1 glucose production from cassava starch by monoculture and

1
GLUCOSE PRODUCTION FROM CASSAVA STARCH BY MONOCULTURE
AND COCULTURE OF RAGI TAPAI AND SACCHAROMYCES CEREVISIAE
MA SIEW VOON
A thesis submitted in partial fulfillment of the
requirements for the award of the degree of
Bachelor of Engineering (Chemical)
Faculty of Chemical Engineering
Universiti Teknologi Malaysia, Johor
JANUARY 2013
v
ABSTRACT
Bioethanol is in the upsurge trend as the potential alternative fuel for gasoline.
Bioethanol is produced from fermentation of reducing sugar. Production of sugar as
feedstocks for bioethanol is the core of this research. The first objectives of this
research is to evaluate the overall trend in terms of glucose production via
simultaneous saccharification and fermentation of cassava starch in room
temperature by using indigenous culture called “ragi tapai”, S. cerevisae and a
coculture of “ragi tapai” and S.cerevisiae. Secondly, the effects of various parameters
such as temperature, culture time and starch to inoculum ratio are investigated on
hydrolysis of starch by using “ragi tapai” only. Agitation speed, inoculum size and
nitrogen source are fixed during the experiment. The experiment is conducted for
72hours and glucose yield is measured at different time interval. The range of the
factors investigated is room temperature and 35°C (temperature), 1 hour and 3 hours
(culture time), 5w/v%, 10w/v% and 15w/v% (starch concentration). The yield of
glucose is analyzed by using DNS colorimetric method. Based on the findings
obtained from the research, “ragi tapai” showed the highest potential in hydrolyzing
polysaccharides of starch molecule into monosaccharide glucose in room
temperature. S.cerevisiae showed the lowest hydrolyzing ability while coculture of
both “ragi tapai” and S.cerevisiae showed fluctuation in glucose production. “Ragi
tapai” has showed the best performance in these conditions; of room temperature, 1
hour cultured and 1:1 starch to inoculums ratio. The highest glucose generated during
the study is 15.8g/L and this yield is 31.6% with respect to dry weight basis of
cassava starch powder used and 11.3% with respect to wet weight basis.
vi
ABSTRAK
Bioethanol adalah dalam trend peningkatan sebagai bahan api alternatif yang
berpotensi untuk petrol. Bioetanol dihasilkan daripada penapaian gula ringkas.
Penghasilan gula sebagai bahan mentah untuk bioethanol adalah teras penyelidikan
ini. Objektif pertama kajian ini adalah untuk menilai trend keseluruhan dari segi
penghasilan glukosa melalui saccharification serentak dan penapaian kanji ubi kayu
pada suhu bilik dengan menggunakan monokultur dan cokultur komersial ragi tapai
dan S.cerevisiae. Kedua, kesan pelbagai parameter seperti suhu, kultur masa dan
nisbah kanji kepada inokulum disiasat pada hidrolisis kanji oleh monokultur ragi
tapai sahaja. Kelajuan putaran, saiz inokulum dan sumber nitrogen ditetapkan semasa
eksperimen. Eksperimen dijalankan untuk 72hours dan hasil glukosa diukur untuk
selang masa yang berbeza. Pelbagai faktor yang dikaji adalah suhu bilik dan 35 °C
(suhu), 1 jam dan 3 jam (kultur masa), 5w/v%, 10w/v% dan 15w/v% (kanji
kepekatan). Hasil glukosa dianalisis dengan menggunakan kaedah kolorimetrik DNS.
Berdasarkan hasil kajian, monokultur ragi tapai mempunyai potensi tertinggi dalam
menukarkan polisakarida molekul kanji menjadi glukosa monosakarida pada suhu
bilik. S.cerevisiae menunjukkan keupayaan terendah dalam penghasilan glukosa
manakala cokultur kedua-dua yis menunjukkan turun naik dalam pengeluaran
glukosa. Monokultur ragi tapai telah menunjukkan prestasi yang terbaik dalam
keadaan suhu bilik, 1 jam pengulturan dan nisbah 1:1 kanji kepada inokulum.
