Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University Two CML-ogens: Radiation and Age 3 10 D < 0.02 Sv 0.02 < D < 1 Sv Not exponential => use additive risk model D > 1 Sv 3 3 3 2 10 2 1 20 30 1 40 Age Sv = gamma ray dose (Gy) + 10 neutron dose (Gy) 50 2 10 Males k = 0.047 Females k = 0.046 𝑦 = 𝐴𝑒 𝑘∗𝑎𝑔𝑒 10 6 10 10 2 1 2 2 U.S. CML Incidence 1973-2009 Cases per 10 Person-Years 3 6 Cases per 10 Person-Years Japanese A-Bomb Survivors 60 70 1 0 20 40 Age 60 80 Radiation-induced CML is Multi-scale For a 500 keV incoming photon J = 6.2e18eV Gy = J/kg = 6.2e6eV/pL Figure by R.K. Sachs. Stochastic versus Deterministic Figure by R.K. Sachs. Why Study Radiation as the Input? • Best carcinogen exposure assessment: Abomb survivors remember exactly where they were, so doses can be reconstructed • Compared to chemical carcinogen, cannot simply not use it: background, diagnostic, and therapeutic exposures are here to stay • Physics is understood, so results across x& γ-rays, neutrons & protons, and α- and β particles at different energies can be unified Other CML-ogen, aging, also cannot be avoided+exposure is known Why Study CML as the Output? • CML is homogeneous: all have BCR-ABL • CML is prevalent: introns large => per-cell target size for creating bcr-abl is large • leukemias have rapid onset kinetics: white blood cells go in and out of tissues naturally so they don’t need to learn to metastasize From 1KG browser Chr 22 49.2 Mb ~5 kb = introns between e12-e15 Chr9 = 136.3 Mb ~140 kb 139.6 Kb DNA Repair 10 (2011) 1131– 1137 PML-RARA intron sizes 40%,55% Mediterr J Hematol Infect Dis. 2011;3(1) ~2kb ~20kb Seer APL/CML 1234/10103 = 12%=1/8 40/700=1/18 Dose Response mi (e c1 kai Di ti2 e c2 kt ti ) Pi mi [e c1 kai ( Di D 2 i n 2 c2 kt ti i Dni )t e ]Pi e ( k Di k D2i kn Dni ) NP(ba | T ) w(ti ) ti2 e c2 kt ti N is the number of CML target cells in an individual P(ba|T) is the probability of BCRABL given a translocation w(t)=probability density that CML arrives at t given bcr-abl at t=0 kt3t 2 e kt t w(t ) 2 R 2 c k t t e 2 t dt 0 2e c2 kt3 Linear R = 0.0075/Gy. LQE posterior R = 0.0022/Gy CML Target Cell Numbers • A comparison of age responses for CML and total translocations suggests a CML target cell number of 4x108 • 1012 nucleated marrow cells per adult and one LTC-IC per 105 marrow cells suggests 107 CML target cells • P(ba|T) = 2TablTbcr/2 may not hold BCR-to-ABL 2D distances Kozubek et al. (1999) Chromosoma 108: 426-435 Hi-C Data http://hic.umassmed.edu/heatmap/heatmap.php chr9 K562 = bcr-abl+ CML cells 133 23 Off by 2 Mb? chr22 GM06690 = EBV-transformed lymphoblasts 133 23 Lieberman-Aiden, et al. Science 9 October 2009: 289-293. Theory of Dual Radiation Action P(ba | D) 2TBCRTABLY D 2 0 t D (r ) 2 S ( r ) g ( r ) dr D D ba ba ba 4r 2 P(ba|D) = probability of a BCR-ABL translocation per G0/G1 cell given a dose D tD(r)dr = expected energy at r given an ionization event at the origin t D (r ) t (r ) 4r 2 D = intra-track component + inter-track component Sba(r) = the BCR-to-ABL distance probability density g(r) = probability that two DSBs misrejoin if they are created r units apart Y = 0.004 DSBs per Mb per Gy; = mass density TBCR = 5.8 kbp; TABL = 140 kbp Total Translocations → g(r) estimate 2 S 0 (r ) 3 2 3 d 5 r r r ( 9 / 4 ) ( 3 / 16 ) R3 R4 R6 S0 (r ) ( r / r0 ) 1 ( p0G ) t ( r ) e dr 2 4 6.25 0 4r 2 S0 (r ) ( r / r0 ) 1 ( p0G ) dx t ( r ) e dr x 4 6.25 0 4r 2 g (r ) p0 e ( r / r0 ) 1 d ( p0G 2 ) S0 (r )e ( r / r0 ) dr 4 0 d in [.01, .025], dx in [.04, .05], d in [.05, .06] R = 3.7 m r0 = 0.24 m, p0 = 0.12 G=25 DSB/Gy 6.25 kev/m3 = 1 Gy Risk and Target Cell Numbers R t e 2 c2 k t t 0 