Unit 1 packet - Math with mrs. kennedy

1
AFM Unit 1 Day 1 notes
Relations and Functions
NAME _________________
1. Relation: _______________________________________________________
2. Domain: _________________________________
The set of all abscissas of the ordered pairs (abscissa is the first element of an ordered pair)
3. Range : __________________________________
The set of all ordinates of the ordered pairs (ordinate is the second element of an ordered pair)
4. Given {(โˆ’3,2), (1, 8), (1, โˆ’2)}, state the domain and range. Then determine if the relation is a function.
Domain: ____________________ Range: _________________ Function? _________________
5. If x is a negative integer greater than -4, state the relation, D, & R representing the equation ๐‘ฆ = ๐‘ฅ 2 โˆ’ 5
Relation: __________________________ Domain: _________________ Range: ________________
6. Given 9 < ๐‘ฅ < 13, where x is an integer, state the ordered pairs from ๐‘ฆ = 8 โˆ’ 6๐‘ฅ.
Relation: _______________________________________________________
Function? Yes / No
7. Function: A relation in which each element in the domain is paired with exactly one element in the
range.
8. Specify one number in the table you could change so that the relation would NOT represent a function.
1960
1970
1980
1990
2000
13,000,000
19,700,000
18,000,000
16,700,000
19,700,000
9. Vertical Line Test
If a vertical line passes through a graph more than once, the graph is not the graph of a function.
10. Determine if the graph of each relation is the set of a function
a.
b.
Yes / No
c.
Yes / No
Yes / No
2
Function Notation
๐‘“(๐‘ฅ), which is read โ€œf of x.โ€ Interpreted as the value of the function f at x. ๐‘ฆ = ๐‘“(๐‘ฅ) indicated that for each
element in the domain that replaces x, the functions assigns one and only one replacement for y.
Coordinates are (๐‘ฅ, ๐‘ฆ)๐‘œ๐‘Ÿ (๐‘ฅ, ๐‘“(๐‘ฅ)).
11. Find ๐‘“(โˆ’1) if ๐‘“(๐‘ฅ) = โˆ’๐‘ฅ 3 โˆ’ 1.
12. Find ๐‘“(โˆ’2) if ๐‘“(๐‘ฅ) =
๐‘ฅโˆ’1
๐‘ฅ2
.
13. Factor each of the following expressions completely.
2
2
a. x ๏€ซ 7 x ๏€ญ 18
b. 2n ๏€ซ 13n ๏€ญ 24
d. 4m 2 ๏€ญ 11m ๏€ญ 3
2
c. 3m ๏€ญ 7 m ๏€ญ 20
e. 2w 2 ๏€ญ 8w
14. To find domain for a function, it is easiest to start by finding values that are not in the domain. Once you
have found the values that are not in the domain then you can exclude those values when stating the domain.
15. State the domain in interval notation.
๐‘Ž. ๐‘“(๐‘ฅ) =
๐‘ฅ2
๐‘ฅ+1
b. ๐‘“(๐‘ฅ) = โˆš๐‘ฅ + 3
e.
Domain: ____________________
f.
c. ๐‘“(๐‘ฅ) = โˆš5 โˆ’ ๐‘ฅ
d. ๐‘“(๐‘ฅ) =
๐‘ฅ
๐‘ฅ 2 โˆ’18
g.
Domain: ________________________ Domain: ___________________
3
16. General Rules for finding Domain
a. Linear function
b. Quadratic Functions
c. Square Root Functions
d. Rationals (fractions with variables in the denominator)
17. Greatest Integer Function (also known as the birthday function)
A type of step function. The symbol [๐‘ฅ] means the integer Not Greater than x. ROUND DOWN!!!!!
18. Fill in the table and graph for y = [x]
x
y
-1.7
-1.5
-1.2
-1.0
-0.9
-0.4
0
0.3
0.7
1.0
1.5
1.8
2.0
2.6
19. Evaluate each for ๐‘“(๐‘ฅ) = [๐‘ฅ] and ๐‘”(๐‘ฅ) = [3๐‘ฅ] โˆ’ 2
๐‘Ž. ๐‘“(0.2)= _______ b. ๐‘“(2.9) = ________
c. ๐‘“(9) = ______
d. ๐‘“(โˆ’0.3) = _______
e. ๐‘”(โˆ’1.2) = ______ f. ๐‘”(โˆ’5.5) = ________
g. ๐‘”(โˆ’6) = _______ h. ๐‘”(0.1) = _______
4
1.1 Day 1 HW Function Worksheet
I. State the domain and range if each relation. Then state whether the relation is a function. Write yes or no.
1. {(โˆ’1,2), (3,10), (โˆ’2,20), (3,11)}
2. {(0,2), (13,6), (2,2), (3,1)}
3. {(1,4), (2,8), (3,24)}
4. {(โˆ’1, โˆ’2), (3,54), (โˆ’2, โˆ’16), (3,81)}
II. Given that x is an integer, state the relation representing each of the following by listing a set of ordered pairs.
Then state whether the relation is a function. Write yes or no.
