer cells m ay also contribute to
the levels o f these com ponents and p o o r patient prognosis. T he role of
PAI-1 as a strong prognostic m arker in cancer m ay be related to a possible
role o f PAI-1 in cancer cell m igration and invasion. D ifferential expression
o f uPA and uP A R , on one side, and o f PA I-1, on the other, by different
cell types and in different tissue areas m ay contribute to proteolysis being
directional at the level o f tissue areas. In this situation, PAI-1 w ould be
playing a p art in tissue rem odelling events and strom a rem odelling by
protecting newly deposited E C M in the center o f islands o f cancer cells
and in the norm al tissue surrounding them.
F u rth e r studies are needed to elucidate the role o f the u ro k in ase
plasm inogen activator system in cancer invasion and m etastasis. A n exact
identification o f the processes in tum ors in which various com ponents o f
the uPA system are im plicated is a challenge for the future research. T he
no n -p ro teo lytic interactions o f the com ponents o f the system w ith ECM
proteins should be taken into account as possible m echanism involved in
tu m o r progression.
REFEREN CES
[1] A c h b a r o u A., K a i s e r S., T r e m b l a y G. , S t e - M a r i e L. G. , B r o d t P., G o l t z m a n D. , R a b b a n i S. A. (1994), C ancer Res., 54, 2372-2377.
[2] A n d r e a s e n P. A., G e o r g B., L u n d L. R. , R i c c i o A. , S t a c e y S. N. (1990),.
M ol. Cell. E ndocrinol., 68, 1-19.
[3] A n d r e a s e n P. A. , K j o l l e r L., C h r i s t e n s e n L., D u f f y M . J. (1997), In t. J.
C ancer, 72, 1-22.
[4] B e h r e n d t N. , P l o u g M , P a t t h y L., H o u e n G. , B l a s i F., D a n o K . (1991), J.
Biol. Chem . 266, 7842-7847.
[5] B e n i t e z - B r i b i e s c a L . , M a r t i n e z G. , R u i z M. T. , G u t t i e r e z - D e l g a d o F.,
U t r e t a D . (1995), A rch. M ed. R es., 26, S163-S168.
[6] B i a n c h i E. , C o h e n R. L., T h o r A . T . (1994), C ancer Res., 54, 861-866.
[7] B i n d a h l A. K. , H a m m o n d M. , S h i W. M. , W u S. Z., S a w a y a R ., R a o J. S.
(1994), J. N eurooncol., 22, 101-110.
[8] B l a s i F., V a s s a l i J. D. , D a n o K . (1987), J. Cell. Biol., 104, 801-804.
[9] B o s m a P. J., V a n d e n B e r g 12. A., K o i s t r a T. , S i e m i e n i a k D. R. , S l i g h t o m L. (1988), J. Biol. C hem ., 263, 9129-9141.
[10] B o y d D. (1996), C ancer M etastasis Rev., 15, 77-89.
[11] C a n t e r o D. , F r i e s H. , D e l l ' l o r i n J., Z i m m e r m a n n A. , B r ü n d l e r M. A.,
R i e s i e E., K o r c M . , B ü c h l e r M . W. (1997), Br. J. C ancer, 75, 388-395.
[12] C a t t o A. J., C a r t e r A. M. , S t i c k l a n d M. , B a m f o r d J. M. , D a v i e s J. A.,
G r a n t P. J. (1997), T h ro m b . H aem ost., 77, 730-734.
[13] C h o J. Y., C h u n g H . C., N o h S. H ., R o h J. K ., M i n J. S., K i m B. S. (1997),
C ancer, 79, 878-883.
[14] C h o o n g P. F. M. , F e r n o M. , A k e r m a n M. , W i l l e n H. , L a n g s t r o m E.,
G u s t a f s o n P., A l v e g a r d T. , R y d h o l m A. (1996), Int. J. C ancer, 69, 268-272.
[15] C r o w l e y C. W. , C o h e n R. L., L u c a s B. K. , L i u G. , S h u m a n M. A. (1993),
Proc. N atl.
[16] C u b e i l i s
[17] C u b e i l i s
[18] D a n o K. ,
s e n L. S.,
[19] D a n o K. ,
A cad. Sei., USA 90, 5021-5025.
