$$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ 4XHVWLRQV 3UREDELOLVWLF0RGHOV 'HFLVLRQ3UREOHPV 6HTXHQWLDO3UREOHPV 0RGHO8QFHUWDLQW\ 6WDWH8QFHUWDLQW\ 3UREDELOLVWLF0RGHOV >Ĺ@ 3UREOHP &RQVLGHUWKHGHILQLWLRQRIFRQGLWLRQDOSUREDELOLW\ P (A, B) = P (A|B)P (B) &DQ\RXFRPHXSZLWKDVLPSOHH[SODQDWLRQLQZRUGVDVWRZK\WKLVZRUNV"8VHVLPLODUUHDVRQLQJWRFRPHXS ZLWKDQH[SUHVVLRQIRUP (A, B|C ) 3UREOHP RIZRPHQDWDJHIRUW\ZKRSDUWLFLSDWHLQURXWLQHVFUHHQLQJKDYHEUHDVWFDQFHURIZRPHQZLWKEUHDVW FDQFHUZLOOJHWSRVLWLYHPDPPRJUDSKLHVRIZRPHQZLWKRXWEUHDVWFDQFHUZLOODOVRJHWSRVLWLYH PDPPRJUDSKLHV$ZRPDQLQWKLVDJHJURXSKDGDSRVLWLYHPDPPRJUDSK\LQDURXWLQHVFUHHQLQJ:KDWLVWKH SUREDELOLW\WKDWVKHDFWXDOO\KDVEUHDVWFDQFHU" 3UREOHP 7KHUHLVDFKDQFHWKHUHLVERWKOLIHDQGZDWHURQ0DUVDFKDQFHWKHUHLVOLIHEXWQRZDWHUDQGD FKDQFHWKHUHLVQROLIHDQGQRZDWHU:KDWLVWKHSUREDELOLW\WKDWWKHUHLVOLIHRQ0DUVJLYHQWKDWWKHUHLVZDWHU" 3UREOHP KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ ,QWKHWH[WERRNLWLVVWDWHGWKDWLIDOOYDULDEOHVLQD%D\HVLDQQHWZRUNDUHELQDU\WKHSUREDELOLW\GLVWULEXWLRQRYHU VRPHYDULDEOHXZLWKn SDUHQWVPaX FDQEHUHSUHVHQWHGE\2n LQGHSHQGHQWSDUDPHWHUV ,PDJLQHWKDWXLVDELQDU\YDULDEOHZLWKWZRSDUHQWYDULDEOHVWKDWDUHQRWQHFHVVDULO\ELQDU\,PDJLQHWKDWWKHILUVW SDUHQWFDQDVVXPHWKUHHGLIIHUHQWYDOXHVDQGWKDWWKHVHFRQGFDQDVVXPHWZRYDOXHV+RZPDQ\LQGHSHQGHQW SDUDPHWHUVDUHQHHGHGWRUHSUHVHQWWKLVGLVWULEXWLRQP (X|PaX ) "+RZPDQ\ZRXOGLWEHLI\RXDGGHGDQRWKHU SDUHQWWKDWFDQDVVXPHIRXUGLIIHUHQWYDOXHV" 1RZDVVXPHWKDWXLWVHOILVQRWELQDU\EXWFDQDVVXPHWKUHHGLIIHUHQWYDOXHVDQGVWLOOKDVWKHWKUHHSDUHQWVDV VSHFLILHGDERYH+RZPDQ\YDOXHVDUHQHHGHGWRUHSUHVHQWWKLVGLVWULEXWLRQ"&DQ\RXFRPHXSZLWKDJHQHUDO UXOHIRUWKHQXPEHURILQGHSHQGHQWSDUDPHWHUVQHHGHGWRUHSUHVHQWDGLVWULEXWLRQRYHUVRPHYDULDEOHXZLWK SDUHQWVPaX " 3UREOHP LPDJHVSUREOHPSQJ *LYHQWKHGLVSOD\HG%D\HVQHWGHWHUPLQHZKHWKHUWKHIROORZLQJDUHWUXHRUIDOVH (B ⊥ D|A) (B ⊥ D|C ) (B ⊥ D|E) (B ⊥ C |A) 3UREOHP KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ ,WLVNQRZQWKDWIRRWEOXHZKDOHVFRQVXPHRQDYHUDJHNJRINULOOSHUGD\IRRWHUVFRQVXPHRQ DYHUDJHNJRINULOOSHUGD\$VVXPHWKDWWKHPHDQGDLO\NULOOFRQVXPSWLRQYDULHVOLQHDUO\ZLWKZKDOHOHQJWK