5. ๐‘ฆ = 3๐‘ฅ 2 โˆ’ 5 and 0 < ๐‘ฅ < 5
6. ๐‘ฆ 2 = 3๐‘ฅ 2 and ๐‘ฅ = โˆ’3
7. |3๐‘ฅ + 4| = ๐‘ฆ and 0 < ๐‘ฅ < 3
8. ๐‘ฆ = |๐‘ฅ| and 0 < ๐‘ฅ < 2
III. The symbol [๐‘ฅ] means the greatest integer not greater than x. If ๐‘“(๐‘ฅ) = [๐‘ฅ] โˆ’ 3๐‘ฅ, find each value.
9. ๐‘“(0)
10. ๐‘“(0.5)
11. ๐‘“(โˆ’3.5)
12. ๐‘“(๐‘ฅ โˆ’ 1)
IV. Given ๐‘“(๐‘ฅ) = |3๐‘ฅ โˆ’ 4| + 5, find each value.
1
3
13. ๐‘“( )
14. ๐‘“(0.5)
15. ๐‘“(โˆ’0.5)
16.๐‘“(5๐‘‘)
V. Find the domain of each function. Write answers in interval notation.
17. ๐‘“(๐‘ฅ) =
๐‘ฅโˆ’2
๐‘ฅ+4
18. ๐‘“(๐‘ฅ) =
1
2๐‘ฅโˆ’5
20. ๐‘“(๐‘ฅ) =
๐‘ฅโˆ’10
โˆš๐‘ฅ+16
21.๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’25
๐‘ฅ 2 +25
19. ๐‘“(๐‘ฅ) = โˆš25 โˆ’ ๐‘ฅ
๐‘ฅโˆ’7
22.๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’1
5
Find the domain of the following graphs and equations. Write your answer using interval notation.
1.
2.
3.
1. ________________________
Function? ______
2. ______________________
Function? _______
3. _____________________
Function? ______
4.
5.
4. ______________________
Function? ________
7.
5. _________________________
Function? __________
8.
7. _________________________________
Function? _________
10. ๐‘“(๐‘ฅ) = โˆš3๐‘ฅ โˆ’ 18
12. โ„Ž(๐‘ฅ) =
2๐‘ฅ
๐‘ฅ 2 โˆ’4
______________
6.
6. ___________________
Function? ____________
9.
8. _______________________ 9. ____________________
Function? __________
Function? _______________
11. ๐‘“(๐‘ฅ) = ๐‘ฅ 2 + 2
4
_________________13. ๐‘”(๐‘ฅ) = ๐‘ฅ+9
_______________
_________________
6
AFM Unit 1 Day 2 notes
1a. ๐‘ฆ = ๐‘ฅ 2
d. ๐‘ฆ = ๐‘ฅ โˆ’1 ๐‘œ๐‘Ÿ
1
๐‘ฅ
Parent Graphs
b. ๐‘ฆ = ๐‘ฅ 3
c. ๐‘ฆ = |๐‘ฅ|
e. ๐‘ฆ = โˆš๐‘ฅ
f. ๐‘ฆ = [๐‘ฅ]
2. Reflection:
Flips a figure over a line called the axis of symmetry.
3. Linear Translation: Relocates a graph on the coordinate plane but does not change the shape or size.
4. Geometric Transformation: Occurs when a nonlinear graph is stretched or shrunk. (called dilations).
General Form: ๐’š = ๐’‚๐’‡[๐’ƒ(๐’™ โˆ’ ๐’‰)] + ๐’Œ
a: Vertical stretch or compression factor
h: horizontal translation (left or right)
5. Summary of Translations and Transformations
If the equation of ๐‘ฆ = ๐‘“(๐‘ฅ) is change to:
๐‘ฆ = โˆ’๐‘“(๐‘ฅ)
๐‘ฆ = ๐‘“(โˆ’๐‘ฅ)
๐‘ฆ = ๐‘Ž๐‘“(๐‘ฅ), |๐‘Ž| > 1
๐‘ฆ = ๐‘Ž๐‘“(๐‘ฅ), 0 < |๐‘Ž| < 1
๐‘ฆ = ๐‘“(๐‘ฅ โˆ’ โ„Ž)
๐‘ฆ = ๐‘“(๐‘ฅ) + ๐‘˜
๐‘ฆ = ๐‘“(๐‘๐‘ฅ), |๐‘| > 1
๐‘ฆ = ๐‘“(๐‘๐‘ฅ), 0 < |๐‘| < 1
***MUST FACTOR OUT b in order to get h correct
1
๐‘
: horizontal stretch or compression factor
k: vertical translation (up or down)
Then the graph of ๐‘ฆ = ๐‘“(๐‘ฅ) is:
Reflected in the x-axis
Reflected in the y-axis
Stretched vertically by a factor of a
Compressed vertically by a factor of a
Translated h units horizontally
Translated k units vertically
1
Compressed horizontally by a factor of ๐‘
1
Stretch horizontally by a factor of ๐‘
6. When listing translations/transformation, ORDER MATTERS!!!!!
To describe transformations: it is like order of operations, look at equation from LEFT TO RIGHT
Reflections and stretches/compressions first in any order, then translations last in any order.
