Hydrogen Bonding With a Hydrogen Bond: The CH4•••H2O Dimer

Supplementary Information
X-HC hydrogen bonds in n-alkane-HX (X = F, OH) complexes are
stronger than C-HX hydrogen bonds
R PARAJULI* and E ARUNAN**
*Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
**Department of Inorganic and Physical Chemistry, Indian Institute of Science,
Bengaluru 560012, India
Supplementary Materials: Superscripts 'mono' is for monomer and 'comp' is for
complex
Table S1: Coordinate of Propane optimized at B3LYp/6-311++g(d,p)
Nuclear Positions
X/Y/Z coordinate (Angstrom)
0.000
0.883
-0.883
0.000
0.876
-0.876
0.000
0.000
-0.883
0.883
0.000
1C
2H
3H
4C
5H
6H
7H
8C
9H
10H
11H
1.277
1.322
1.322
0.000
0.000
0.000
2.174
-1.277
-1.322
-1.322
-2.174
0.812
2.831
2.831
-1.831
-3.893
--3.893
-1.146
0.812
2.831
2.831
-1.146
Table S2: Positions of electrostatic potential (ESP) extrema mapped on 0.001 (a.u.) and
value at extremum points of propane
Number of Surface minima: 5
#
1
2
3
Value of
EPS
-2.58
-2.56
-1.94
X/Y/Z coordinate (Angstrom)
-0.011
0.012
-0.001
-2.492
-1.018
0.025
-1.826
-2.324
2.680
-2.56
-2.58
4
5
Number of Surface maxima:8
Value of
#
EPS
(kcal/mol)
6.84
1
6.22
2
6.84
3
7.14
4
7.15
5
7.15
6
6.83
7
6.22
8
0.018
0.004
0.969
2.523
-2.315
-1.794
X/Y/Z coordinate (Angstrom)
-2.068
-2.046
-2.068
-0.005
-0.001
2.027
2.060
2.026
-1.272
-0.004
1.272
-3.271
3.242
-1.276
0.008
1.234
-1.633
2.010
-1.633
1.201
1.246
-1.694
1.987
-1.694
Table S3 Coordinates of butane optimised at B3LYp/6-311++g(d,p)
Nuclear Positions
1(C )
2(C )
3(C )
4(C )
5(H )
6(H )
7(H )
8(H )
9(H )
10(H )
11(H )
12(H )
13(H )
14(H )
X/Y/Z coordinate (Angstrom)
1.962
0.568
-0.568
-1.962
2.110
2.748
2.110
0.464
0.464
-0.464
-0.464
-2.110
-2.748
-2.110
-0.121
0.514
-0.514
0.121
-0.751
0.639
-0.751
1.165
1.165
-1.165
-1.165
0.751
-0.639
0.751
-0.064
0.272
-0.272
0.064
-0.397
0.338
-0.397
0.617
0.617
-0.617
-0.617
0.397
-0.338
0.3972
Table S4: Positions of electrostatic potential (ESP) extrema mapped on 0.001 (a.u.) and value at extremum
points
Number of Surface minima: 8
Value of
EPS in
#
X/Y/Z coordinate (Angstrom)
Surface
Maxima
1
-2.61
-3.397
1.491
-0.012
2
-2.61
-1.911
2.195
0.014
3
1.84
-0.068
0.054
2.001
4
-2.58
-0.090
2.503
-0.035
5
1.83
6
-2.58
7
-2.61
8
-2.60
Number of Surface maxima: 10
Value of
#
EPS
(kcal/mol)
7.09
1
6.81
2
6.81
3
6.10
4
6.08
5
6.10
6
6.10
7
6.80
8
6.82
9
7.10
10
0.169
0.1811
1.909
3.352
0.020
-2.466
-2.194
-1.550
-2.004
-0.007
-0.001
-0.012
X/Y/Z coordinate (Angstrom)
-3.658
-2.238
-2.106
-0.323
-0.349
0.276
0.285
2.181
2.159
3.666
-1.682
1.483
1.491
-1.889
-1.810
1.888
1.869
-1.551
-1.486
1.675
-0.010
2.057
-2.061
-2.069
2.117
-2.064
2.076
2.017
-2.063
0.013
Table S5: Coordinates of pentane optimised at B3LYp/6-311++g(d,p)
Nuclear Positions
X/Y/Z coordinate(Angstrom)
1.284
0
-1.284
2.560
-2.560
1.284
1.284
0.000
-0.000
-1.284
-1.284
3.455
2.605
2.605
-2.605
-2.605
-3.456
1C
2C
3C
4C
5C
6H
7H
8H
9H
10H
11H
12H
13H
14H
