1 GLUCOSE PRODUCTION FROM CASSAVA STARCH BY MONOCULTURE AND COCULTURE OF RAGI TAPAI AND SACCHAROMYCES CEREVISIAE MA SIEW VOON A thesis submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Engineering (Chemical) Faculty of Chemical Engineering Universiti Teknologi Malaysia, Johor JANUARY 2013 v ABSTRACT Bioethanol is in the upsurge trend as the potential alternative fuel for gasoline. Bioethanol is produced from fermentation of reducing sugar. Production of sugar as feedstocks for bioethanol is the core of this research. The first objectives of this research is to evaluate the overall trend in terms of glucose production via simultaneous saccharification and fermentation of cassava starch in room temperature by using indigenous culture called “ragi tapai”, S. cerevisae and a coculture of “ragi tapai” and S.cerevisiae. Secondly, the effects of various parameters such as temperature, culture time and starch to inoculum ratio are investigated on hydrolysis of starch by using “ragi tapai” only. Agitation speed, inoculum size and nitrogen source are fixed during the experiment. The experiment is conducted for 72hours and glucose yield is measured at different time interval. The range of the factors investigated is room temperature and 35°C (temperature), 1 hour and 3 hours (culture time), 5w/v%, 10w/v% and 15w/v% (starch concentration). The yield of glucose is analyzed by using DNS colorimetric method. Based on the findings obtained from the research, “ragi tapai” showed the highest potential in hydrolyzing polysaccharides of starch molecule into monosaccharide glucose in room temperature. S.cerevisiae showed the lowest hydrolyzing ability while coculture of both “ragi tapai” and S.cerevisiae showed fluctuation in glucose production. “Ragi tapai” has showed the best performance in these conditions; of room temperature, 1 hour cultured and 1:1 starch to inoculums ratio. The highest glucose generated during the study is 15.8g/L and this yield is 31.6% with respect to dry weight basis of cassava starch powder used and 11.3% with respect to wet weight basis. vi ABSTRAK Bioethanol adalah dalam trend peningkatan sebagai bahan api alternatif yang berpotensi untuk petrol. Bioetanol dihasilkan daripada penapaian gula ringkas. Penghasilan gula sebagai bahan mentah untuk bioethanol adalah teras penyelidikan ini. Objektif pertama kajian ini adalah untuk menilai trend keseluruhan dari segi penghasilan glukosa melalui saccharification serentak dan penapaian kanji ubi kayu pada suhu bilik dengan menggunakan monokultur dan cokultur komersial ragi tapai dan S.cerevisiae. Kedua, kesan pelbagai parameter seperti suhu, kultur masa dan nisbah kanji kepada inokulum disiasat pada hidrolisis kanji oleh monokultur ragi tapai sahaja. Kelajuan putaran, saiz inokulum dan sumber nitrogen ditetapkan semasa eksperimen. Eksperimen dijalankan untuk 72hours dan hasil glukosa diukur untuk selang masa yang berbeza. Pelbagai faktor yang dikaji adalah suhu bilik dan 35 °C (suhu), 1 jam dan 3 jam (kultur masa), 5w/v%, 10w/v% dan 15w/v% (kanji kepekatan). Hasil glukosa dianalisis dengan menggunakan kaedah kolorimetrik DNS. Berdasarkan hasil kajian, monokultur ragi tapai mempunyai potensi tertinggi dalam menukarkan polisakarida molekul kanji menjadi glukosa monosakarida pada suhu bilik. S.cerevisiae menunjukkan keupayaan terendah dalam penghasilan glukosa manakala cokultur kedua-dua yis menunjukkan turun naik dalam pengeluaran glukosa. Monokultur ragi tapai telah menunjukkan prestasi yang terbaik dalam keadaan suhu bilik, 1 jam pengulturan dan nisbah 1:1 kanji kepada inokulum. Glukosa tertinggi yang dihasilkan semasa penyelidikan adalah 15.8g / L dan hasil ini adalah 31.6% dengan asas berat kering serbuk kanji ubi kayu digunakan dan 