7
7. List the transformations, in order, that have occurred when compared to the parent graph.
๐‘Ž. ๐‘”(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 2
b. ๐‘“(๐‘ฅ) = ๐‘ฅ 2 + 1
c. โ„Ž(๐‘ฅ) = (๐‘ฅ โˆ’ 2)2
d. ๐‘›(๐‘ฅ) = (๐‘ฅ + 3)2
f. ๐‘ (๐‘ฅ) = โˆ’(๐‘ฅ + 5)2
1
j. ๐‘”(๐‘ฅ) = (2๐‘ฅ + 6)2
3
g. ๐‘™(๐‘ฅ) = (๐‘ฅ โˆ’ 2)2 + 3
h. ๐‘˜(๐‘ฅ) = (๐‘ฅ + 8)2 โˆ’ 6
k. ๐‘“(๐‘ฅ) = (โˆ’๐‘ฅ + 4)3
l. โ„Ž(๐‘ฅ) = [ (๐‘ฅ + 2)]2
1
2
8. Graph each function. Then describe how each graph is related to the parent graph.
๐‘Ž. ๐‘“(๐‘ฅ) = [๐‘ฅ]
b. ๐‘”(๐‘ฅ) = โˆ’3[๐‘ฅ]
d. ๐‘“(๐‘ฅ) = โˆ’|๐‘ฅ + 2|
e. ๐‘”(๐‘ฅ) = 3|๐‘ฅ โˆ’ 1| + 2
g. ๐‘“(๐‘ฅ) = 3๐‘ฅ 2 โˆ’ 4
h. ๐‘”(๐‘ฅ) = (2๐‘ฅ โˆ’ 6)2 + 2
j. ๐‘“(๐‘ฅ) = 2โˆš๐‘ฅ
k. ๐‘”(๐‘ฅ) = โˆš๐‘ฅ โˆ’ 3
e. ๐‘š(๐‘ฅ) = โˆ’(๐‘ฅ โˆ’ 3)2
i. ๐‘Ž(๐‘ฅ) = 3(๐‘ฅ + 2)2
m. ๐‘Ÿ(๐‘ฅ) = (3๐‘ฅ โˆ’ 15)2
c. โ„Ž(๐‘ฅ) = 0.5[๐‘ฅ] + 2
f. โ„Ž(๐‘ฅ) = |4๐‘ฅ + 8|
1
i. โ„Ž(๐‘ฅ) = โˆ’ (๐‘ฅ + 2)2
3
l. โ„Ž(๐‘ฅ) = โˆš6๐‘ฅ
8
HW Day 2 3.2 Graphing Transformations Day 1 Worksheet
I. Graph each function as a transformation of its parent graph. Describe transformations in order.
1. ๐‘ฆ = |๐‘ฅ + 2| โˆ’ 3
2.๐‘“(๐‘ฅ) = โˆ’2|๐‘ฅ โˆ’ 1|
3. ๐‘ฆ = โˆ’๐‘ฅ 2 + 2
4. โ„Ž(๐‘ฅ) = 2(๐‘ฅ + 3)2
5.๐‘“(๐‘ฅ) = 3[๐‘ฅ]
6. ๐‘”(๐‘ฅ) = [2๐‘ฅ]
7. โ„Ž(๐‘ฅ) = [๐‘ฅ โˆ’ 3]
8. ๐‘ฆ = ๐‘ฅ 3 + 3
9. ๐‘ฆ = โˆš๐‘ฅ + 4
10. ๐‘ฆ = 3โˆš๐‘ฅ
11. ๐‘ฆ = โˆ’โˆš๐‘ฅ โˆ’ 2
12. ๐‘ฆ = โˆš2๐‘ฅ โˆ’ 6
9
II. Write the transformations, in order, for each function when compared to their parent graph.
14. ๐‘ฆ = โˆ’5๐‘ฅ 2 + 7
13. ๐‘ฆ = |2๐‘ฅ โˆ’ 4|
3
15. ๐‘ฆ = โˆ’4[๐‘ฅ โˆ’ 8]
17. ๐‘ฆ = [3๐‘ฅ] + 5
16. ๐‘ฆ = 4 โˆš1 โˆ’ ๐‘ฅ
III. Evaluate each.
18. [6.1]
19. [0.7]
20. [โˆ’0.5]
21. [6]+1
23. 2[3.1] - 2.1
24. [7.9] โˆ’ 7
25. [โˆ’8.1]
26. [โˆ’ 4]
22. [โˆ’1.2] โˆ’ 5
3
7
27. [โˆ’ 4] + 2
3.2 Day 3 Notes Rational Functions
1
1. Describe and Graph each transformation of y = ๐‘ฅ.
1
๐‘Ž. ๐‘ฆ = โˆ’ ๐‘ฅ
1
d. ๐‘ฆ = ๐‘ฅ+2
1
b. ๐‘ฆ = ๐‘ฅ + 2
1
e. ๐‘ฆ = ๐‘ฅโˆ’3
1
c. ๐‘ฆ = ๐‘ฅ โˆ’ 1
2
f. ๐‘ฆ = ๐‘ฅ
10
3
g. ๐‘ฆ = โˆ’ ๐‘ฅ
2
h. ๐‘ฆ = ๐‘ฅ + 1
1
i. ๐‘ฆ = ๐‘ฅโˆ’1 + 3
2. Use the graph of the function f to sketch the graph of the given function g. State the transformation.
Given: f(x)
a. ๐‘”(๐‘ฅ) = ๐‘“(๐‘ฅ) + 1
b. ๐‘”(๐‘ฅ) = ๐‘“(๐‘ฅ + 2)
_____________________
_______________________
1
c. ๐‘”(๐‘ฅ) = โˆ’๐‘“(๐‘ฅ)
d. ๐‘”(๐‘ฅ) = 2 ๐‘“(๐‘ฅ)
_________________
_________________
e. ๐‘”(๐‘ฅ) = 2๐‘“(๐‘ฅ)
__________________
11
f. ๐‘”(๐‘ฅ) = ๐‘“(โˆ’๐‘ฅ)
______________________
i. ๐‘”(๐‘ฅ) =
1
2
g. ๐‘”(๐‘ฅ) = ๐‘“(2๐‘ฅ)
______________________
1
h. ๐‘”(๐‘ฅ) = ๐‘“(2 ๐‘ฅ)
______________________________
๐‘“(โˆ’๐‘ฅ โˆ’ 2) + 1
________________________________________________________
HW Day 3 3.2 Transformation Graphing Practice
Graph and list the transformations.