M . V., N o l l i M. L., C a s s a n i G . (1986), J. Biol. C hem ., 261, 15819-15822.
M . W ., W u n T. C., B l a s i F. (1990), E M B O J., 9, 1079-1085.
A n d r e a s e n P. A. , G r o n d a h l - H a n s e n J., K r i s t e n s e n P., N i e l ­
S k r i v e r L. (1985), Adv. C ancer R es., 44, 139-226.
B e h r e n d t N. , B r u n n e r N. , E l l i s V., P l o u g M. , P y k e C. (1994),
F ibrynolysis, 8, 189-203.
[20] D a w s o n S. J., W i m a n s B., H a m s t e n A. , G r e e n
F., H u m p h r i e s
S., H e n ­
n e y A. M . (1993), J. Biol. C hem ., 268, 10739-10745.
[21] D e l V e c h i o S., S t r o p e l l i M. P., C a r i e r r o M. V., F o n t i R. , M a s s a O.,
L i P. Y., B o t t i G. , C e r r a M. , D ’ A i u t o G. , E s p o s i t o G. , S a l v a t o r e M . (1993),
C ancer Res. 53, 3198-3206.
[22] D u f f y M. J. (1993), Fibrynolysis, 7, 295-302.
[23] D u f f y M . J. (1996), Clin. C ancer Res., 2, 613-618.
[24] D u f f y M. J., R e i l l y D. , N u g e n t A. , M c D e r m o t t E., F a u l C., F e n n e l l y
J., O ' H i g g i n s N . (1992), Irish J. M ed. Sei., 161, 49.
[25] D u f f y M. J., R e i l l y D. , O ’ S u l l i v a n C., O ’ H i g g i n s N. , F e n n e l l y J.
A n d r e a s e n P. A . (1990), C ancer Res,. 50, 6827-6829.
[26] D u g g a n C. , M a g u i r e T. , M c D e r m o t t E., O ’ H i g g i n s N., F e n n e l l y J.
D u f f y M. J. (1995), In t. J. C ancer, 61, 597-600.
[27] E l l i s V. (1997), T rends C ardiovasc. M ed., 7, 227-234.
[28] E r i k s s o n P., K a l l i n B., V a n ’ t H o o f t F. M. , B a v e n h o l m P., H a m s t e n ,
J.
J„
J.,
A.
(1995), Proc. N atl. A cad. Sei. U S A ., 92, 1851-1855.
[29] E s t r e i c h e r A. , W o h l w e n d A., B e l i n D . (1989), J. Biol. C hem ., 264, 1180-1189.
[30] F l e t c h e r C. M. , H a r r i s o n R. A., L a c h m a n P. J., N e u h a u s D . (1994), S tructure,
2, 185-199.
[31] G a n e s h S., S i e r C. F. M. , H e e r d i n g M. H. , G r i f f i o e n G. , L a m e r s C.,
V e r s p a g e t H . W . (1994), L ancet, 344, 401-402.
[32] G r o n d a h l - H a n s e n J., P e t e r s H. A., v a n P u t t e n W. L. J., L o o k M. P.,
P a p p o t H. , R ö n n e E., D a n o K. , K l i j n J. G. H. , B r u n n e r N. , F o e k e n s J.
A . (1995), Clin. C ancer Res., 1, 1079-1087.
[33] H ä c k e l C . , C z e r n i a k B . , A y a l a A . G. , R a d i g K . , R o e s s n e r A . (1997), C ancer,
79, 53-58.
[34] H e i s s M. M. , A l l g a y e r H. , G r u e t z n e r K. U. , F u n k e I., B a b i c R. , J a u c h
K. W. , S c h i l d b e r g F. W. (1995), N a tu re (M ed.), 1, 1035-1038.
[35] H e n r y M. , C h o m i k i N. , S c a r a b i n P. Y. , A l e s s i M. C., P e i r e t t i F., A r v e i l e r
D. , F e r r i e r e s J., E v a n s A. , A m o u y e l P., P o i r i e r O. , C a m b i e n F., J u h a n - V a g u e 1. (1997), A rterioscler. T h ro m . V ascular Biol., 17, 851-858.