2ec2 dt 3 N ba kt N R ba Dependence of R and N on the choice of fixed LQE parameters ba/ba and ban/ba BA/BA .055/.0107 .055/.022 .45/3.64 a BAn/BA .8/.0107 .8/.022 .8/.022 R (Gy-1) .0022 (.0012, .0039)a .0039 (.0020, .0073) .0094 (.0051, .0176) N 6.1x10 (3.3x108, 1.1x109) 5.2x108 (2.7x108, 9.8x108) 7.6x106 (4.1x106, 1.4x107) 8 In parentheses are the 95% CI. Higher risk estimate is more biologically plausible Linear-to-quadratic transition dose changed from [0.011-0.022]/0.055= [0.2-0.4] Gy to 3.64/.45= 8.09 Gy Linear R = 0.0075/Gy for D < 4Sv is higher here at 0.0094/Gy due to cell killing term Bcr-Abl to CML Waiting Times Eijk Ai D j Fk PYijk Males Females kt3t 2 e kt t w(t ) 2 2 10 Males k = 0.047 Females k = 0.046 10 M/F=1.6 tf-tm=10 yrs 6 4 Cases per 10 Person-Years 6 U.S. CML Incidence 1973-2009 4 Cases per 10 Person-Year-Sv IR-to-CML Latency 2 M/F=1.42 tf-tm=6.3y 0 1950 1970 Year 1990 1 0 20 40 Age 60 80 mostly radiogenic Females mostly radiogenic 5 Cases per 10 Person-Years 0.1 1 10 Males 5 Cases per 10 Person-Years 0.1 1 10 Age at Exposure Dependence High Dose Medium Dose Low Dose 10 20 30 40 Age at exposure 50 High Dose Medium Dose Low Dose 10 20 30 40 Age at exposure 50 Nagasaki HSC Reserve Loss? 10 D < 0.02 Sv 0.02 < D < 1 Sv D > 1 Sv 3 3 3 3 2 10 6 Cases per 10 Person-Years Japanese A-Bomb Survivors 3 2 1 10 2 1 2 2 10 20 30 6 Nagasaki CML vs 53 in Hiroshima Hiroshima PY=1558995 Nagasaki PY= 690084 (i.e. 2.26 lower), 53/2.26 = ~23 cases expected in Nagasaki HSC reserve permanently depleted to 25%? 1 40 Age 50 60 70 Human T-cell leukemia virus (HTLV): 22 adult T-cell leukemias (ATLs) in Nagasaki compared to 1 in Hiroshima (2.26 more PY => expect ~50) Dead-Band Control of HSC levels • Transplant doses of 10, 100, and 1000 CRU => CRU levels 1-20% or 15-60% normal Blood (1996) 88: 2852-2858 • Broad variation in human HSC levels Stem Cells (1995) 13: 512-516 • Low levels of HSCs in BMT patients Blood (1998) 91: 1959-1965 HSC Reserve Loss Trend? 0.80 0.54 6 Males Cases per 10 PY 2 6 Cases per 10 PY 10 Ave last 7 ratios 0.70 Females 2 0.49 10 10 1 1973-1984 k = 0.058 1985-1996 k = 0.048 1997-2009 k = 0.038 0.1 10 1 1973-1984 k = 0.053 1985-1996 k = 0.049 1997-2009 k = 0.038 0.1 0 20 40 60 Age 80 0 20 40 60 Age 80 1995 data yielded k= 0.041 [Radiat Environ Biophys (1999) 38:201–206]. 0.031 in 2006 is consistent with tlcns leading CML by 10 yrs All Cancer Incidence Conclusion: Cancer therapy is not the cause of the HSC reserve depletion Cumulative Incidence of Cancer males females Other Guesses? Does obesity increase bone marrow fat and thus squeeze out HSC? 1. Mississippi (34.4%) 51. Colorado (19.8%) 0.1*x+1(1-x)=0.5 => .5=.9x => x=.555 Prevalence of cause must be greater than 55% 0.1 Cancer Epidemiol Biomarkers Prev 2009;18:1501-1506 => obesity causes CML 2 Easier travel=> greater loads on immune system? 3 Males 10 6 10 2 0 20 40 age 60 80 2 Females 6 10 Cases per 10 PY 10 Cases per 10 PY probability of cancer 0.5 10 1 1973-1984 k = 0.058 1985-1996 k = 0.048 1997-2009 k = 0.038 0.1 10 1 197319851997- 0.1 0 20 40 60 Age 80 0 20 40 Ag Or is it CMML Misclassification? Males 10 CML=ICD9 205.1 includes 20% CMML 10 1 1973-1984 k = 0.058 1985-1996 k = 0.055 1997-2009 k = 0.053 0.1 40 60 Age 10 1 80 1973-1984 k = 0.053 1985-1996 k = 0.054 1997-2009 k = 0.05 0 Males 10 2 20 40 60 Age 80 Females 6 6 2 20 Cases per 10 PY 10 Cases per 10 PY Females 0.1 0 CML = ICDO-2 9863 does not include CMML. Maybe all were called CML <1985, 50% in 1985-1995, and 0 after 2 6 Cases per 10 PY 2 6 Cases per 10 PY 10 10 1 1973-1984 k = 0.058 1985-1996 k = 0.048 1997-2009 k = 0.038 0.1 10 1 1973-1984 k = 0.053 