1. f ๏€จx ๏€ฉ ๏€ฝ 0.5๏›x๏
2. y ๏€ฝ ๏›x ๏€ซ 3๏ ๏€ซ 2
3. y ๏€ฝ ๏›2 x๏ ๏€ญ 1
12
4. y ๏€ฝ ๏€ญ2๏›x๏
5. y ๏€ฝ ๏›4 x๏
6. x ๏€ซ y ๏€ฝ 3
7. y ๏€ฝ x ๏€ซ 3 ๏€ญ 5
8. y ๏€ฝ ๏€ญ3 x ๏€ญ 2 ๏€ซ 1
9. y ๏€ฝ
10. y ๏€ฝ ๏€ญ 2 x ๏€ญ 2
11. y ๏€ฝ 3x
12. y ๏€ฝ
13. y ๏€ฝ
14. y ๏€ฝ
15. y ๏€ฝ 4 x ๏€ญ 2
x๏€ญ3
x ๏€ซ2
1
x ๏€ญ1
2
x๏€ซ2
13
16. y ๏€ฝ 3x ๏€ซ 6
19. y ๏€ฝ ๏€ญ
1
x๏€ซ2
17. y ๏€ฝ
1
๏€ซ2
x
18. y ๏€ฝ
21. y ๏€ฝ ๏€ญ0.5( x ๏€ซ 1) 2
20. y ๏€ฝ 3( x ๏€ญ 2) 2
AFM Day 4 Rational Functions Notes
3
x
Rational --- FRACTIONAL!!!
KEY WORDS
HOW TO FIND
Vertical Asymptotes (VA)
Dotted vertical lines the graph approaches
but never touches (x = #)
FACTOR denominator IF POSSIBLE
Set denominator (factors) = 0, Solve for x
Horizontal Asymptotes (HA)
๐‘“(๐‘ฅ) =
๐‘Ž๐‘ฅ ๐‘š + โ€ฆ
๐‘๐‘ฅ ๐‘› +โ‹ฏ
End behavior of the graph
Dotted horizontal line Y = #
(graph usually does not intersect, but can)
At most one horizontal asymptote
Slant Asymptote (SA)
Oblique line (neither vertical nor horizontal)
If there is NO horizontal asymptote and
m>n by one degree
where m = degree of numerator
n = degree of denominator
HA = ๐‘ฆ =
๐‘Ž
๐‘
๐‘คโ„Ž๐‘’๐‘› ๐‘š = ๐‘›
๐ผ๐‘“ ๐‘š โ‰  ๐‘›, ๐‘ข๐‘ ๐‘’ ๐‘๐‘™๐‘Ž๐‘๐‘’ โ„Ž๐‘œ๐‘™๐‘‘๐‘’๐‘Ÿ๐‘  ๐‘ก๐‘œ ๐‘š๐‘Ž๐‘˜๐‘’ ๐‘กโ„Ž๐‘’๐‘š =
IF FACTORED LOOK AT ORIGINAL PROBLEM
Use long division or synthetic to find equation of SA
DISREGARD REMAINDER
14
Hole
Point of discontinuity (open circle)
When there is a common FACTOR reduced
FACTOR everything and reduce common factors
set common factor = 0 to solve for x, plug that
value into simplified rational equation to obtain
ordered pair (hole)
X intercepts
Points on graph that lie on x-axis
set numerator = 0 and solve for x
(or let y = 0 and solve for x)
Y intercepts
Points on the graph that lie on the y-axis
let x = 0 and solve for y
Examples: If they do not exist write none.
1. ๐‘ฆ =
3๐‘ฅ 2 +4
๐‘ฅ+2
2.
2๐‘ฅ+1
๐‘ฆ = 3๐‘ฅ 2 +7๐‘ฅ+2
VA
VA
HA
HA
SA
SA
Hole
Hole
X-int(s)
X-int(s)
Y-int
Y-int
Domain
Domain
15
3. Determine the following. Then state the domain.
5๐‘ฅ
a. ๐‘“(๐‘ฅ) = ๐‘ฅโˆ’4
b. ๐‘“(๐‘ฅ) =
Domain:
Domain:
๐‘ฅ 2 โˆ’1
d. โ„Ž(๐‘ฅ) = ๐‘ฅ 2 โˆ’6๐‘ฅโˆ’7
e. ๐‘”(๐‘ฅ) =
Domain:
Domain:
g.๐‘“(๐‘ฅ) =
Domain:
12๐‘ฅ
3๐‘ฅ 2 +1
h. ๐‘“(๐‘ฅ) =
Domain:
โˆ’2๐‘ฅ+1
3๐‘ฅ+5
3
c. ๐‘“(๐‘ฅ) = ๐‘ฅ 2 +4๐‘ฅ
Domain:
๐‘ฅ 2 โˆ’6๐‘ฅ+9
๐‘ฅ 2 โˆ’๐‘ฅโˆ’6
f. ๐‘š(๐‘ฅ) =
๐‘ฅ 2 +6๐‘ฅ+8
๐‘ฅ+4
Domain:
2๐‘ฅ 3
๐‘ฅ 2 +1
i. ๐‘“(๐‘ฅ) =
Domain:
๐‘ฅ 2 โˆ’9
๐‘ฅ+2
16
Day 4 HW Rational Worksheet
List all the horizontal, vertical and slant asymptotes, holes, and x and y intercepts. State the domain.