[36] H o f m a n n R., L e h m e r A. , B u r e s c h M. , H a r t u n g R ., U l m K. (1996), C ancer,
78, 487-492.
[37] J ä n i c k e F., S c h m i t t M. , H a f t e r R. , H o l l r i e d e r A., B a b i c R. , U l m K. ,
G ö s s n e r W. , G r a e f f H. (1990), F ibrinolysis, 4, 69-78.
[38] J ä n i c k e F., S c h n i t t M. , P a c h e L., U l m K. , H a r b e c k N. , H ö f l e r H. , G r a e f f
H. (1993), B reast C ancer Res. T rea t., 24, 195-208.
[39] J a n k u n J „ M e r r i c k H. W. , G o l d b l a t t P. J. (1993), J. Cell. B iochem ., 53, 135-144.
[40] J u h a n - V a g u e , A l e s s i M. C. (1997), T h ro m b . H aem ost., 78, 656-660.
[41] K o b a y a s h i H. , F u j i s h i r o S., T e r a o T . (1994), C ancer Res., 54, 6539-6548.
[42] K o b a y a s h i H. , G o t o h J., F u j i e M. , S h i n o h a r a H. , M o n i w a N. , T e r a o T.
(1994), In t. J. C ancer., 57, 727-733.
[43] K o h l e r U. , H i l l e r K. , M a r t i n R. , L a n g a n k e D., N a u m a n n G. , B i l e k K. ,
J ä n i c k e F., S c h m i t t M. (1997), G ynecol. O ncol., 66, 268-274.
[44] K o o k Y. H. , A d a m s k i J „ Z e l e n t A. , O s s o w s k i L. (1994), E M B O J., 13, 3983-3991.
[45] K u h n W. , P a c h e L., S c h m a l f e l d t B., D e t t m a r P., S c h m i t t M. , J ä n i c k e F.,
G r a e f f H. (1994), G ynecol. O ncol., 55, 401-409.
[46] L a l a P. K. , G r a h a m C. H. (1990), C ancer M etastasis Rev., 9, 369-379.
[47] L i o t t a L. A. , T r y g g v a s o n K. , G a r b i s a S., H a r t I., F o l t z C. M. , S h a f i e S.
(1980), N ature, 284, 67-68.
[48] L i o t t a L. A. , S t e e g P. S., S t e t l e r - S t e v e n s o n W. G . (1991), Cell, 64, 327-336.
[49] M a t r i s i a n L. M. (1990), T ren d s G enet., 6, 121-125.
[50] M i g n a t t i P., R i f k i n D . B. (1993), Physiol. Rev., 73, 161-195.
[51] M i k k e i s e n T. , Y a n P. S., H o K. L., S a m e n i M. , S l o a n e B. F. , R o s e n ­
b l u m M . L. (1995), 83, 285-290.
[52] M o r r i s e t M. , C a p o n y F. , R o c h e f o r t H. (1986), Biochem . B iophys. Res. C om m un.,
138, 102-109.
[53] N a k a j i m a M. , W e l c h D. R. , B e l l o n i P. N. , N i c o l s o n G . L. (1987), C ancer
R es., 47, 4869-4876.
[54] N a k a n i s h i K. , K a w a i T., T o r i k a t a C., A u r u e s T., l k e d a T . (1998), C ancer,
82, 724-732.
[55] N e k a r d a H. , S i e w e r t J., S c h m i t t M ., U l m K . (1994), L ancet, 343, 117.
[56] N i e l s e n L. S., K e l l e r m a n G. M. , B e h r e n d t N. (1988), J. Biol. C hem ., 263,
2358-2363.
[57] N y k j a e r A. , P e t e r s e n C. M. , M ö l l e r B., J e n s e n P. H. , M o e s t r u p S. K. ,
H o l t e t T. L., E t z e r o d t M. , T h o g e r s e n H. C. , M u n c h M. , A n d r e a s e n P.,
G l i e m a n n J. (1992), J. Biol. C hem ., 267, 14543-14546.
[58] O k a T . , I s h i d a T., N i s h i n o T., S u g i m a c h i K. (1991), C ancer R es., 51, 3522-3525.