1985-1996 k = 0.049 1997-2009 k = 0.038 0.1 0 20 40 60 Age 80 0 20 40 60 Age 80 CMML rises at older ages ICDO-2 9945 = CMML Males 10 2 Females 6 Cases per 10 PY 2 6 Cases per 10 PY 10 10 1985-1996 1997-2009 1 0.1 10 1985-1996 1997-2009 1 0.1 0 20 40 60 Age 80 0 20 40 60 Age Counts of CMML per year. None before 1985 1984 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 40 41 43 50 53 70 61 68 66 65 79 93 65 85 78 82 87 2003 2004 2005 2006 2007 2008 2009 93 127 84 91 104 80 123 80 AML 10 2 AML Females 6 Cases per 10 PY 10 2 6 Cases per 10 PY AML Males 10 1973-1984 1985-1996 1997-2009 0 20 40 60 Age 10 80 0 20 40 60 Age 6 Cases per 10 PY APL Females 6 More APL or better diagnostics? Cases per 10 PY APL Males 80 1 1973-1984 1985-1996 1997-2009 0 20 40 60 Age 80 1 0.1 0 20 40 60 Age 80 Retinoic Acid and Imatinib 0.8 0.6 0.0 0.2 0.4 Survival 0.6 0.4 0.2 0.0 40 60 80 100 120 0 50 100 150 200 Months Months APL females CML females 250 300 0.2 0.4 0.6 0.8 1973-1981 1982-1991 1991-1999 2000-2009 0.0 0.0 0.2 0.4 0.6 Survival 0.8 1.0 20 1.0 0 Survival Cures found for cancers that are molecularly homogeneous: simpler cancers are being solved first Survival 0.8 1.0 CML males 1.0 APL males 0 20 40 60 Months 80 100 120 0 50 100 150 200 Months 250 300 AML and CLL 0.8 0.6 0.0 0.2 0.4 Survival 0.6 0.4 0.2 0.0 100 150 200 250 300 0 50 100 150 200 Months Months AML females CLL females 250 300 0.2 0.4 0.6 0.8 1973-1981 1982-1991 1991-1999 2000-2009 0.0 0.0 0.2 0.4 0.6 Survival 0.8 1.0 50 1.0 0 Survival More typically progress is slower Survival 0.8 1.0 CLL males 1.0 AML males 0 50 100 150 200 Months 250 300 0 50 100 150 200 Months 250 300 Acknowledgements • • • • Department of Epidemiology & Biostatistics Rainer Sachs (UC Berkeley) Yogen Saunthararajah (Cleveland Clinic) Thank you for listening! SEER Underreporting Possibility Most conservative claims-based algorithm vs. SEER. B. M. Craig et al. Cancer Epidemiol Biomarkers Prev; 21(3) March 2012 Radiation Doses Rising AML 10 2 AML Females 6 Cases per 10 PY 10 2 6 Cases per 10 PY AML Males 10 1973-1984 1985-1996 1997-2009 0 20 40 60 Age 80 10 0 20 40 60 Age 80 Assuming all CML-ogens are also AML-ogens, this implies CML decreases are NOT due to decreases in exposures to bcr-abl forming agents. No AML trend is consistent with target cells being lineage committed and thus more tightly regulated than HSCs. Others 10 2 6 2 Cases per 10 PY 10 CLL Females 6 Cases per 10 PY CLL Males 10 1 1973-1984 1985-1996 1997-2008 0.1 0 20 40 60 Age 10 1 80 0 80 Cases per 10 PY 2 10 2 6 10 40 60 Age MML Females 6 Cases per 10 PY MML Males 20 10 1 1973-1984 1985-1996 1997-2008 0.1 0 20 40 60 Age 80 10 1 0.1 0 20 40 60 Age 80 All Cancer Incidence Incidence of All Cancers 10 10 10 Females 2 3 1973-1984 1985-1996 1997-2008 4 0 20 40 Age 60 80 Cases per Person-Year Cases per Person-Year Males 10 10 10 2 3 4 0 20 40 Age 60 80 All Cancer Incidence Cases per Person-Year Incidence of All Cancers females males 10 2 10 3 10 4 2026202 Males 2157740 Females 438616821 MalePY 454528905 FemPY 0 20 40 age 60 80 Cases per 10 Person-Years 0.1 1 10 Nagasaki HSC Reserve Loss? 5 mostly radiogenic O log( m ) m i i i i Cases per 10 Person-Years 0.1 1 10 53/2.26 = ~23 cases expected in Nagasaki HSC reserve permanently depleted to 25%? Human T-cell leukemia virus (HTLV): 22 adult Tcell leukemias (ATLs) in Nagasaki compared to 1 in Hiroshima (2.26 more PY => expect ~40) 10 20 30 40 Age at exposure 50 5 6 Nagasaki CML vs 53 in Hiroshima Hiroshima PY=1558995 Nagasaki PY= 690084 (i.e. 2.26 lower), High Dose Medium Dose Low Dose High Dose Medium Dose Low Dose 10 20 30 40 Age at exposure 50
© Copyright 2026 Paperzz