Glukosa tertinggi yang dihasilkan semasa penyelidikan adalah 15.8g / L dan hasil ini
adalah 31.6% dengan asas berat kering serbuk kanji ubi kayu digunakan dan 11.3%
dengan asas berat basah kanji.
vii
TABLE OF CONTENTS
CHAPTER
1
2
TITLE
PAGE
DECLARATION
ii
DEDICATION
iii
ACKNOWLEDGEMENT
iv
ABSTRACT
v
ABSTRAK
vi
TABLE OF CONTENTS
vii
LIST OF TABLES
x
LIST OF FIGURES
xi
LIST OF ABBREVIATIONS
xiii
INTRODUCTION
1
1.1
Background of Study
1
1.2
Problem Statement
2
1.3
Objective of Study
3
1.4
Scope of Study
4
1.5
Significance of Study
5
LITERATURE REVIEW
6
2.1
Biofuel
6
2.2
Bioethanol
7
2.3
Bioethanol Economics in Malaysia
8
2.4
Raw Material for Bioethanol Production
9
viii
2.5
Cassava
11
2.6
Starch
13
2.7
Glucose
14
2.8
Yeast
15
2.8.1 Ragi tapai
16
2.8.2 Saccharomyces cerevisiae
18
2.9
Microbial Culture
19
2.10
Pretreatment/ Gelatinization Process
20
2.11
Liquefaction and Saccharification Process
20
2.12
Ethanol Fermentation
21
2.13
Parameters Affect Hydrolysis Rate
22
2.13.1 Temperature
22
2.13.2 Culture Time
23
2.13.3 Substrate Concentration
24
DNS Glucose Analysis Method
25
2.14
3
METHODOLOGY
26
3.1
Material and Reagents
26
3.2
Experimental Equipment and Apparatus
27
3.3
Experimental Procedure
27
3.3.1 Sample Preparation
28
3.3.2 Yeast and Culture Medium
28
3.3.3 Glucose Production by Monoculture and
28
Coculture of Yeast
3.3.4 Evaluation for Sugar Hydrolysis Performance
29
3.3.4.1 Effect of Cassava Starch to Inoculum Ratio 30
3.4
3.3.4.2 Effect of Culture Time
30
3.3.4.3 Effect of Temperature
31
Analysis Method
31
3.4.1 Glucose Standard Preparation
31
3.4.2 Determination of Glucose by DNS Method
32
ix
4
RESULTS AND DISCUSSIONS
34
4.1
Standard Calibration Curve for Glucose
34
4.2
Sugar Production using Monoculture Ragi Tapai
36
4.3
Sugar Production using Monoculture S. cerevisiae
38
4.4
Sugar Production using Coculture Ragi Tapai and
39
S.cerevisiae
4.5
5
Saccharification of Starch by Ragi tapai
41
4.5.1 Effect of Cassava Starch to Inoculum Ratio
41
4.5.2 Effect of Culture Time
43
4.5.3 Effect of Temperature
44
CONCLUSIONS AND RECOMMENDATIONS
46
5.1
Conclusions
46
5.2
Recommendations
47
REFERENCES
49
APPENDIX
56
49
REFERENCES
Aiyer, P.V. (2005). Amylases and their Applications. African Journal of
Biotechnology . 4(13), 1525-1529.
Aidoo, K.E., Rob Nout, M.J. and Sarkar, P.K. (2006). Occurrence and Function of
Yeasts in Asian Indigenous Fermented Foods. FEMS Yeast Research 6 (1),
30-39.
Apar, D. C.; Özbek, B. (2005). Process Biochemistry 40, 1367.
Azmi, A.S., Ngoh, G.C., Mel, M. and Hasan, M. (2010). “ragi tapai” and
Sacchromyces cerevisiae as Potential Coculture in Viscous Fermentation
Medium for Ethanol Production. African Journal of Biotech 9(42). 7122-7127.
Azmi, A.S., Ngoh, G.C.and Mel, M. (2011). Prediction of Significant Factors in the
Production of Ethanol by “ragi tapai” Co-culture using Taguchi Methodology.
African Journal of Biotechnology 10(81), 18833-18841.
Balat, M., Balat, H. and Cahide O. (2008). Progress in Bioethanol Processing.
Progress in Energy and Combustion Science. 34 :551–573.
Balagopalan, C., Rajalakshmy, L. (1998). Cyanogen Accumulation in Environment
during Processing of Cassava (Manihot Esculenta Crantz) for Starch and
Sago. 102( 3-4), 407-413(7)
Barnett, J.A. (1975). The Entry of D-ribose into Some Yeasts of the Genus Pichia.
Journal of General Microbiology 90 (1), 1–12.
50
Baskar, G., Muthukumaran, C. and Renganathan, S. (2008). Optimization of
Enzymatic Hydrolysis of Manihot Esculenta Root Starch by Immobilized αamylase Using Response Surface Methodology. International Journal of
Chemical and Biological Engineering 1:3.
Biliaderis, C. G. (1998). Structures and phase transitions of starch polymers. In R. H.
Walter (Ed.).Polysaccharide Association Structures in Food. 57-168. New
York: Marcel-Dekker, Inc.
Buléon, A., Colonna, P., Planchot, V. and Ball, S. (1998). Starch Granules: Structure
and Biosynthesis. International Journal of Biological Macromolecules. 23,
85-112.