11.3% dengan asas berat basah kanji. vii TABLE OF CONTENTS CHAPTER 1 2 TITLE PAGE DECLARATION ii DEDICATION iii ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi TABLE OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xi LIST OF ABBREVIATIONS xiii INTRODUCTION 1 1.1 Background of Study 1 1.2 Problem Statement 2 1.3 Objective of Study 3 1.4 Scope of Study 4 1.5 Significance of Study 5 LITERATURE REVIEW 6 2.1 Biofuel 6 2.2 Bioethanol 7 2.3 Bioethanol Economics in Malaysia 8 2.4 Raw Material for Bioethanol Production 9 viii 2.5 Cassava 11 2.6 Starch 13 2.7 Glucose 14 2.8 Yeast 15 2.8.1 Ragi tapai 16 2.8.2 Saccharomyces cerevisiae 18 2.9 Microbial Culture 19 2.10 Pretreatment/ Gelatinization Process 20 2.11 Liquefaction and Saccharification Process 20 2.12 Ethanol Fermentation 21 2.13 Parameters Affect Hydrolysis Rate 22 2.13.1 Temperature 22 2.13.2 Culture Time 23 2.13.3 Substrate Concentration 24 DNS Glucose Analysis Method 25 2.14 3 METHODOLOGY 26 3.1 Material and Reagents 26 3.2 Experimental Equipment and Apparatus 27 3.3 Experimental Procedure 27 3.3.1 Sample Preparation 28 3.3.2 Yeast and Culture Medium 28 3.3.3 Glucose Production by Monoculture and 28 Coculture of Yeast 3.3.4 Evaluation for Sugar Hydrolysis Performance 29 3.3.4.1 Effect of Cassava Starch to Inoculum Ratio 30 3.4 3.3.4.2 Effect of Culture Time 30 3.3.4.3 Effect of Temperature 31 Analysis Method 31 3.4.1 Glucose Standard Preparation 31 3.4.2 Determination of Glucose by DNS Method 32 ix 4 RESULTS AND DISCUSSIONS 34 4.1 Standard Calibration Curve for Glucose 34 4.2 Sugar Production using Monoculture Ragi Tapai 36 4.3 Sugar Production using Monoculture S. cerevisiae 38 4.4 Sugar Production using Coculture Ragi Tapai and 39 S.cerevisiae 4.5 5 Saccharification of Starch by Ragi tapai 41 4.5.1 Effect of Cassava Starch to Inoculum Ratio 41 4.5.2 Effect of Culture Time 43 4.5.3 Effect of Temperature 44 CONCLUSIONS AND RECOMMENDATIONS 46 5.1 Conclusions 46 5.2 Recommendations 47 REFERENCES 49 APPENDIX 56 49 REFERENCES Aiyer, P.V. (2005). Amylases and their Applications. African Journal of Biotechnology . 4(13), 1525-1529. Aidoo, K.E., Rob Nout, M.J. and Sarkar, P.K. (2006). Occurrence and Function of Yeasts in Asian Indigenous Fermented Foods. FEMS Yeast Research 6 (1), 30-39. Apar, D. C.; Özbek, B. (2005). Process Biochemistry 40, 1367. Azmi, A.S., Ngoh, G.C., Mel, M. and Hasan, M. (2010). “ragi tapai” and Sacchromyces cerevisiae as Potential Coculture in Viscous Fermentation Medium for Ethanol Production. African Journal of Biotech 9(42). 7122-7127. Azmi, A.S., Ngoh, G.C.and Mel, M. (2011). Prediction of Significant Factors in the Production of Ethanol by “ragi tapai” Co-culture using Taguchi Methodology. African Journal of Biotechnology 10(81), 18833-18841. Balat, M., Balat, H. and Cahide O. (2008). Progress in Bioethanol Processing. Progress in Energy and Combustion Science. 34 :551–573. Balagopalan, C., Rajalakshmy, L. (1998). Cyanogen Accumulation in Environment during Processing of Cassava (Manihot Esculenta Crantz) for Starch and Sago. 102( 3-4), 407-413(7) Barnett, J.A. (1975). The Entry of D-ribose into Some Yeasts of the Genus Pichia. Journal of General Microbiology 90 (1), 1–12. 50 Baskar, G., Muthukumaran, C. and Renganathan, S. (2008). Optimization of Enzymatic Hydrolysis of Manihot Esculenta Root Starch by Immobilized αamylase Using Response Surface Methodology. International Journal of Chemical and Biological Engineering 1:3. Biliaderis, C. G. (1998). Structures and phase transitions of starch polymers. In R. H. Walter (Ed.).Polysaccharide Association Structures in Food. 57-168. New York: Marcel-Dekker, Inc. Buléon, A., Colonna, P., Planchot, V. and Ball, S. (1998). Starch Granules: Structure and Biosynthesis. International Journal of Biological Macromolecules. 