Supplementary Information X-HC hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-HX hydrogen bonds R PARAJULI* and E ARUNAN** *Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal **Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India Supplementary Materials: Superscripts 'mono' is for monomer and 'comp' is for complex Table S1: Coordinate of Propane optimized at B3LYp/6-311++g(d,p) Nuclear Positions X/Y/Z coordinate (Angstrom) 0.000 0.883 -0.883 0.000 0.876 -0.876 0.000 0.000 -0.883 0.883 0.000 1C 2H 3H 4C 5H 6H 7H 8C 9H 10H 11H 1.277 1.322 1.322 0.000 0.000 0.000 2.174 -1.277 -1.322 -1.322 -2.174 0.812 2.831 2.831 -1.831 -3.893 --3.893 -1.146 0.812 2.831 2.831 -1.146 Table S2: Positions of electrostatic potential (ESP) extrema mapped on 0.001 (a.u.) and value at extremum points of propane Number of Surface minima: 5 # 1 2 3 Value of EPS -2.58 -2.56 -1.94 X/Y/Z coordinate (Angstrom) -0.011 0.012 -0.001 -2.492 -1.018 0.025 -1.826 -2.324 2.680 -2.56 -2.58 4 5 Number of Surface maxima:8 Value of # EPS (kcal/mol) 6.84 1 6.22 2 6.84 3 7.14 4 7.15 5 7.15 6 6.83 7 6.22 8 0.018 0.004 0.969 2.523 -2.315 -1.794 X/Y/Z coordinate (Angstrom) -2.068 -2.046 -2.068 -0.005 -0.001 2.027 2.060 2.026 -1.272 -0.004 1.272 -3.271 3.242 -1.276 0.008 1.234 -1.633 2.010 -1.633 1.201 1.246 -1.694 1.987 -1.694 Table S3 Coordinates of butane optimised at B3LYp/6-311++g(d,p) Nuclear Positions 1(C ) 2(C ) 3(C ) 4(C ) 5(H ) 6(H ) 7(H ) 8(H ) 9(H ) 10(H ) 11(H ) 12(H ) 13(H ) 14(H ) X/Y/Z coordinate (Angstrom) 1.962 0.568 -0.568 -1.962 2.110 2.748 2.110 0.464 0.464 -0.464 -0.464 -2.110 -2.748 -2.110 -0.121 0.514 -0.514 0.121 -0.751 0.639 -0.751 1.165 1.165 -1.165 -1.165 0.751 -0.639 0.751 -0.064 0.272 -0.272 0.064 -0.397 0.338 -0.397 0.617 0.617 -0.617 -0.617 0.397 -0.338 0.3972 Table S4: Positions of electrostatic potential (ESP) extrema mapped on 0.001 (a.u.) and value at extremum points Number of Surface minima: 8 Value of EPS in # X/Y/Z coordinate (Angstrom) Surface Maxima 1 -2.61 -3.397 1.491 -0.012 2 -2.61 -1.911 2.195 0.014 3 1.84 -0.068 0.054 2.001 4 -2.58 -0.090 2.503 -0.035 5 1.83 6 -2.58 7 -2.61 8 -2.60 Number of Surface maxima: 10 Value of # EPS (kcal/mol) 7.09 1 6.81 2 6.81 3 6.10 4 6.08 5 6.10 6 6.10 7 6.80 8 6.82 9 7.10 10 0.169 0.1811 1.909 3.352 0.020 -2.466 -2.194 -1.550 -2.004 -0.007 -0.001 -0.012 X/Y/Z coordinate (Angstrom) -3.658 -2.238 -2.106 -0.323 -0.349 0.276 0.285 2.181 2.159 3.666 -1.682 1.483 1.491 -1.889 -1.810 1.888 1.869 -1.551 -1.486 1.675 -0.010 2.057 -2.061 -2.069 2.117 -2.064 2.076 2.017 -2.063 0.013 Table S5: Coordinates of pentane optimised at B3LYp/6-311++g(d,p) Nuclear Positions X/Y/Z coordinate(Angstrom) 1.284 0 -1.284 2.560 -2.560 1.284 1.284 0.000 -0.000 -1.284 -1.284 3.455 2.605 2.605 -2.605 -2.605 -3.456 1C 2C 3C 4C 5C 6H 7H 8H 9H 10H 11H 12H 13H 14H 15H 16H 17H -0.523 0.314 -0.523 0.324 0.324 -1.183 -1.183 0.975 0.975 -1.183 -1.183 -0.302 0.970 0.970 0.970 0.970 --0.302 0.000 0.000 0.000 0.000 0.000 -0.877 0.876 -0.877 0.877 0.876 -0.876 0.000 -0.883 0.883 -0.883 0.883 0.000 Table S6: Positions of electrostatic potential (ESP) extrema mapped on 0.001 (a.u.) and value at extremum points of pentane Number of Surface minima: 8 # Value of EPS in Surface X/Y/Z coordinate (Angstrom) Maxima -2.69 1 -2.75 2 -2.57 3 1.78 4 1.79 5 -3.05 6 1.79 7 1.78 8 -2.57 9 -2.75 10 -2.70 11 Number of Surface maxima: 10 Value of # EPS (kcal/mol) 7.04 1 6.74 2 6.75 3 6.08 4 6.09 5 6.02 6 6.01 7 6.08 8 6.09 9 6.74 10 6.75 11 7.04 12 -3.779 -2.210 -0.981 -0.711 -0.605 -0.063 0.717 0.744 1.000 2.139 3.639 1.886 2.371 -2.597 -0.087 -0.107 2.420 -0.107 -0.088 -2.600 2.353 2.014 -0.009 -0.022 0.002 2.002 -2.003 -0.005 -2.003 2.002 -0.0006 -0.0254 -0.008 X/Y/Z coordinate (Angstrom) -4.548 -2.605 -2.494 -1.293 -1.237 -0.053 0.063 1.219 1.276 2.555 2.563 4.553 -1.152 1.746 1.735 -1.958 -1.906 1.643 1.614 -1.958 -1.906 1.746 1.726 -1.145 0.002 -2.036 2.039 2.044 -2.077 2.114 -2.129 2.043 -2.077 -2.035 2.049 -0.002 TABLE S7: Optimized H-C bond distances, FHC bond angles, shift in F-H stretching frequency with respect to monomer frequency () in cm-1, change in F-H distance and C–H distance* (r) in Å and interaction energy (E) in kJ/mol for F-H •••alkane complexes (alkane 1n-propane, 2n-butane, 3n-pentane). M05-2X/6-311++G** RH-C FHA r 1a 2.26141 178.0 0.0032 0.0020* 1b 2.36637 179.3 2a 2.40899 171.739 2b 2.38929 179.591 3a# 2.25998 178.836 3b 2.40446 172.991 3c 2.35978 179.377 0.0038 0.0036* H-F E -75 -7.9 -88 -7.1 -82 -9.4 -90 -9.6 -70 -7.6 0.0037 0.0032* 0.0039 0.0035* 0.0033 0.0022* 0.0040 -91 0.0034* 0.0044 0.0036* -99 -9.6 -9.3 # Not fully optimized TABLE S8: Optimized H-C bond distances, ohc bond angles, shift in O-H stretching frequency with respect to monomer frequency () in cm-1, change in O-H distance and C-H distance* (r) in Å and interaction energy (E) in kJ/mol for H-O-H •••alkane complexes (alkane 1propane 2butane, 3 pentane). Superscrpts with # are alkane •••OH2 interactions M05-2X/6-311++G** RH-A DHA 2.63291 145.031 1a 1b$ r E 0.0006 16 -4.1 0.0012* Geometry distorted during optimization 2a 2.55341 163.300 2.65552 179.6 2.65105 175.236 1b# 2.61963 147.3 2 b# 2.65665 3 b# 2.61837 0.0008 10 0.0012* 2b 0.0012 -6.7 12 0.0017* 3c -4.5 0.0012 10 -6.9 -0.0011 7 -4.4 127.241 -0.0018 1 143.320 -0.0020 4 -5.3 -5.3 0.0016* $ Not fully optimised at MP2 level of theory TABLE S9: Penetration parameters rA(rAO- rAb), rH(rHO- rHb) of F-H •••Alkane complexes in Å (Alkane 1n-propane, 2n-butane, 3n-pentane). rAO (non-bonding radius of acceptor atom) rAb(bonding radius of acceptor) rHO (non bonding radius of Hydrogen atom) rHb (bonding radius of Hydrogen atom) B3LYP/6-311++G** rAO rAb rA rHO rHb MP2/6-311++G** rH rAO rAb rA rHO rHb rH 1a 2.218 1.609 0.609 1.132 0.821 0.311 2.222 1.671 0.550 1.122 0.849 0.273 1b 2.095 1.613 0.482 