2๐‘ฅ
1. ๐‘“(๐‘ฅ) =
๐‘ฅ+4
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
๐‘ฅ2
4. โ„Ž(๐‘ฅ) = ๐‘ฅ 2 +1
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
7. ๐‘“(๐‘ฅ) =
2
10. ๐‘ฆ = ๐‘ฅโˆ’4
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
5. ๐‘“(๐‘ฅ) =
(๐‘ฅ+1)2
๐‘ฅ 2 โˆ’1
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
๐‘ฅ 2 +3๐‘ฅโˆ’4
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
๐‘ฅโˆ’1
2. โ„Ž(๐‘ฅ) = (2๐‘ฅโˆ’1)(๐‘ฅโˆ’5)
๐‘ฅ
2๐‘ฅ
8. ๐‘ฆ = 2๐‘ฅโˆ’8
๐‘ฅโˆ’2
๐‘ฅ 2 +4๐‘ฅ+3
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
6. ๐‘”(๐‘ฅ) =
๐‘ฅ 2 โˆ’6๐‘ฅ+9
๐‘ฅ 2 โˆ’๐‘ฅโˆ’6
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
๐‘ฅ 2 +2๐‘ฅโˆ’3
๐‘ฅ+4
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
9. โ„Ž(๐‘ฅ) =
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
11. ๐‘”(๐‘ฅ) =
3.๐‘”(๐‘ฅ) =
๐‘ฅ 2 โˆ’9
๐‘ฅโˆ’3
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
12.๐‘“(๐‘ฅ) =
(๐‘ฅโˆ’2)2 (๐‘ฅ+1)2
(๐‘ฅโˆ’2)(๐‘ฅโˆ’1)
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
17
Rational Functions Day 2
1
1. Use the parent graph ๐‘“(๐‘ฅ) = ๐‘ฅ to graph each equation. Describe transformation(s) that have taken place.
Then list the domain and range.
1
2
4
1
a. ๐‘”(๐‘ฅ) = ๐‘ฅโˆ’1
b. ๐‘“(๐‘ฅ) = ๐‘ฅ
c. ๐‘˜(๐‘ฅ) = โˆ’ ๐‘ฅ
d.๐‘ฆ = ๐‘ฅ+3 โˆ’ 2
2. Write an equation of a function that has a vertical asymptote at ๐‘ฅ = โˆ’1 and a hole at ๐‘ฅ = 4
3. Write an equation of a function that has a slant asymptote.
1
4. When graphing a rational function that is not a standard transformation of ๐‘ฅ then there are some steps to take
to make it easier to graph, without using a graphing calculator.
a. Factor and simplify if possible.
b. Identify any vertical, horizontal, slant asymptotes and holes.
c. Find the y-intercept, if one
d. Find the x-intercepts, if any.
e. Start sketch with the information you have
5. Graph each function.
3x
a. f(x) =
x๏€ซ3
18
b.
f ( x) ๏€ฝ
x
2 x ๏€ญ x ๏€ญ 10
c.
h( x ) ๏€ฝ
2 x 2 ๏€ญ 3x ๏€ญ 2
x๏€ญ2
d.
f ( x) ๏€ฝ
x 2 ๏€ซ 4x ๏€ญ 5
x ๏€ซ1
2
Homework: Rational Functions Day 2 worksheet
19
HW Rational Functions Day 2 Worksheet
1
1. Describe the transformations that have taken place when compared to a the parent graph of ๐‘ฆ = ๐‘ฅ, then graph
each one.
1
1
a. ๐‘ฆ = ๐‘ฅ โˆ’ 1
1
b. ๐‘ฆ = ๐‘ฅ+5
c. ๐‘ฆ = ๐‘ฅโˆ’3 + 4
2. Create a function of the form ๐‘ฆ = ๐‘“(๐‘ฅ) that satisfies each set of conditions.
a. Vertical asymptotes at ๐‘ฅ = 4, hole at ๐‘ฅ = 0
b. Vertical asymptotes at ๐‘ฅ = โˆ’5 and ๐‘ฅ = 1, hole at ๐‘ฅ = โˆ’1
c. Holes at ๐‘ฅ = 3 and ๐‘ฅ = โˆ’7, resembles ๐‘ฆ = ๐‘ฅ
Graph each function.
๐‘ฅโˆ’5
3. ๐‘ฆ = ๐‘ฅ+1
4. ๐‘ฆ =
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
(๐‘ฅ+2)(๐‘ฅโˆ’2)
๐‘ฅโˆ’2
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
20
5.
๐‘ฅ
โˆ’2
๐‘ฆ = ๐‘ฅโˆ’5
6. ๐‘ฆ = (๐‘ฅโˆ’3)2
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
7.
๐‘ฆ=
๐‘ฅ 2 โˆ’๐‘ฅ
โˆ’5
8. ๐‘ฆ = (๐‘ฅโˆ’3)(๐‘ฅ+1)
๐‘ฅ
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
9. ๐‘ฆ =
๐‘ฅ 2 +3๐‘ฅโˆ’4
๐‘ฅ
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
๐‘ฅ
10. ๐‘ฆ = 1โˆ’๐‘ฅ 2
VA:
HA:
SA:
Hole:
x-intercept:
y-intercept:
Domain:
21
Day 6 Notes Piecewise Functions
1. Piecewise Functions-A functions that is defined by two (or more) equations over a specified domain.
2. Graph each of the following on a number line.
a. ๐‘ฅ > 1
b. โˆ’2 โ‰ค ๐‘ฅ < 2
c. ๐‘ฅ โ‰ค โˆ’3
3. Graph each of the following, given the domain restrictions. List the domain and range in interval notation.
๐‘Ž. ๐‘ฆ = 2๐‘ฅ, ๐‘ฅ โ‰ฅ 0
b. ๐‘ฆ = ๐‘ฅ 2 , ๐‘ฅ < 0
c. ๐‘ฆ = |๐‘ฅ|, โˆ’1 < ๐‘ฅ < 1
d. ๐‘ฆ = [๐‘ฅ], โˆ’2 โ‰ค ๐‘ฅ โ‰ค 2
4. Evaluate each piecewise functions at the given values of the independent variable.
3๐‘ฅ + 5 ๐‘–๐‘“ ๐‘ฅ < 0
a. ๐‘”(๐‘ฅ) = {
}
4๐‘ฅ + 7 ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 0
b. ๐‘“(๐‘ฅ) = {
c. โ„Ž(๐‘ฅ) =
๐‘ฅ + 3 ๐‘–๐‘“ ๐‘ฅ โ‰ฅ โˆ’3
}
โˆ’(๐‘ฅ + 3)๐‘–๐‘“ ๐‘ฅ < โˆ’3
๐‘ฅ 2 โˆ’9
{ ๐‘ฅโˆ’3
๐‘–๐‘“ ๐‘ฅ โ‰  3
6 ๐‘–๐‘“ ๐‘ฅ = 3
}
g(-2)
g(0)
g(3)
f(0)
f(-6)
f(-3)
h(5)
h(0)
h(3)
5. Sketch the graph of each function. Then list the domain and range in interval notation.
๐‘ฅ โˆ’ 1, ๐‘ฅ > 2
๐‘Ž. โ„Ž(๐‘ฅ) = {
}
โˆ’๐‘ฅ โˆ’ 3, ๐‘ฅ โ‰ค 2
โˆ’๐‘ฅ, ๐‘–๐‘“ ๐‘ฅ < 0
๐‘. ๐‘”(๐‘ฅ) = {๐‘ฅ + 1, ๐‘–๐‘“๐‘ฅ โ‰ฅ 0}
๐‘ฅ 2 , ๐‘ฅ > โˆ’1
c. โ„Ž(๐‘ฅ) = {
}
โˆ’3๐‘ฅ, ๐‘ฅ โ‰ค โˆ’1
22
๏ƒฌ 1 if u ๏€พ 0
๏ƒฏ
d. g ๏€จu ๏€ฉ ๏€ฝ ๏ƒญ 0 if u ๏€ฝ 0
๏ƒฏ ๏€ญ1 if u ๏€ผ 0
๏ƒฎ
โˆ’๐‘ฅ โˆ’ 1, ๐‘–๐‘“ ๐‘ฅ < โˆ’2
e. ๐‘“(๐‘ฅ) = { ๐‘ฅ, ๐‘–๐‘“ โˆ’ 2 โ‰ค ๐‘ฅ < 1 }
๐‘ฅ + 2, ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 1
Day 6 HW Piecewise Worksheet 1
I. Graph each function, then state the domain and range.
1.
๏ƒฌ x 2 ; x ๏€ผ ๏€ญ2
๏ƒฏ
f ๏€จ x ๏€ฉ ๏€ฝ ๏ƒญ๏€ญ 2; ๏€ญ 2 ๏‚ฃ x ๏€ผ 1
๏ƒฏ x ๏€ซ 1; x ๏‚ณ 1
๏ƒฎ
๏ƒฌ x 2 ; x ๏€ผ ๏€ญ2
2. y ๏€ฝ ๏ƒญ
๏ƒฎ x ๏€ญ 1; x ๏‚ณ ๏€ญ2
๏ƒฌ x 3 ; x ๏‚ฃ ๏€ญ1
๏ƒฏ
3. y ๏€ฝ ๏ƒญ๏€ญ 2; ๏€ญ 1 ๏€ผ x ๏€ผ 2
๏ƒฏ
๏ƒฎ x; x ๏‚ณ 2
4.
๏ƒฌ x ๏€ซ 3; x ๏‚ฃ 0
๏ƒฏ
y ๏€ฝ ๏ƒญ2; 0 ๏€ผ x ๏€ผ 1
๏ƒฏx 2 ; x ๏‚ณ 1
๏ƒฎ
๏ƒฌ๏€ญ 1; ๏€ญ 3 ๏‚ฃ x ๏€ผ ๏€ญ1
๏ƒฏ
5. y ๏€ฝ ๏ƒญ2; x ๏€ฝ ๏€ญ1
๏ƒฏ3; x ๏€พ ๏€ญ1
๏ƒฎ
๏ƒฌx 2 ; x ๏‚ณ 1
๏ƒฏ
6. f ๏€จ x ๏€ฉ ๏€ฝ ๏ƒญ x ๏€ญ 1;๏€ญ3 ๏‚ฃ x ๏€ผ 1
๏ƒฏ4; x ๏€ผ ๏€ญ3
๏ƒฎ
23
๏ƒฌ x ๏€ญ 1; ๏€ญ 2 ๏€ผ x ๏€ผ 1
๏ƒฏ
8. f ๏€จ x ๏€ฉ ๏€ฝ ๏ƒญ3; x ๏‚ณ 1
๏ƒฏ๏€ญ 4; x ๏‚ฃ ๏€ญ2
๏ƒฎ
๏ƒฌ4; x ๏€ผ ๏€ญ3
๏ƒฏ x ๏€ญ 1; ๏€ญ 3 ๏‚ฃ x ๏€ผ 2
๏ƒฏ๏ƒฏ
9. f ๏€จ x ๏€ฉ ๏€ฝ ๏ƒญ 1
๏ƒฏ 2 x ๏€ซ 1; 2 ๏€ผ x ๏‚ฃ 5
๏ƒฏ
๏ƒฎ๏ƒฏ๏€ญ 3; x ๏€พ 5
๏ƒฌ x ; x ๏‚ณ ๏€ญ2
11. f ๏€จx ๏€ฉ ๏€ฝ ๏ƒญ
๏ƒฎ๏€ญ 1; x ๏€ผ ๏€ญ2
๏ƒฌ๏ƒฏ3 x ; x ๏‚ณ 1
12. f ๏€จx ๏€ฉ ๏€ฝ ๏ƒญ 2
๏ƒฏ๏ƒฎ x ; x ๏€ผ 1
2
7.