23, 85-112. Burrell, M.M. (2003). Starch: The Need for Improved Quality or Quantity-an Overview. Journal of Experimental Botany. 54 (382), 451-456. Clark, D. and Sokoloff, L. (1999). Molecular, Cellular and Medical Aspects. Basic Neurochemistry: Lippincott. 637–670. Cseke, L.J., Podila, G.K., Kirakosyan, A. and Kaufman, B. Plants as Sources of Energy. (2009). 163. Springer. Davies, L. (1995). Starch - Composition, Modifications, Applications and Nutritional Value in Foodstuffs. Food Technology Europe, 6/7, 44-52. Dagninoa, E.P., Chamorro, E.R., Romano, S.D. and Felissia, F.E. (2012). Optimization of the Acid Pretreatment of Rice Hulls to Obtain Fermentable Sugars for Bioethanol Production. Industrial Crops and Products 42, 363– 368. de Oliveria MED, Vaughan, B.E., Rykiel, Jr E.J. (2005). Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint. BioScience. 55, 593–602. 51 Farrel, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M. and Kammen, D.M. (2006). Ethanol Can Contribute to Energy and Environmental Goals. Science 311 (5760), 506-508. Frazer, L.N. (1998). One stop mycology. Mycological Research 102(1), 103-128. Frolund, B., Palmgren, R., Keiding, K. and Nielsen, P.H. (1996). Extraction of Extracellular Polymers from Activated Sludge Using a Cation Exchange Resin. Water Res. 30(8), 1749-1758. Gandjar, I. (2003). Tapai from Cassava and Cereals. First International Symposium and Workshop on World of Indigeneous Fermented Foods for Technology Development and Food Safety. August 13-17. Kasetsart University. Gerhardt, P., Murray, R.G.E., Wood, W.A. and Krieg, N.R. (1994). Methods for General and Molecular Bacteriology. 518. ASM, Washington DC. . Hostinova, E. (2002). Amylolytic Enzyme Produced by the Yeast Saccharomycopsis fibuligera. Biol. Bratislava. 11 : 247-251. Knox, A.M., Preez, J.C. and Kilian, S.G. (2004). Starch Fermentation Characteristics of Saccharomyces cerevisiae Strains Transformed with Amylase Genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb Technol. 34: 453-460. Konsula, Z. and Liakopoulou-Kyriakides, M. (2004). Hydrolysis of Starches by the Action of an α-amylase from Bacillus Subtilis. Process Biochemistry. 39, 1745–1749. Leveque, E., Janecek, S., Haye, B. and Belarbi, A. (2000). Thermophilic Archaeal Amylolytic Enzymes - Catalytic Mechanism, Substrate Specificity, and Stability. Enzyme Microbial Technology 26, 3-14. 52 Madigan, M.T. and Martinko. J.M.(2006). Brock Biology of Microorganisms (11th ed.). Upper Saddle River, NJ, USA: Prentice Hall. Mitsuiki, S., Mukae, K., Sakai, M., Goto, M., Hayashida, S. and Furukawa, K. (2005). Comparative characterization of raw starch hydrolyzing a-amylases from various Bacillus strains. Enzyme and Microbial Technology. 7(4), 410416. Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytica. Chemistry. 31, 426. Mojović, L., Nikolić, S., Rakin, M. and Vukasinović, M. (2006). Production of Bioethanol from Corn Meal Hydrolyzates, Fuel. 85, 1750-1755. Nagodawithana, T. and Reed, G. (1993). Enzymes in Food Processing. 3th ed.: Academic press: San Diego. 122. New York. Nitayavardhana, S., Shrestha, P., Rasmussen, M.L., Lamsal, B.P., Leeuwen, J. and Khanal, S.K. (2010). Ultrasound Improved Ethanol Fermentation from Cassava Chips in Cassava-Based Ethanol Plants. Bioresource Technology 101, 2741–2747. Nga, B.H., Yip, C.W., Koh , S.I. and Chiu, L.L. (1995). Variation of Electrophoretic Karyotypes in Genetically Different Strains of Saccharomycopsis fibuligera and Yarrowia lipolytica. Microbiology 141,705-711. Plácido, M. G. R., Rodrigues do Canto, L. and Amante, E. R. (2005). Quim. Nova. 28, 596. Patle, S and Lal, B. (2008). Investigation of the Potential of Agro-Industrial Material as Low Cost Substrate for Ethanol Production by Using Candida Tropicalis and Zymomonas Mobilis. Biomass Bioenergy. 