DQGWKDWWKHGDLO\FRQVXPSWLRQIRUDJLYHQZKDOHIROORZVD*DXVVLDQGLVWULEXWLRQZLWKDVWDQGDUGGHYLDWLRQRI NJRINULOOSHUGD\'HILQHWKHOLQHDU*DXVVLDQGLVWULEXWLRQP (k ∣ l) UHODWLQJWKHUDWHRINULOOFRQVXPSWLRQkWR ZKDOHOHQJWKl 3UREOHP $VVXPLQJDKLGGHQ0DUNRYPRGHOZLWKVWDWHVs0:t DQGREVHUYDWLRQVo0:t SURYHWKHIROORZLQJ P (st ∣ o0:t ) ∝ P (ot ∣ st , o0:t−1 )P (st ∣ o0:t−1 ) 6WDUWLQJIURPWKHSUHYLRXVHTXDWLRQSURYHWKHIROORZLQJ P (st ∣ o0:t ) ∝ P (ot ∣ st ) ∑ P (st ∣ st−1 ) P (st−1 ∣ o0:t−1 ) s t−1 3UREOHP :KDWLVWKH0DUNRYEODQNHWIRUVRPHQRGHot RIWKHKLGGHQ0DUNRYPRGHOEHORZ"([SODLQZK\WKLVLVVR LPDJHVKPPSQJ 3UREOHP 2QHSRVVLEOHUHSUHVHQWDWLRQRIWKHODZRIWRWDOSUREDELOLW\LV P (A) = ∑ P (A ∣ B)P (B) B∈Bset ZKHUHBset LVDVHWRIPXWXDOO\H[FOXVLYHDQGH[KDXVWLYHSURSRVLWLRQV&DQ\RXILQGDVLPLODUH[SUHVVLRQIRU P (A ∣ C ) " KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ 3UREOHP :KDWLVDWRSRORJLFDOVRUW":K\LVLWLPSRUWDQWWRSHUIRUPDWRSRORJLFDOVRUWEHIRUHVDPSOLQJIURPD%D\HVLDQ QHWZRUN"'RHVDWRSRORJLFDOVRUWDOZD\VH[LVW",VDWRSRORJLFDOVRUWDOZD\VXQLTXH" 3UREOHP )RUPXODWHWKHIROORZLQJ6$7SUREOHPDVD%D\HVLDQQHWZRUN F (x 1 , x 2 , x 3 , x 4 ) = (x 1 ∨ x 2 ∨ x 3 ) ∧ (¬x 1 ∨ x 2 ∨ ¬x 4 ) ∧ (x 2 ∨ x 3 ∨ x 4 ) 7KLVVKRZVWKDWLQIHUHQFHLQ%D\HVLDQQHWZRUNVLVDWOHDVWDVKDUGDV6$7,I6$7LV13FRPSOHWHZKDWGRHV WKDWPDNHLQIHUHQFHLQ%D\HVLDQQHWZRUNV" 3UREOHP :KDWDUHWKHGLIIHUHQFHVEHWZHHQLQIHUHQFHSDUDPHWHUOHDUQLQJDQGVWUXFWXUHOHDUQLQJ":KDWDUH\RXORRNLQJ IRULQHDFKFDVHDQGZKDWLVDVVXPHGWREHNQRZQ":KHQPLJKW\RXXVHHDFKRIWKHP" 3UREOHP :KDWLVDFODVVLILFDWLRQWDVN"$VVXPH\RXDUHFODVVLI\LQJXVLQJDQDLYH%D\HVPRGHO:KDWDVVXPSWLRQVDUH\RX PDNLQJ"'UDZDQDLYH%D\HVPRGHOXVLQJWKHFRPSDFWUHSUHVHQWDWLRQVKRZQLQFODVV:KDWLVWKHQDPHRIWKLV NLQGRIUHSUHVHQWDWLRQ" 3UREOHP :KDWLVDQLPSRUWDQWGUDZEDFNRIPD[LPXPOLNHOLKRRGHVWLPDWLRQ" 3UREOHP %D\HVLDQSDUDPHWHUOHDUQLQJHVWLPDWHVDSRVWHULRUp(θ VRPHRILWVDGYDQWDJHVDQGGUDZEDFNV" ∣ D) IRUWKHSDUDPHWHUVθ JLYHQWKHGDWDD:KDWDUH 3UREOHP :KDWLVWKHJDPPDIXQFWLRQΓ ":KDWLVΓ(5) " 3UREOHP ,PDJLQHWKDW\RXZDQWWRHVWLPDWHθ WKHSUREDELOLW\WKDWRQHEDVHEDOOWHDPFDOOWKHP7HDP$EHDWVDQRWKHU WHDPFDOOWKHP7HDP%$VVXPH\RXNQRZQRWKLQJHOVHDERXWWKHWZRWHDPV:KDWLVDUHDVRQDEOHSULRU