[59] P e d e r s e n H. , B r u n n e r N. , F r a n c i s D. , O s t e r l i n d K. , R ö n n e E., H a n ­
s e n H. H. , D a n o K ., G r o n d a h 1 - H a n s e n J. (1994), C ancer R es., 54, 4671-4675.
[60] P e d e r s e n H. , G r o n d a h l - H a n s e n J., F r a n c i s D. , O s t e r l i n d K. , H a u ­
s e r H. H. , D a n o K. , B r u n n e r N . (1994), C ancer R es., 51, 120-123.
[61] P e t e r s e n L. C. , L u n d L. R. , N i e l s e n L. S., D a n o K. , S k r i v e r L. (1988), J.
Biol. C hem ., 263, 11189-11195.
[62] P I o u g M ., E l l i s V. (1994), FE B S L ett., 349, 163-168.
[63] P l o u g M. , R a h b e k - N i e l s e n H. , E l l i s V., R o e p s t o r f f P., D a n o K . (1995),
Biochem istry, 34, 12524-12534.
[64] P l o u g M. , R ö n n e E., B e h r e n d t N. , J e n s e n A. L., B l a s i F., D a n o K . (1991),
J. Biol. C hem ., 266, 1926-1933.
[65] P y k e C., E r i k s e n J., S o l b e r g H. , N i e l s e n B. S., K r i s t e n s e n P., L u n d L .R .,
D a n o K.. (1993), FE B S L ett., 326, 69-74.
[66] P y k e C., G r a e m N. , R a l f k i a e r E. (1993), C ancer R es., 53, 1911-1915.
[67] P y k e C„ K r i s t e n s e n P., R a l f k i a e r E., G r o n d a l - H a n s e n J., E r i k s e n J.,
B l a s i F., D a n o K. (1991), A m . J. P athol., 138, 1059-1067.
[68] R o b b i e L. A., B e n n e t B., C r o l l A. M. , B r o w n P. A. J., B o o t h N . A. (1996),
T h ro m b . H aem ost., 75, 127-133.
[69] R o c h e f o r t H. (1994), E ur. J. C ancer, 30A, 1583-1586.
[70] R o l d a n A. L., C u b e l l i s M. V., M a s u c c i M. , B e h r e n d t N. , L u n d L. R. ,
D a n o K. , A p p e l l a E., B l a s i F . (1990), E M B O J„ 9, 467-474.
[71] S c a m b i a G. , P a n i c i P. B., F e r r a n d i n a G. , D i S t e f a n o M. , R o m a n i n i M.
E., S i c a G. , M a n c u s o S. (1995), E ur. J. C ancer, 31A, 1449-1454.
[72] S c h m a l f e l d t B., K u h n W., R e u n i n g U. , P a c h e L., O e t t m a r P., S c h m i t t
M. , J ä n i c k e F. , H ö f l e r H. , G r a e f f H . (1995), C ancer R es., 55, 3958-3963.
[73] S c h m i t t M. , H a r b e c k N., T h o m s s c n C., W i l h e l m O. , M a g d o i e n V., R e u ­
n i n g U. , U l m K. , H j o f l e r H. , J a n i c k e F., G r a e f f H . (1997), T h ro m b . H aem ost.,
78, 285-296.
[74] S c h m i t t M. , J ä n i c k e F., G r a e f f H. (1990), Blood C oagul. F ibrinolysis, 1, 695-702.
[75] S h e b e r t G . V. (1982), The Biology o f Tumor M alignancy, A cadem ic Press, L o n d o n .
[76] S h e b e r t G . V. (1987), The M etastatic Spread o f Cancer, M acm illan, B asingstoke
& L ondon.
[77] S i n h a A.
S l o a n e B.
[78] S l o a n e B.
[79] S l o a n e B.
A.,
F.
F.
F.,
G l e a s o n D. F., S t a n l e y N. A., W i l s o n M. J., S a m e l i M. ,
(1995), A n a t. Rec., 241, 353-362.
(1990), Sem in. C ancer. Biol., 1, 137-152.
M o i n K. , K r e p k e l a E., R o z h i n J. (1990), C ancer M etastasis Rev.,
9, 333-352.