1.132 0.809 0.323 2.095 1.644 0.451 1.122 0.824 0.298 2a 2.192 1.622 0.570 1.132 0.820 0.312 2.138 1.680 0.458 1.122 0.870 0.252 2b 2.092 1.621 0.471 1.132 0.812 0.320 2.092 1.658 0.434 1.122 0.830 0.292 3a* 2.213 1.598 0.615 1.132 0.820 0.312 2.221 1.643 0.578 1.122 0.842 0.279 3b 2.097 1.620 0.477 1.132 0.812 0.320 2.104 1.680 0.425 1.122 0.852 0.270 3c 2.108 1.632 0.476 1.132 0.817 0.315 2.115 1.652 0.463 1.122 0.821 0.301 * Not fully optimized in MP2 level of theory Table S10: Change in atomic volumes (V) of the “H” of F-H •••Alkane Complexes B3LYP/6-311++G** VHComp VHmono MP2/6-311++G** V VHComp VHmono V 1a 14.42025 16.43981 -2.01957 14.26714 15.75788 -1.49075 1b 14.14589 16.43981 -2.29392 13.43665 15.75788 -2.32124 2a 14.52102 16.43981 -1.91879 14.90412 15.75788 -0.85376 2b 14.38731 16.43981 -2.0525 13.85163 15.75788 -1.90625 3a* 14.46382 16.43981 -1.97599 14.29418 15.75788 -1.46371 3b 14.31575 16.43981 -2.12406 14.07087 15.75788 -1.68701 3c 14.60081 16.43981 -1.83901 13.81003 15.75788 -1.94786 * Not fully optimized in MP2 level of theory Table S11: Change in atomic populations (N) of the “H” of F-H •••Alkane complexes B3LYP/6-311++G** NHComp NHmono MP2/6-311++G** N NHComp NHmono N 1a 0.307789 0.293055 0.014734 0.295376 0.281364 0.014012 1b 0.309726 0.293055 0.016671 0.287982 0.281364 0.006618 2a 0.308748 0.293055 0.015693 0.304756 0.281364 0.023392 2b 0.310325 0.293055 0.01727 0.298298 0.281364 0.016934 3a* 0.308394 0.293055 0.015339 0.309697 0.281364 0.028333 3b 0.309237 0.293055 0.016182 0.309536 0.281364 0.028172 3c 0.310888 0.293055 0.017834 0.303838 0.281364 0.022474 * Not fully optimised in MP2 level of theory Table S12: Change in atomic energies of the “H” of F-H •••Alkane complexes. B3LYP/6-311++G** MP2/6-311++G** E EHmono 1a -0.30482 -0.30522 -0.0004 -0.29556 -0.2964 -0.00085 1b -0.30592 -0.30522 0.000698 -0.28929 -0.2964 -0.00711 2a -0.30487 -0.30522 -0.00035 -0.30408 -0.2964 0.007676 b -0.30552 -0.30522 0.0003 -0.29758 -0.2964 0.001174 3a* -0.30517 -0.30522 -4.5E-05 -0.31258 -0.2964 0.016176 3b -0.30476 -0.30522 -0.00046 -0.31199 -0.2964 0.01559 3c -0.30571 -0.30522 0.000487 -0.30533 -0.2964 0.008922 2 EHComp EHmono E EHComp * Not fully optimised in MP2 level of theory Table S13. Change in atomic first moments of the “H” of F-H •••Alkane complexes. B3LYP/6-311++G** MHComp MHmono MP2/6-311++G** M MHComp MHmono M 1a 0.123573 0.128771 -0.0052 0.120266 0.126785 -0.00652 1b 0.12356 0.128771 -0.00521 0.118258 0.126785 -0.00853 2a 0.124086 0.128771 -0.00468 0.125119 0.126785 -0.00167 2b 0.124122 0.128771 -0.00465 0.119378 0.126785 -0.00741 3a* 0.123621 0.128771 -0.00515 0.116967 0.126785 -0.00982 3b 0.123992 0.128771 -0.00478 0.117641 0.126785 -0.00914 3c 0.12436 0.128771 -0.00441 0.11733 0.126785 -0.00946 * Not fully optimised in MP2 level of theory Figure S1: Optimized Structure of WaterAlkane Complex at B3LYP/6-311++g** level.
© Copyright 2025 Paperzz