Classroom Notes: Images of Fixed-Point Continued Fractions John Gill December 2013 Abstract: Computer generated images in the complex plane of iterations of certain analytic continued fractions. Fixed-point continued fractions have the form (1) α1 β1 α2 β 2 … where α k , β k are the fixed points of the function α1 + β1 − α2 + β2 − f k (ζ ) = αk βk . The nth approximant of the continued fraction then can be written αk + βk − ζ Fn(ζ ) = f1 f2 f n(ζ ) . If α k = α k ( z ) and β k = β k ( z ) , we have Fn( z ,ζ ) = f1 f2 f n( z ,ζ ) . The following images show magnitudes of simple complex flux (SCF), Fn( z ,0) , or fixed-point flux (FPF), Fn( z ,0) − z . Dark=small, light=large. Several variations on FPCFs are shown, as well. [Liberty Basic V 4.04 (2013)] Example 1: f k ( z ,ζ ) = kz , −6 ≤ x , y ≤ 6 , n = 10 k + z −ζ SCF & FPF 2 (1 + ik ) 2 z (.5 + ik ) z , −6 ≤ x , y ≤ 6 , n = 10 SCF Example 2: f k ( z ,ζ ) = and f k ( z ,ζ ) = 1 + ik + z − ζ .5 + ik + z − ζ A Variation on fixed-point CFs. Example 3: f k ( z ,ζ ) = Note: a programming error produced these two images! kz(1 − kz ) , −6 ≤ x , y ≤ 6 , n = 10 SCF 1−ζ Example 4: f k ( z ,ζ ) = Example 5: f k ( z ,ζ ) = kz(1 − kz ) , α k =1+ik , −6 ≤ x , y ≤ 6 , n = 10 SCF αk z 1− αk + z − ζ (1 − ik ) z 1 − ik + z − ζ , −7 ≤ x , y ≤ 7 , n = 10 SCF Example 6: f ( z ,ζ ) = z , −6 ≤ x , y ≤ 6 , n = 10 SCF. Another variation on FPCFs. k + z −ζ Example 7: f k ( z ,ζ ) = kz 2 , −10 ≤ x , y ≤ 10 , n = 10 SCF. Another variation on FPCFs. k + z −ζ Example 8: f ( z ,ζ ) = (1 + 2ki )2 z , −10 ≤ x , y ≤ 10 , n = 10 SCF. Another variation on 1 + 2ki + z − ζ FPCFs. Example 9: f ( z ,ζ ) = i(1 + ik )z , −8 ≤ x , y ≤ 8 , n = 10 SCF. Variation on FPCFs. 1 + ik + z − ζ
© Copyright 2026 Paperzz