School of Aerospace Engineering • Previously, we examined supersonic flow over (sharp) concave corners/turns – oblique shock allows flow to make this (compression) turn • What happens if: – turn is convex (expansion) · already shown expansion “shock” impossible (entropy would be destroyed) – turn is gradual (concave or convex) Prandtl Meyer -1 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. M1>1 M1>1 M1>1 M2>M1 M1>1 M2>M1 AE3450 School of Aerospace Engineering M1>1 • Gradual turn is made up of large number of infinitessimal turns/corners µ = sin 1 M • Each turn has infinitessimal flow µ = sin M change M2>M1 δ −1 1 1 −1 a 1 1 Ma Ma M – each turn produced by infinitessimal wave ÞMach wave • Flow is uniform and isentropic between µ = sin 1 each turn/corner M M – length between each is arbitrary – could be zero length (sharp turn) and waves collapse to one point b µ 2 = sin −1 1 δ −1 1 M2 1 µ 2 = sin −1 1 1 Prandtl Meyer -2 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. M2 δ AE3450 M2 M2 School of Aerospace Engineering • Problem – given upstream conditions (1) M1 and turning angle (δ) – find downstream conditions (2) Prandtl Meyer Fan δ M2 • Goal – Mach number relations (similar to shock relations) • Equations – use mass, momentum, energy conservation, Mach number def’n., state equations • Assumptions – steady flow, quasi-1d, reversible+adiabatic (isentropic) Prandtl Meyer -3 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. AE3450 School of Aerospace Engineering • Approach – begin with single Mach wave that expands supersonic flow through an infinitessimal (differential) angle of magnitude dν vt vn – essentially using differential vt vn+dvn µ v control volume µ dν • Mass/Momentum Conservation µ+dν – using same type of approach as for v+dv oblique shocks (two momentum components: t, n) – find lack of pressure gradient tangent to wave gives vt=constant across wave Prandtl Meyer -4 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. AE3450 School of Aerospace Engineering vt • Use vt=constant vn vt µ v v t ,upstream = v t ,downstream µ dν v cos µ = (v + dv )cos(µ + dν ) = (v + dv )(cos µ cos dν − sin µ sin dν ) →1 dν→0 vn+dvn µ+dν →dν v+dv v cos µ = v cos µ − vdν sin µ + dv cos µ − dvdν sin µ dv sin µ = dν v cos µ sinµ=1/M dv 1/ M 2 = dν 2 sin2µ+cos2µ=1 v 1 − 1/ M Prandtl Meyer -5 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. →0 dv 1 = dν v M2 − 1 (VIII.1) AE3450 School of Aerospace Engineering ν • Relate v and M v=Ma tpg/cpg a2=γRT dv dM da = + v M a dv dM d T dM 1 dT = + = + v M M 2 T T dv dM [(γ − 1) 2]M 2 dM = − v M æ γ −1 2 ö M M ÷ ç1 + 2 è ø ù é é (γ − 1) M 2 ù ú ú dM ê dv dM ê 1 2 = ú ú= ê ê1 − 1 1 γ − γ − v M ê æ M êæ ö ö M2 ÷ ú M2 ÷ ú ç1 + ç1 + êë è êë è 2 2 ø úû ø úû Prandtl Meyer -6 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. v µ dν v+dv Energy Conservation æ γ −1 2 ö To = Tç1 + M ÷ = const. 2 è ø æ γ −1 2 ö d ç1 + M ÷ dTo dT 2 ø =0= + è T æ γ −1 2 ö To M ÷ ç1 + 2 è ø 2 (γ − 1)M dM dT =− æ γ −1 2 ö M T M ÷ ç1 + 2 è ø AE3450 School of Aerospace Engineering ν • Relate VIII.1 and last eqn. ù é ú dv 1 dM ê 1 dν = = ú ê 2 v M êæ γ − 1 2 ö ú M −1 M ÷ ç1 + êë è 2 ø úû M 2 − 1 dM dν = γ −1 2 M 1+ M 2 (VIII.2) integrate M2 M − 1 dM ν 2 − ν1 = ò dν = ò γ −1 2 M ν1 M1 1 + M 2 Prandtl Meyer -7 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. M+dM dM is change in Mach number associated with dν turn angle • Need finite angle, δ=ν2-ν1 and finite ∆M ν2 µ dν M 2 M1 δ M2 AE3450 School of Aerospace Engineering ν • Perform Integration M1 M2 M 2 − 1 dM ν 2 − ν1 = ò γ −1 2 M M1 1 + M 2 δ M2 ( ) M2 é γ + 1 −1 γ − 1 2 ù 2 −1 ν 2 − ν1 = ê tan M − 1 − tan M − 1ú γ +1 ë γ −1 û M1 (VIII.3) • So, given δ (=ν2-ν1) and M1 – could “solve” VIII.3 for M2 • Can not invert VIII.3 analytically (M2=f(M1, δ)) – either use interative (e.g., numerical or guessing) method – or find ν as a function of M and tabularize or graph solution Prandtl Meyer -8 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. AE3450 School of Aerospace Engineering ( M ) é γ + 1 −1 γ − 1 2 ù 2 2 −1 ν 2 − ν1 = ê tan M − 1 − tan M − 1ú γ − 1 γ + 1 ë û M1 • Want to find ν=ν(M) [really ν2=ν2(M2)] for any M – need to choose (arbitrary) reference condition, • analagous to table of h(T) i.e., pick an M where ν=0 – really h(T)-h(Tref) – let’s choose ν=0 at M=1 – just chosen h(T )=0 ( ) ref γ + 1 −1 γ − 1 2 M − 1 − tan −1 M 2 − 1 (VIII.4) ν= tan Appendix D (John) γ −1 γ +1 for γ=1.4, M≤5 • ν represents angle through