Burrell, M.M. (2003). Starch: The Need for Improved Quality or Quantity-an
Overview. Journal of Experimental Botany. 54 (382), 451-456.
Clark, D. and Sokoloff, L. (1999). Molecular, Cellular and Medical Aspects. Basic
Neurochemistry: Lippincott. 637–670.
Cseke, L.J., Podila, G.K., Kirakosyan, A. and Kaufman, B. Plants as Sources of
Energy. (2009). 163. Springer.
Davies, L. (1995). Starch - Composition, Modifications, Applications and Nutritional
Value in Foodstuffs. Food Technology Europe, 6/7, 44-52.
Dagninoa, E.P., Chamorro, E.R., Romano, S.D. and Felissia, F.E. (2012).
Optimization of the Acid Pretreatment of Rice Hulls to Obtain Fermentable
Sugars for Bioethanol Production. Industrial Crops and Products 42, 363–
368.
de Oliveria MED, Vaughan, B.E., Rykiel, Jr E.J. (2005). Ethanol as Fuel: Energy,
Carbon Dioxide Balances, and Ecological Footprint. BioScience. 55,
593–602.
51
Farrel, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M. and Kammen, D.M.
(2006). Ethanol Can Contribute to Energy and Environmental Goals. Science
311 (5760), 506-508.
Frazer, L.N. (1998). One stop mycology. Mycological Research 102(1), 103-128.
Frolund, B., Palmgren, R., Keiding, K. and Nielsen, P.H. (1996). Extraction of
Extracellular Polymers from Activated Sludge Using a Cation Exchange
Resin. Water Res. 30(8), 1749-1758.
Gandjar, I. (2003). Tapai from Cassava and Cereals. First International Symposium
and Workshop on World of Indigeneous Fermented Foods for Technology
Development and Food Safety. August 13-17. Kasetsart University.
Gerhardt, P., Murray, R.G.E., Wood, W.A. and Krieg, N.R. (1994). Methods for
General and Molecular Bacteriology. 518. ASM, Washington DC. .
Hostinova, E. (2002). Amylolytic Enzyme Produced by the Yeast Saccharomycopsis
fibuligera. Biol. Bratislava. 11 : 247-251.
Knox, A.M., Preez, J.C. and Kilian, S.G. (2004). Starch Fermentation Characteristics
of Saccharomyces cerevisiae Strains Transformed with Amylase Genes from
Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb
Technol. 34: 453-460.
Konsula, Z. and Liakopoulou-Kyriakides, M. (2004). Hydrolysis of Starches by the
Action of an α-amylase from Bacillus Subtilis. Process Biochemistry. 39,
1745–1749.
Leveque, E., Janecek, S., Haye, B. and Belarbi, A. (2000). Thermophilic Archaeal
Amylolytic Enzymes - Catalytic Mechanism, Substrate Specificity, and
Stability. Enzyme Microbial Technology 26, 3-14.
52
Madigan, M.T. and Martinko. J.M.(2006). Brock Biology of Microorganisms (11th
ed.). Upper Saddle River, NJ, USA: Prentice Hall.
Mitsuiki, S., Mukae, K., Sakai, M., Goto, M., Hayashida, S. and Furukawa, K.
(2005). Comparative characterization of raw starch hydrolyzing a-amylases
from various Bacillus strains. Enzyme and Microbial Technology. 7(4), 410416.
Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of
Reducing Sugar. Analytica. Chemistry. 31, 426.
Mojović, L., Nikolić, S., Rakin, M. and Vukasinović, M. (2006). Production of
Bioethanol from Corn Meal Hydrolyzates, Fuel. 85, 1750-1755.
Nagodawithana, T. and Reed, G. (1993). Enzymes in Food Processing. 3th ed.:
Academic press: San Diego. 122. New York.
Nitayavardhana, S., Shrestha, P., Rasmussen, M.L., Lamsal, B.P., Leeuwen, J. and
Khanal, S.K. (2010). Ultrasound Improved Ethanol Fermentation from
Cassava Chips in Cassava-Based Ethanol Plants. Bioresource Technology
101, 2741–2747.
Nga, B.H., Yip, C.W., Koh , S.I. and Chiu, L.L. (1995). Variation of Electrophoretic
Karyotypes in Genetically Different Strains of Saccharomycopsis fibuligera
and Yarrowia lipolytica. Microbiology 141,705-711.
Plácido, M. G. R., Rodrigues do Canto, L. and Amante, E. R. (2005). Quim. Nova.
28, 596.
Patle, S and Lal, B. (2008). Investigation of the Potential of Agro-Industrial Material
as Low Cost Substrate for Ethanol Production by Using Candida Tropicalis
and Zymomonas Mobilis. Biomass Bioenergy. 32, 569-602.