32, 569-602. 53 Portela, V. M., Zamberlam, G. and Price, C.A. (2010). Cell Planting Density Alters the Ratio of Estrogenic to Progestagenic Enzyme Gene Expression in Cultured Granulosa Cells. Fertil. Steril. 93 (6), 2050–2055. Rao, R.S., Prakasham, R.S., Prasad, K.K., Rajesham,S., Sarma, P.N. and Rao, L. (2004). Xylitol Production by Candida sp.: Parameter Optimization using Taguchi Approach. Process Biochemistry 39 (8), 951–956. Ruiz, M.I., Sanchez, C.I., Torrresa, R.G. and Molina, D.R. (2011). Enzymatic Hydrolysis of Cassava Starch for Production of Bioethanol with a Colombian Wild Yeast Strain. J. Braz. Chem. Soc. 22(12), 2337-2343. Saelim, K., Dissara, Y. and H-Kittikun, A. (2008). Saccharification of Cassava Starch by Saccharomycopsis fibuligera YCY1 Isolated from Loog-Pang (rice cake starter). Songklanakarin J. Sci. Technol. 30 (1): 65-71. Shariffa, Y.N., Karim, A.A., Fazilah, A., Zaidul, I.S.M. (2009). Enzymatic Hydrolysis of Granular Native and Mildly Heat-Treated Tapioca and Sweet Potato Starches at Sub-Gelatinization Temperature, Food Hydrocolloids. 23, 434-440. Surmely, R., Alvarez, H., Cereda, M.P. and Vilpoux, O.P. (2004). Hydrolysis of Starch, in Collections, in: Cereda, M.P., Vilpoux, O.F. (Eds.), Latin American Starchy Tubers, Book 3: Technology, Use and Potentialities of Latin American Starchy Tubers. NGO Raí zes and Cargill Foundation, Sao Paulo, 389–469. Siti Nor Shadila Binti Alias (2009). Effects of pH And Temperature on Glucose Production from Tapioca Starch using Enzymatic Hydrolysis: A Statistical Approach. Bachelor of Chemical Engineering (Biotechnology). University Malaysia Pahang. 54 Srirotha, K., Chollakupb, R., Chotineeranatb, S., Piyachomkwanb, K. and Oatesc, C.G. Processing of Cassava Waste for Improved Biomass Utilization. Bioresource Technology 71, 63-69. Tamang, J.P. and Thapa, S. (2006). Fermentation Dynamics during Production of Bhaati Jaanr, a Traditional Fermented Rice Beverage of the Eastern Himalayas. Food Biotechnology 20 (3): 251-261. Tasi´c, M.B., Konstantinovi´c, B.V., Lazi´c, M.L. and Veljkovi´c, V.B. (2009). The Acid Hydrolysis of Potato Tuber Mash in Bioethanol Production. Biochemical Engineering Journal 43, 208–211. Tester, R. F., Qi, X. and Karkalas, J. (2006). Anim. Feed Sci. Technol. 130, 39. Tye, Y.Y, Lee, K.T., Wan Nadiah Wan Abdullah. and Leh,C.P. (2011). SecondGeneration Bioethanol as A Sustainable Energy Source in Malaysia Transportation Sector: Status, Potential and Future Prospects. Renewable and Sustainable Energy Reviews. 15, 4521–4536. Tonukari, N.J.( 2004). Cassava and the Future of Starch. Electronic Journal of Biotechnology. 7(1). Van der Veen, M. E., Veelaert, S., Goot, A. J. and Boom, R. M. (2006). Starch Hydrolysis under Low Water Conditions: A Conceptual Process Design. Journal of Food Engineering. 75 (2), 178-186. Verma, G., Nigam, P., Singh, D. and Chaudhary, K. (2000). Bioconversion of Starch to Ethanol in a Single-Step Process by Coculture of Amylolytic Yeasts and Saccharomyces Cerevisiae 21. Bioresource Technology 72, 261-266. Wang, W. (2002). Cassava Production for Industrial Utilization in China- Present and future Perspective. In: Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop. Seventh Regional Cassava Workshop. October 28–November 1. Bangkok, Thailand. 33, 8. 55 Walker, K., Skelton, H. and Smith, K. (2002). Cutaneous Lesions Showing Giant Yeast Forms of Blastomyces dermatitidis. Journal of Cutaneous Pathology 29 (10), 616–618. Wildenborg, T. and Lokhorst, A. (2005). Introduction on CO 2 Geological storageClassification of Storage Options. Oil Gas Sci Technol Rev IFP. 60:513–5.
© Copyright 2026 Paperzz