which a sonic flow would M=1 have to turn ν1 to reach M M1 ν1 is turn angle for M=1 to M1 Prandtl Meyer -9 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. δ=ν2-ν1 M2 AE3450 School of Aerospace Engineering • To find M2 given M1 and δ – find ν1 (for given M1) from table – get ν2 from δ=ν2-ν1 – look up ν2 in table to find M2 M1 δ=ν2-ν1 M2 • To find T2, p2, .... – use isentropic flow relations since expansion is isentropic (no shock) γ −1 2 – e.g., To=const 1+ M 1 T2 γ −1 2 To 2 = =1+ M Þ T1 1 + γ − 1 M 2 T 2 2 2 Prandtl Meyer -10 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. AE3450 School of Aerospace Engineering • Given: Uniform Mach 2 flow of nitrogen at 300 K flows over compound wall corner: two turns, 20° and 6° M1 20° 6° • Find: M and T after final turn • Assume: N2 is TPG/CPG with γ=1.4, steady, adiabatic, no work, inviscid,…. Prandtl Meyer -11 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. AE3450 School of Aerospace Engineering • Analysis: (class exercise) • To find M2 given M1 and δ 1. find ν1 (for given M1) from table 2. get ν2 from δ=ν2-ν1 3. look up ν2 in table to find M2 Prandtl Meyer -12 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. M1 M2 20° M3 6° M 2.00 2.01 2.02 2.03 2.04 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 ν 26.38 26.66 26.93 27.20 27.48 39.12 39.36 39.59 39.82 40.05 40.28 40.51 40.74 40.96 41.19 M 2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 ν 41.41 41.64 41.86 42.09 42.31 42.53 42.75 42.97 43.19 43.40 43.62 43.84 44.05 44.27 44.48 M 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 ν 44.69 44.91 45.12 45.33 45.54 45.75 45.95 46.16 46.37 46.57 46.78 46.98 47.19 47.39 47.59 M 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04 ν 47.79 47.99 48.19 48.39 48.59 48.78 48.98 49.18 49.37 49.56 49.76 49.95 50.14 50.33 50.52 M 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 ν 50.71 50.90 51.09 51.28 51.46 51.65 51.83 52.02 52.20 52.39 52.57 52.75 52.93 53.11 53.29 AE3450 School of Aerospace Engineering µ1 = sin−1 1 M1 • Fan angle – angle between first and last Mach wave – useful to determine when expansion has ended in flowfield for a given distance away from wall Fan Angle M1 µ2 = sin−1 1 M2 µ1 µ2-δ δ M2 • From geometry Fan Angle = µ1 − (µ 2 − δ ) = (µ1 − µ 2 ) + δ = (µ1 − µ 2 ) + (ν 2 − ν1 ) Prandtl Meyer -14 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. (VIII.5) AE3450 School of Aerospace Engineering • Examine plot of ν as function of M M1 δ=ν2-ν1 150 νmax=130.45° δmax M2 ν 100 ν= 50 ( ) γ + 1 −1 γ − 1 2 tan M − 1 − tan −1 M 2 − 1 γ −1 γ +1 γ=1.4 p→ →0 0 0 10 • Example 20 M M1 = 2 Þ δ max = 130.45o − 26.38o = 104.1o M1 = 6 Þ δmax = 130.45o − 84.96o = 45.5o Prandtl Meyer -15 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. • As M increases, reach maximum turn angle (νmax~130.5° for γ=1.4) • So as M1 increases, max. angle flow can turn (δmax) decreases 30 M1=2 δPM<104.1° δ M2 AE3450 School of Aerospace Engineering • Analytic Expression ( → M; tan −1 (M ) → 90o For M → ∞ : ν max ν max ) γ + 1 −1 γ − 1 2 M − 1 − tan −1 M 2 − 1 tan γ −1 γ +1 ν= æ γ +1 ö o = çç − 1÷÷90 (VIII.6) è γ −1 ø ì 90o ï o ï130.45 =í o ï159.2 ïî 208.5o γ = 5/3 γ = 1.4 γ = 1.3 γ = 1.2 Prandtl Meyer -16 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. • As γ decreases (higher temperatures, bigger molecules), maximum turn angle increases • δmax smaller in real flows – T and p drop through turn Þcondensation of gas Þnonequilibrium flow AE3450 School of Aerospace Engineering • Already showed that it does not matter if expansion turn is sharp or smooth M1>1 δ M2>M1 – still get same solution, P-M fan=infinite set of Mach waves – unless we exceed the maximum turning angle, final properties just function of total turn angle – smooth turn just means expansion process takes place over longer distance Prandtl Meyer -17 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. AE3450 School of Aerospace Engineering • What happens if we have a smooth concave turn? – since flow direction change is small, can still get set of weak Mach waves M2<M1 δ M1>1 Prandtl-Meyer compression: δ=−−(νν2−ν1), so ν2−ν1<00 – however unlike expansions, compressions merge – together they coalesce to form oblique shock – flow that went through PM compression is isentropic, outer flow has entropy rise (po loss) – size of PM region depends on M1 and curvature Prandtl Meyer -18 Copyright © 2001 by Jerry M. Seitzman. All rights reserved. AE3450
© Copyright 2026 Paperzz