15H
16H
17H
-0.523
0.314
-0.523
0.324
0.324
-1.183
-1.183
0.975
0.975
-1.183
-1.183
-0.302
0.970
0.970
0.970
0.970
--0.302
0.000
0.000
0.000
0.000
0.000
-0.877
0.876
-0.877
0.877
0.876
-0.876
0.000
-0.883
0.883
-0.883
0.883
0.000
Table S6: Positions of electrostatic potential (ESP) extrema mapped on 0.001 (a.u.) and
value at extremum points of pentane
Number of Surface minima: 8
#
Value of
EPS in
Surface
X/Y/Z coordinate (Angstrom)
Maxima
-2.69
1
-2.75
2
-2.57
3
1.78
4
1.79
5
-3.05
6
1.79
7
1.78
8
-2.57
9
-2.75
10
-2.70
11
Number of Surface maxima: 10
Value of
#
EPS
(kcal/mol)
7.04
1
6.74
2
6.75
3
6.08
4
6.09
5
6.02
6
6.01
7
6.08
8
6.09
9
6.74
10
6.75
11
7.04
12
-3.779
-2.210
-0.981
-0.711
-0.605
-0.063
0.717
0.744
1.000
2.139
3.639
1.886
2.371
-2.597
-0.087
-0.107
2.420
-0.107
-0.088
-2.600
2.353
2.014
-0.009
-0.022
0.002
2.002
-2.003
-0.005
-2.003
2.002
-0.0006
-0.0254
-0.008
X/Y/Z coordinate (Angstrom)
-4.548
-2.605
-2.494
-1.293
-1.237
-0.053
0.063
1.219
1.276
2.555
2.563
4.553
-1.152
1.746
1.735
-1.958
-1.906
1.643
1.614
-1.958
-1.906
1.746
1.726
-1.145
0.002
-2.036
2.039
2.044
-2.077
2.114
-2.129
2.043
-2.077
-2.035
2.049
-0.002
TABLE S7: Optimized H-C bond distances, FHC bond angles, shift in F-H stretching
frequency with respect to monomer frequency () in cm-1, change in F-H distance and
C–H distance* (r) in Å and interaction energy (E) in kJ/mol
for F-H •••alkane
complexes (alkane  1n-propane, 2n-butane, 3n-pentane).
M05-2X/6-311++G**
RH-C
FHA
r
1a
2.26141
178.0
0.0032
0.0020*
1b
2.36637
179.3
2a
2.40899
171.739
2b
2.38929
179.591
3a#
2.25998
178.836
3b
2.40446
172.991
3c
2.35978
179.377
0.0038
0.0036*
H-F
E
-75
-7.9
-88
-7.1
-82
-9.4
-90
-9.6
-70
-7.6
0.0037
0.0032*
0.0039
0.0035*
0.0033
0.0022*
0.0040
-91
0.0034*
0.0044
0.0036*
-99
-9.6
-9.3
# Not fully optimized
TABLE S8: Optimized H-C bond distances, ohc bond angles, shift in O-H stretching frequency with
respect to monomer frequency () in cm-1, change in O-H distance and C-H distance* (r) in Å and
interaction energy (E) in kJ/mol for H-O-H •••alkane complexes (alkane  1propane 2butane,
3
pentane). Superscrpts with # are alkane •••OH2 interactions
M05-2X/6-311++G**
RH-A
DHA
2.63291
145.031
1a
1b$
r

E
0.0006
16
-4.1
0.0012*
Geometry distorted during optimization
2a
2.55341
163.300
2.65552
179.6
2.65105
175.236
1b#
2.61963
147.3
2
b#
2.65665
3
b#
2.61837
0.0008
10
0.0012*
2b
0.0012
-6.7
12
0.0017*
3c
-4.5
0.0012
10
-6.9
-0.0011
7
-4.4
127.241
-0.0018
1
143.320
-0.0020
4
-5.3
-5.3
0.0016*
$ Not fully optimised at MP2 level of theory
TABLE S9: Penetration parameters rA(rAO- rAb), rH(rHO- rHb) of F-H •••Alkane
complexes in Å (Alkane  1n-propane, 2n-butane, 3n-pentane). rAO (non-bonding radius
of acceptor atom) rAb(bonding radius of acceptor) rHO (non bonding radius of Hydrogen
atom) rHb (bonding radius of Hydrogen atom)
B3LYP/6-311++G**
rAO
rAb
rA
rHO
rHb
MP2/6-311++G**
rH
rAO
rAb
rA
rHO
rHb
rH
1a
2.218 1.609 0.609 1.132 0.821 0.311 2.222 1.671 0.550 1.122 0.849 0.273