๏ƒฌ2; x is an odd int
f ๏€จx ๏€ฉ ๏€ฝ ๏ƒญ
๏ƒฎ๏€ญ 1; x is an even int
๏ƒฌ x; x ๏‚ณ 1
๏ƒฏ๏ƒฏ
10. f ๏€จ x ๏€ฉ ๏€ฝ ๏ƒญ x 2 ๏€ญ 3; ๏€ญ 2 ๏‚ฃ x ๏€ผ 1
๏ƒฏ4 x; x ๏€ผ ๏€ญ2
๏ƒฏ๏ƒฎ
II. Evaluate.
13. ๐‘“(๐‘ฅ) = {
5 โˆ’ |๐‘ฅ + 3| ๐‘–๐‘“ ๐‘ฅ < 5
[๐‘ฅ]
๐‘–๐‘“ ๐‘ฅ โ‰ฅ 5
9 โˆ’ ๐‘ฅ, ๐‘–๐‘“ ๐‘ฅ โ‰ค โˆ’8
14.๐‘”(๐‘ฅ) = {๐‘ฅ โˆ’ 5, ๐‘–๐‘“ โˆ’ 8 < ๐‘ฅ โ‰ค 3
2 โˆ’ ๐‘ฅ 2 , ๐‘–๐‘“ ๐‘ฅ > 3
a.๐‘“(โˆ’2)
b. ๐‘“(5)
c. ๐‘“(11.8)
a. ๐‘”(โˆ’10)
b. ๐‘”(โˆ’1)
c. ๐‘”(4)
24
PIECEWISE MATCHING
Directions: Match each graph with the appropriate piecewise function.
1.______
2._____
11.______
12._____
3.______
4.______
5._____
Name ____________________________________________
6._____
7._____
8.______
9._____
10.______
25
AFM Piecewise Applications
Class Examples
1. An amusement park charges $100 for groups of 10 or less people. For groups of more than 10 they charge the $100 fee plus an
additional $4 per person. The park does not allow groups larger than 40.
a. A group of 15 would pay: ____________
b. A group of 20 would pay: _______________
Let x = _______________
c. Write a function C = f(x), that represents the cost as a function of the number of people going to the amusement park.
Graph the function.
Label axes.
2. A taxi in Los Angeles costs $3.00 for the first half mile and then $0.50 for each additional half mile. The taxis round up to the next
half-mile. (So someone on a 1.2 mile ride would be charged for 1.5 mile: $3.00 + 2 (.50) = $4.00)
a) Finish the table
Length of Ride
Cost
0 <x<½
__< x < 1
$3.50
b) Graph the function:
1 < x < ___
___< x < ___
$5.00
Cost
$4.00
$3.00
1
2
Trip Length (miles)
3
$4.50
26
3. A long distance telephone charges 99 cents for any call up to 20 minutes in length and 7 cents for each additional minute.
a. Use bracket notation to write a formula for the cost, C, of a call as a function of its length time, t, in minutes.
b. How much does it cost to talk for 10 minutes? ___________
25 minutes? _____________
4. A company charges $200 a month to organize a companyโ€™s payroll for up to 20 employees and an additional $100 a month for each
20 employees over 20.
a. Find a function, P = f(x), that gives the payroll amount for 100 employees in one month.
Homework
1. A museum charges $40 for a group of 10 or fewer people. A group of more than 10 people must, in addition to the $40, pay $2 per
person for the number of people above 10. For example, a group of 12 pays $44 and a group of 15 pays $50. The maximum group
size is 50.
a. Find a function, C = f(x), that represents the cost as a function of the number of people going to the museum.
b. How much would the museum charge for a group of 8?
c. Group with 35 people?
2. The charge for a taxi ride is $1.50 for the first 1/8 of a mile, and $0.25 for each additional 1/8 of a mile (rounded to the nearest 1/8
mile).
a) Find a function, C = f(x), that represents the cost of the trip as a function of its length. Your domain should start at 0 and go up to
one mile in 1/8 mile intervals.
b) What is the cost for a 5/8 mile ride? _________________
c)How far can you go for $3.00? ________________
3. A parking garage in Manhattan charges in this way: For each hour or part of an hour, the garage charges $10 per hour, with a daily
maximum of $50 per day.
a. How much will a customer pay if he/she parks for 2 hours? _______ 3.5 hours?___________
4 hours?___________
b. Write a piecewise function that has as its input the number of hours parked and outputs the total price paid by the customer.
27
4. A paperback sells for $12. The author is paid royalties of 10% on the first 10,000 copies sold, and 15% on any additional copies.
______________a. When the 6,000th book is sold, how much will the author earn on that sale?
______________b. Also, what will the authorโ€™s total royalties be at that point?
______________c. When the 12,000th book is sold, how much will the author earn on that sale?
______________d. Also, what will the authorโ€™s total royalties be at that point?
e. Let x be the number of copies sold. Write a piecewise function for R (the total royalty earned ) in terms of x.
