PHY 745 Group Theory 11-11:50 AM MWF Olin 102 Plan for Lecture 12: Continuous groups, their representations, and the great orthogonality theorem Reading: Eric Carlson’s lecture notes Additional reference: Eugene Wigner, Group Theory 1. Importance of commutation relations 2. Integral relations 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 1 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 2 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 3 Group structure of SO(3) and SU(2) OR ( , nˆ ) e i J nˆ / Multiplication rule: OR (1 , nˆ 1 )OR ( 2 , nˆ 2 ) OR ( 3 , nˆ 3 ) Example for nˆ 1 nˆ 2 zˆ OR (1 , zˆ )OR ( 2 , zˆ ) OR ( 3 , zˆ ) e i1 J z / 2/8/2017 e i 2 J z / e i (1 2 ) J z / PHY 745 Spring 2017 -- Lecture 12 3 1 2 4 Group structure of SO(3) and SU(2) OR ( , nˆ ) e i J nˆ / Multiplication rule: OR (1 , nˆ 1 )OR ( 2 , nˆ 2 ) OR ( 3 , nˆ 3 ) Example for nˆ 1 xˆ nˆ 2 yˆ OR (1 , xˆ )OR ( 2 , yˆ ) OR ( 3 , nˆ 3 ) e i1 J x / e i 2 J y / e i 1 J x 2 J y i 1 J x , 2 J y / 2 / In this case: J x , J y =i J z 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 5 e i1 J x / e i 2 J y / e i 1 J x 2 J y i 1 J x , 2 J y / 2 / 1 1 2 3 LHS= 1 i1 J x / i1 J x / i1 J x / ... 2! 3! 2 3 1 1 1 i 2 J y / i 2 J y / i 2 J y / ... 2! 3! 2 1 2 =1 i 1 J x 2 J y / 1 J x 2 J y / 2 1 2 J x J y / 2 ... 2! RHS=1 i1 J x / i 2 J y / 1 J x , 2 J y / 2 2 2 1 2 i1 J x / i 2 J y / 1 J x , 2 J y / 2 ..... 2! 2 1 2 1 2 2 =1 i 1 J x 2 J y / JxJy JyJx / 1 J x 2 J y / 2 2! 1 2 2 J J x y J yJx / 2 ... 2 1 2 = 1 i 1 J x 2 J y / 1 2 J x J y / 1 J x 2 J y / 2! 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 2 2 +.... 6 2 Summary of result for nˆ 1 xˆ nˆ 2 yˆ OR (1 , xˆ )OR ( 2 , yˆ ) OR ( 3 , nˆ 3 ) e i1 J x / e i 2 J y / e i 1 J x 2 J y i 1 J x , 2 J y / 2 / Since J x , J y =i J z : i 1 J x 2 J y 1 2 J z / 2 / i 2 J y / i1 J x / e e e 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 7 Now consider the great orthogonality theorem: h R D ( R) D ( R) l nn ' n For continuous groups, the summation * n n ' becomes an integral: D 2/8/2017 n ( R ) * n ' D ( R) dR PHY 745 Spring 2017 -- Lecture 12 nn ' ln dR 8 In terms of the characters of the representations: n * ( R) n ' ( R )dR nn ' dR Procedure for carrying out integration over group elements In general, there will be continuous parameter(s) which characterize each group element R R ( , ,...) dR g ( R( , ...))d d ... where g ( R ( , ...)) represents the density of group elements in the neighborhood of R in the parameter space of , ... 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 9 Analysis of continuum properties of continuous groups, following notes of Professor Eric Carlson. Notation: Group elements R, S Continuous parameters x1 , x2 ... R ( x1 , x2 ...) R( x) Identity E R(e) Continuous group based on nearby mapping of continuous parameters 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 10 Some details from Professor Carlson’s Notes: Another example: R (1 ) OR (1 , zˆ ) (1 , 2 ) R 1 R (1 ) R ( 2 ) 1 2 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 11 Use of measure function to perform needed integrals dR f ( R) Normalization constant 2/8/2017 Jacobian for left or right measures PHY 745 Spring 2017 -- Lecture 12 12 We are particularly interested in showing that the great orthogonality theorem holds for continuous groups which requires : Proof from Professor Carlson’s notes: 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 13 Changing variables -- 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 14 Using z varable: 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 15 When the dust clears: These arguments form the basis of the extension of the great orthogonality theorem to continuous groups. See Professor Carlson’s notes for more details. 2/8/2017 PHY 745 Spring 2017 -- Lecture 12 16
© Copyright 2026 Paperzz