Simulating the Energy Spectrum of Quantum Dots J. Planelles PROBLEM 1. Calculate the electron energy spectrum of a 1D GaAs/AlGaAs QD as a function of the size. Hint: consider GaAs effective mass all over the structure. L 0.25 eV AlGaAs AlGaAs GaAs m*GaAs = 0.05 m0 The single-band effective mass equation: 2 d 2 [ V ( x)] f ( x) E f ( x) 2 2m * dx Let us use atomic units (ħ=m0=e=1) 1 d2 [ V ( x)] f ( x) E f ( x) 2 2(m * / m0 ) dx Lb V(x) BC: f(0)=0 L Lb 0.25 eV m*GaAs = 0.05 m0 f(Lt)=0 Numerical integration of the differential equation: finite differences 1 d2 [ V ( x)] f ( x) E f ( x) 2 2m * dx Discretization grid f1 f2 ... fn x1 x2 ... xn How do we approximate the derivatives at each point? f ' ( xi ) f i ' fi f i 1 f i 1 2h fi-1 f i ' 1 f i ' 1 f ( xi ) f i 2h '' fi+1 '' f i 1 2 f i f i 1 ... h2 i-1 Step of the grid i h i+1 h FINITE DIFFERENCES METHOD 1 d2 [ V ( x)] f ( x) E f ( x) BCs : f (0) 0 2m * dx 2 f ( Lt ) 0 1. Define discretization grid 2. Discretize the equation: 0 h Lt 1 f i '' Vi f i E f i 2m * 1 [ f i 1 2 f i f i 1 ] Vi f i E f i 2m * h 2 3. Group coefficients of fwd/center/bwd points i=n i=1 i=2 L n t 1 h 1 1 1 f Vi f i f E fi 2 i 1 2 2 i 1 2m * h m*h 2m * h i 1 f i 1 ai f i bi 1 f i 1 E f i i 1 f i 1 ai f i bi 1 f i 1 E f i Trivial eqs: f1 = 0, fn = 0. Extreme eqs: i=n i=1 i=2 i2 .... 1 f1 0 .... a2 f 2 .... b3 f 3 E f 2 .... .... i n 1 n 2 f n 2 an 1 f n 1 bn f n E f n 1 0 Matriz (n-2) x (n-2) - sparse We now have a standard diagonalization problem (dim n-2): a2 b3 a b 3 4 2 an 2 n2 f2 f2 f f 3 3 E bn 1 f n 2 f n2 f n 1 an 1 f n 1 i 1 f i 1 ai f i bi 1 f i 1 E f i a2 b3 a b 3 4 2 an 2 n2 2 a2 0 3 a3 b3 ... ... b4 ... ... ... ... ... ... n-2 a n-2 bn-2 0 a(n-1) bn-1 bn 1 an 1 The result should look like this: finite wall n=4 n=3 n=2 n=1 infinite wall Exercices: a) Compare the converged energies with those of the particle-in-the-box with infinite walls for the n=1,2,3 states. 2 2 2 En 2mL2 n b) Plot the 3 lowest eigenstates for L=15 nm, Lb=10 nm. What is different from the infinite wall eigenstates? HOME WORK: Calculate the electron energy spectrum of two coupled QDs as a function of their separation S. Plot the two lowest states for S=1 nm and S=10 nm. L=10 nm L=10 nm AlGaAs AlGaAs S GaAs GaAs x The result should look like this: bonding antibonding bonding antibonding
© Copyright 2026 Paperzz