_______________f. How many copies have to be sold in order for the author to have earned $30,000?
5. You are a buyer for a grocery store and you are asked to purchase potatoes for the grocery store. The distributor of potatoes tells
you that if you buy up to 50 bushels of potatoes, you will pay $40 per bushel; and for each bushel you purchase above 50 bushels, you
will pay $30 per bushel.
a. How much will your grocery store pay in total if you decide to purchase 40 bushels?_______ 60 bushels? _______
100 bushels__________?
b. Write and graph a function which has as its input values (x-values) the number of bushels of potatoes purchased and outputs the
total amount of money that your grocery store will pay for the potatoes.
6.
The minimum payment on a credit card is based on the total amount owed. A credit card company uses the following rules:
For a bill less than $10 the entire amount is due.
For a bill of at least $10 but less than $500, the minimum due is $10.
There is a minimum of $30 due on a bill of at least $500 but less than $1000,
A minimum of $50 due on a bill of a least $1000, but less than $1500, and a minimum of $70 is due on bills $1500
or more.
a. Find the function F that describes the minimum payment on a bill of X dollars.
7.
28
Solving systems of 2nd degree equations
Solve each system algebraically ( use substitution or elimination).
y ๏€ฝ 3x ๏€ญ 5
2
x ๏€ซ 4y ๏€ญ 4 ๏€ฝ 0
2
1.
3.
y ๏€ซ 3x ๏€ฝ 1
x2 โ€“ y = 5
2x + y = 3
5. xy = 8
2.
2
๏€ญ 2y ๏€ซ x ๏€ซ 2 ๏€ฝ 0
2
4. y = x2
x2 + y2 = 12
6. x2 + y2 = 25
x2 โ€“ y2 = 7
x+y=6
7. 2x2 โ€“ 3y2 = 30
x2 + y2 = 25
x ๏€ซ y ๏€ญ 16 x ๏€ซ 39 ๏€ฝ 0
2
8.
2
x ๏€ซ y ๏€ญ9๏€ฝ 0
2
2
29
AFM - - Unit 1 GRAPHING - - TEST REVIEW SHEET #1
I. Graph
1. y ๏€ฝ x ๏€ญ 1 ๏€ซ 1
2. y ๏€ฝ 2 x ๏€ซ 2 ๏€ซ 3
3. y ๏€ฝ ๏€จx ๏€ซ 2๏€ฉ ๏€ญ 4
4. y ๏€ฝ
5. y ๏€ฝ ๏›x๏ ๏€ญ 4
6. y ๏€ฝ
2
1
๏€ซ3
x ๏€ญ1
4
๏€จx ๏€ญ 2๏€ฉ๏€จx ๏€ซ 3๏€ฉ
30
7. y ๏€ฝ
x2 ๏€ซ x ๏€ญ 6
x๏€ซ3
II. Short Answer
8. Determine all of the asymptotes of f ๏€จ x ๏€ฉ ๏€ฝ
๏€ญ4
.
x ๏€ซ 4x ๏€ซ 3
2
9. Given the following, describe the transformations to their parent graph.
a. y ๏€ฝ ๏›2 x๏
c. y ๏€ฝ ๏€ญ3๏€จ x ๏€ญ 1๏€ฉ ๏€ญ 4
b. y ๏€ฝ x 2 ๏€ซ 1
3
10. Dan works at a clothing store for men. He earns $8.00 an hour plus 50¢ for every item over 25 items that he sells.
He works 40 hours a week. Write a function that represents how much money he will make as a function of the number
of items he sells.
State the domain (using interval notation) for the following:
11. ๐‘“(๐‘ฅ) =
2๐‘ฅ+1
๐‘ฅ
12. ๐‘“(๐‘ฅ) = โˆš3๐‘ฅ โˆ’ 5
Determine the domain and range in interval notation:
15.
16.
13. ๐‘“(๐‘ฅ) =
๐‘ฅโˆ’2
โˆš๐‘ฅ+4
3
14. ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’36
17.
31
1
18. How does the graph of ๐‘ฆ = โˆ’3๐‘“ (2 ๐‘ฅ) compare to f(x)?
19. Name the x intercepts for ๐‘ฆ =
21. What is the y intercept for ๐‘ฆ =
20. What is the equation of the slant asymptote for #19?
22. Find the equation of the slant asymptote of ๐‘ฆ
=
23. Determine ALL asymptotes for the graph of ๐‘ฆ
=
24. Determine any holes for the graph of ๐‘ฆ
=
๐‘ฅ 2 โˆ’๐‘ฅโˆ’6
๐‘ฅ+1
8๐‘ฅ 2 โˆ’4๐‘ฅ+11
๐‘ฅ+5
2๐‘ฅโˆ’6
๐‘ฅ+2
.
?
.
๐‘ฅ
๐‘ฅ 2 โˆ’9
๐‘ฅ 2 โˆ’๐‘ฅโˆ’2
๐‘ฅ 3 โˆ’๐‘ฅ 2 โˆ’2๐‘ฅ
25. Determine the equation of a rational function with vertical asymptotes x=-4 and x=2, horizontal asymptote
at y =0 and an x-intercept of (-1,0).
26. Determine the equation of a rational function with holes at (-4,-1) and (6,9), x-intercept at (-3,0) and no
horizontal asymptote.
27. Solve the following systems:
1
28. Given the graph of f(x), Graph ๐‘ฆ = 2 ๐‘“(โˆ’๐‘ฅ โˆ’ 4)
29. What is the horizontal asymptote of
๐‘ฆ=
4๐‘ฅโˆ’2๐‘ฅ 2
3๐‘ฅ 2 โˆ’5๐‘ฅ+2
?