1b
2.095 1.613 0.482 1.132 0.809 0.323 2.095 1.644 0.451 1.122 0.824 0.298
2a
2.192 1.622 0.570 1.132 0.820 0.312 2.138 1.680 0.458 1.122 0.870 0.252
2b
2.092 1.621 0.471 1.132 0.812 0.320 2.092 1.658 0.434 1.122 0.830 0.292
3a* 2.213 1.598 0.615 1.132 0.820 0.312 2.221 1.643 0.578 1.122 0.842 0.279
3b
2.097 1.620 0.477 1.132 0.812 0.320 2.104 1.680 0.425 1.122 0.852 0.270
3c
2.108 1.632 0.476 1.132 0.817 0.315 2.115 1.652 0.463 1.122 0.821 0.301
* Not fully optimized in MP2 level of theory
Table S10: Change in atomic volumes (V) of the “H” of F-H •••Alkane Complexes
B3LYP/6-311++G**
VHComp
VHmono
MP2/6-311++G**
V
VHComp
VHmono
V
1a
14.42025 16.43981
-2.01957
14.26714
15.75788
-1.49075
1b
14.14589 16.43981
-2.29392
13.43665
15.75788
-2.32124
2a
14.52102 16.43981
-1.91879
14.90412
15.75788
-0.85376
2b
14.38731 16.43981
-2.0525
13.85163
15.75788
-1.90625
3a*
14.46382 16.43981
-1.97599
14.29418
15.75788
-1.46371
3b
14.31575 16.43981
-2.12406
14.07087
15.75788
-1.68701
3c
14.60081 16.43981
-1.83901
13.81003
15.75788
-1.94786
* Not fully optimized in MP2 level of theory
Table S11: Change in atomic populations (N) of the “H” of F-H •••Alkane complexes
B3LYP/6-311++G**
NHComp
NHmono
MP2/6-311++G**
N
NHComp
NHmono
N
1a
0.307789 0.293055
0.014734
0.295376
0.281364
0.014012
1b
0.309726 0.293055
0.016671
0.287982
0.281364
0.006618
2a
0.308748 0.293055
0.015693
0.304756
0.281364
0.023392
2b
0.310325 0.293055
0.01727
0.298298
0.281364
0.016934
3a*
0.308394 0.293055
0.015339
0.309697
0.281364
0.028333
3b
0.309237 0.293055
0.016182
0.309536
0.281364
0.028172
3c
0.310888 0.293055
0.017834
0.303838
0.281364
0.022474
* Not fully optimised in MP2 level of theory
Table S12: Change in atomic energies of the “H” of F-H •••Alkane
complexes.
B3LYP/6-311++G**
MP2/6-311++G**
E
EHmono
1a
-0.30482
-0.30522
-0.0004
-0.29556
-0.2964
-0.00085
1b
-0.30592
-0.30522
0.000698
-0.28929
-0.2964
-0.00711
2a
-0.30487
-0.30522
-0.00035
-0.30408
-0.2964
0.007676
b
-0.30552
-0.30522
0.0003
-0.29758
-0.2964
0.001174
3a*
-0.30517
-0.30522
-4.5E-05
-0.31258
-0.2964
0.016176
3b
-0.30476
-0.30522
-0.00046
-0.31199
-0.2964
0.01559
3c
-0.30571
-0.30522
0.000487
-0.30533
-0.2964
0.008922
2
EHComp
EHmono
E
EHComp
* Not fully optimised in MP2 level of theory
Table S13. Change in atomic first moments of the “H” of F-H •••Alkane
complexes.
B3LYP/6-311++G**
MHComp
MHmono
MP2/6-311++G**
M
MHComp
MHmono
M
1a
0.123573 0.128771
-0.0052
0.120266
0.126785
-0.00652
1b
0.12356 0.128771
-0.00521
0.118258
0.126785
-0.00853
2a
0.124086 0.128771
-0.00468
0.125119
0.126785
-0.00167
2b
0.124122 0.128771
-0.00465
0.119378
0.126785
-0.00741
3a*
0.123621 0.128771
-0.00515
0.116967
0.126785
-0.00982
3b
0.123992 0.128771
-0.00478
0.117641
0.126785
-0.00914
3c
0.12436 0.128771
-0.00441
0.11733
0.126785
-0.00946
* Not fully optimised in MP2 level of theory
Figure S1: Optimized Structure of WaterAlkane Complex at B3LYP/6-311++g**
level.