Set 1 β Linear Equations Preliminaries Using appropriate functions in Matlab create following matrices: 1 2 3 4 5 a) π΄ = [ 5 4 3 2 1] β2 β1 0 1 2 1 3 5 7 9 b) π΅ = [ ] 0.5 1 1.5 2 2.5 c) 5x4 elements matrix C filled with pseudorandom numbers from interval <0,2>, d) Visualize matrix C, e) Using matrix A from a) create: f) vector A1 of elements being a second row of matrix A, g) matrix A2 created from columns from 2 to 5 of matrix A, h) matrix A3 created from columns from 3 to 5 from rows 2 and 3 of matrix A, i) matrix A4 created from columns 1, 3 and 5 of matrix A Problem 1 Using analytical methods calculate stoichiometric coefficients of following reaction: ππ3β + ππ΄ππ2β + ππ»2 π β ππ»3 + ππ΄π + πππ» β Derive: a) b) c) d) e) f) g) h) i) j) matrix equation Ax = b of the above problem, rank of matrix A, determinant of matrix A, eigenvalues of matrix A, trace of matrix A, inverse of matrix A, minimal element of matrix A, sum of all elements of matrix A, sum of elements on diagonal of matrix A, calculate analytically above problem with the help of MATLAB. Solution: a = -8, b = 2, c = -5 Problem 2 Using numerical methods derive stoichiometric coefficient of the following reaction (βBlakleyβs equationβ): π»2 + ππΆπ(πΆπ)2 + ππππ΄ππΉ4 + ππΉπππ4 + ππππππ3 + ππΎπΌ + ππ»3 ππ4 + ππππΆππ4 + βπ΅ππΆπ + ππΆπΉ2 πΆπ2 + πππ2 β ππππ΅π2 + ππΆππΆπ3 + ππππΆπ3 + ππΎπ΄π(ππ»)4 + ππΉπ(ππΆπ)3 + πππΌ3 + πππ2 πππ3 + π πΆππΉ2 + π‘π»2 π Analyse results. Solution: 88 H2 + 15 Ca(CN)2 + 6 NaAlF4 + 10 FeSO4 + 3 MgSiO3 + 6 KI + 2 H3PO4 + 6 PbCrO4 + 12 BrCl + 3 CF2Cl2 + 20 SO2 = 6 PbBr2 + 6 CrCl3 + 3 MgCO3 + 6 KAl(OH)4 + 10 Fe(SCN)3 + 2 PI3 + 3 Na2SiO3 + 15 CaF2 + 79 H2O Problem 3 a) introductionary example 1. Write down a mass balance equation for given reactor system. 2. Compute the unknown concentration π3 of the outgoing flow 3. Solution: π1 π1 + π2 π2 = π3 π3 b) Reactors set Let us consider a set of five steady state reactors with no accumulation as depicted in the figure below: 1. The following problem is related with: a) Linear equation, b) Set of linear equations, (correct) c) Nonlinear equation, d) Set of nonlinear equations. 2. Using numerical methods calculate compute the unknown concentration π1 , π2 , π3 , π4 , π5 in the reactors. Solution: 5π1 β π3 = 50 β2π1 + 3π2 = 0 βπ2 + 9π3 = 200 βπ2 β 8π3 + 11π4 β 2π5 = 0 β3π1 β π2 + 4π5 = 0 C = [14.66 9.77 23.31 20.28 13.44] mg/m3
© Copyright 2026 Paperzz