[80] S m o l a r z B., B ł a s i a k J., P i e s t r z e n i e w i c z D. , P y t e l J. (1998), Cell. M ol. Biol.
L ett., 3, in press.
[81] S p r e n g e r s E. D. , K l u f t C., (1980), T h ro m b . H aem ost., 69, 381-387.
[82] T u r k m e n B., S c h m i t t M. , S c h m a l f e l d t B., T r o m m l e r P., H e l l W. , C r e u t z b u r g S., G r a e f f H. , M a g d o l e n (1997), E lectrophoresis, 18, 686-689.
[83] T u r p e e n n i e m i - H u j a n e n T. , T h o r g e i r s s o n U. P., H a r t 1. R. , G r a n t S. S.,
L i o t t a L. A . (1985), J. N atl. C ancer Inst., 75, 99-103.
[84] V a n d e r B u r g M. E. L., H e n z e n - L o g m a n s S. C., B e r n s E. M. J. J., V a n
P u t t e n W. L. J., K l i j n J. G. M. , F o e k e n s J. A. (1996), Int. J. C ancer, 69, 475-479.
[85] V a s s a l l i J., B a c c i n o D. , B e l i n D . (1985), J. Cell. Biol., 100, 86-92.
[86] W a n g Y., D a n g J., J o h n s o n L. K. , S e l h a m e r J. J., D o e W . F . (1995), E ur. J.
Biochem ., 227, 116-122.
[87] Y e S., G r e e n F. R. , S c a r a b i n P. Y. , N i c a u d V., B a r a L., D a w s o n J.,
H u m p h r i e s S. E., E v a n s A. , L u c G. , C a m b o u J. P., A r v e i l e r D. , H e n n e y
A. M. , C a m b i e n F. (1995), T h ro m b . H aem ost., 74, 837-841.
W płynęło d o R edakcji
F o lia biochim ica et biophysica
24.04.1998
D e p a rtm e n t o f M olecular
G enetics
U niversity o f Ł ó d ź
Janusz Błasiak, Beata Sm olarz, Dagm ara Piestrzeniewicz
U R O K IN A Z O W Y U K ŁA D A K T Y W A C JI P L A Z M IN O G E N U I J E G O R O L A
W IN W A Z Y JN O Ś C I N O W O T W O R Ó W I IC II Z D O IJV O Ś C I D O P R Z E R Z U T O W A N IA
Inw azyjność n o w o tw o ró w i ich zd o ln o ść d o p rz erz u to w an ia są klinicznym i cecham i
progresji now otw orów i w ym agają degradacji i m igracji przez tk an k ę łączną przez kom órki
rakow e. Procesy te zależą od złożonego oddziaływ ania pom iędzy k o m ó rk am i no w o tw o ru
i otaczającą m acierzą zew nątrzkom órkow ą. O ddziaływ ania te są m odyfikow ane przez enzym y
p roteolityczne i ich receptory. U rokinazow y uk ład aktyw acji plazm inogenu odgryw a w ażną
rolę w inw azyjności now otw orów i ich zdolności d o p rzerzutow ania. U kład len zaw iera
u ro k in azo w y a k ty w ato r plazm inogenu (uPA ), receptor urokinazow y (uP A R ) i specyficzne
in h ib ito ry a k ty w ato ró w plazm inogenu, PAI-1 i PA I-2. R ecep to r uPA m oże znajdow ać się na
pow ierzchni k o m órek rakow ych. uPA m oże być uw alniany zarów no przez k o m ó rk i no rm aln e
ja k i zm ienione now otw orow o. K om pleks uP A -uP A R skupia aktyw ność p ro teo lity czn ą na
pow ierzchni k o m órek rakow ych przez konw ersję osoczow ego białka plazm inogenu d o pro teazy
serynow ej plazm iny. P lazm ina d egraduje m acierz zew nątrzkom órkow ą w sąsiedztw ie k o m órek
rakow ych ułatw iając w ten sposób inw azję now otw orów . uPA , u P A R i PAI-1 m ogą być
stosow ane ja k o m ark ery prognostyczne w wielu typach rak a.