53
Portela, V. M., Zamberlam, G. and Price, C.A. (2010). Cell Planting Density Alters
the Ratio of Estrogenic to Progestagenic Enzyme Gene Expression in
Cultured Granulosa Cells. Fertil. Steril. 93 (6), 2050–2055.
Rao, R.S., Prakasham, R.S., Prasad, K.K., Rajesham,S., Sarma, P.N. and Rao, L.
(2004). Xylitol Production by Candida sp.: Parameter Optimization using
Taguchi Approach. Process Biochemistry 39 (8), 951–956.
Ruiz, M.I., Sanchez, C.I., Torrresa, R.G. and Molina, D.R. (2011). Enzymatic
Hydrolysis of Cassava Starch for Production of Bioethanol with a Colombian
Wild Yeast Strain. J. Braz. Chem. Soc. 22(12), 2337-2343.
Saelim, K., Dissara, Y. and H-Kittikun, A. (2008). Saccharification of Cassava
Starch by Saccharomycopsis fibuligera YCY1 Isolated from Loog-Pang (rice cake
starter). Songklanakarin J. Sci. Technol. 30 (1): 65-71.
Shariffa, Y.N., Karim, A.A., Fazilah, A., Zaidul, I.S.M.
(2009). Enzymatic
Hydrolysis of Granular Native and Mildly Heat-Treated Tapioca and Sweet
Potato Starches at Sub-Gelatinization Temperature, Food Hydrocolloids. 23,
434-440.
Surmely, R., Alvarez, H., Cereda, M.P. and Vilpoux, O.P. (2004). Hydrolysis of
Starch, in Collections, in: Cereda, M.P., Vilpoux, O.F. (Eds.), Latin American
Starchy Tubers, Book 3: Technology, Use and Potentialities of Latin
American Starchy Tubers. NGO Raí
zes and Cargill Foundation, Sao Paulo,
389–469.
Siti Nor Shadila Binti Alias (2009). Effects of pH And Temperature on Glucose
Production from Tapioca Starch using Enzymatic Hydrolysis: A Statistical
Approach. Bachelor of Chemical Engineering (Biotechnology). University
Malaysia Pahang.
54
Srirotha, K., Chollakupb, R., Chotineeranatb, S., Piyachomkwanb, K. and Oatesc,
C.G. Processing of Cassava Waste for Improved Biomass Utilization.
Bioresource Technology 71, 63-69.
Tamang, J.P. and Thapa, S. (2006). Fermentation Dynamics during Production of
Bhaati Jaanr, a Traditional Fermented Rice Beverage of the Eastern
Himalayas. Food Biotechnology 20 (3): 251-261.
Tasi´c, M.B., Konstantinovi´c, B.V., Lazi´c, M.L. and Veljkovi´c, V.B. (2009). The
Acid Hydrolysis of Potato Tuber Mash in Bioethanol Production.
Biochemical Engineering Journal 43, 208–211.
Tester, R. F., Qi, X. and Karkalas, J. (2006). Anim. Feed Sci. Technol. 130, 39.
Tye, Y.Y, Lee, K.T., Wan Nadiah Wan Abdullah. and Leh,C.P. (2011). SecondGeneration Bioethanol as A Sustainable Energy Source in Malaysia
Transportation Sector: Status, Potential and Future Prospects. Renewable and
Sustainable Energy Reviews. 15, 4521–4536.
Tonukari, N.J.( 2004). Cassava and the Future of Starch. Electronic Journal of
Biotechnology. 7(1).
Van der Veen, M. E., Veelaert, S., Goot, A. J. and Boom, R. M. (2006). Starch
Hydrolysis under Low Water Conditions: A Conceptual Process Design.
Journal of Food Engineering. 75 (2), 178-186.
Verma, G., Nigam, P., Singh, D. and Chaudhary, K. (2000). Bioconversion of Starch
to Ethanol in a Single-Step Process by Coculture of Amylolytic Yeasts and
Saccharomyces Cerevisiae 21. Bioresource Technology 72, 261-266.
Wang, W. (2002). Cassava Production for Industrial Utilization in China- Present
and future Perspective. In: Cassava Research and Development in Asia:
Exploring New Opportunities for an Ancient Crop. Seventh Regional
Cassava Workshop. October 28–November 1. Bangkok, Thailand. 33, 8.
55
Walker, K., Skelton, H. and Smith, K. (2002). Cutaneous Lesions Showing Giant
Yeast Forms of Blastomyces dermatitidis. Journal of Cutaneous Pathology
29 (10), 616–618.
Wildenborg, T. and Lokhorst, A. (2005). Introduction on CO 2 Geological storageClassification of Storage Options. Oil Gas Sci Technol Rev IFP. 60:513–5.