GLVWULEXWLRQ" 1RZLPDJLQHWKDW\RXNQRZWKHWZRWHDPVZHOODQGDUHFRQILGHQWWKDWWKH\DUHHYHQO\PDWFKHG:RXOGDSULRURI %HWDEHEHWWHUWKDQD%HWDLQWKLVFDVH",IVRZK\" 1RZLPDJLQHWKDW\RXNQRZWKDW7HDP$LVPRUHOLNHO\WRZLQPD\EHWKH\DUHWKH:DUULRUV:KDWNLQGRISULRU PLJKW\RXXVHLQWKLVFDVH",PDJLQHWKDWWKHWHDPVDUHJRLQJWRSOD\PDQ\JDPHVDJDLQVWHDFKRWKHU:KDWGRHV WKLVPHDQIRUWKHSULRU\RXVHOHFW" 3UREOHP &RQVLGHUWKHWZR%HWDGLVWULEXWLRQV%HWDDQG%HWD%HWDJLYHVPXFKPRUHZHLJKWWRθ \RXH[SODLQLQWXLWLYHO\ZK\WKLVLVVR" KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG = 0.5 &DQ $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ 3UREOHP 6XSSRVH\RXKDYHDORWRIGDWDDQGDUHWU\LQJWROHDUQWKHVWUXFWXUHRID%D\HVLDQQHWZRUNWKDWILWVWKLVGDWD &RQVLGHUWZRDUELWUDU\%D\HVLDQQHWZRUNGHVLJQV2QHLVUHODWLYHO\VSDUVHZKHUHDVWKHRWKHUKDVPDQ\ FRQQHFWLRQVEHWZHHQLWVQRGHV ,PDJLQHWKDW\RXUGDWDFRQVLVWVRIYHU\IHZVDPSOHV:KLFK%D\HVLDQQHWZRUNZRXOG\RXH[SHFWWRDFKLHYHD EHWWHU%D\HVLDQVFRUH"+RZZRXOGWKLVFKDQJHLIWKHUHZHUHPDQ\VDPSOHV" 3UREOHP +RZPDQ\PHPEHUVDUHWKHUHLQWKH0DUNRYHTXLYDOHQFHFODVVUHSUHVHQWHGE\WKHSDUWLDOO\GLUHFWHGJUDSK VKRZQEHORZ" LPDJHVHTXLYDOHQFHBFODVVSQJ 3UREOHP *LEEVVDPSOLQJRIIHUVDIDVWZD\WRSURGXFHVDPSOHVZLWKZKLFKWRHVWLPDWHDGLVWULEXWLRQ:KDWDUHVRPH GRZQVLGHVRI*LEEVVDPSOLQJDQGKRZDUHWKH\KDQGOHG" 3UREOHP :KDWLVDWRSRORJLFDOVRUWLQJRIWKHQRGHVVKRZQLQ4XHVWLRQUHFUHDWHGEHORZ" KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ LPDJHVSUREOHPSQJ 'HFLVLRQ3UREOHPV >Ĺ@ 3UREOHP :KDWGRHVLWPHDQWREHUDWLRQDO" 3UREOHP ([SODLQWKHYDOXHRILQIRUPDWLRQLQZRUGV:KDWLVWKHYDOXHRILQIRUPDWLRQRIDQREVHUYDWLRQWKDWGRHVQRW FKDQJHWKHRSWLPDODFWLRQ",PDJLQHWKDWWKHRSWLPDODFWLRQFKDQJHVDIWHUDQREVHUYDWLRQ:KDWGRHVWKLVVD\ DERXWWKHYDOXHRILQIRUPDWLRQRIWKDWREVHUYDWLRQ" 3UREOHP 7KHSULVRQHUVGLOHPPDLVDQH[DPSOHRIDJDPHZLWKDGRPLQDQWVWUDWHJ\HTXLOLEULXP,PDJLQHWKDWWKHJDPHLV PRGLILHGVRWKDWLIRQHSULVRQHUWHVWLILHVWKHRWKHURQO\JHWVIRXU\HDUVRISULVRQLQVWHDGRIWHQ'RHVWKLVJDPH VWLOOKDYHDGRPLQDQWVWUDWHJ\HTXLOLEULXP"$UHWKHUHDQ\RWKHUHTXLOLEULD" 3UREOHP ([SODLQZK\WKHWUDYHOHU VGLOHPPDKDVDXQLTXH1DVKHTXLOLEULXPRI'UDZWKHXWLOLW\PDWUL[DQGXVHLWWRVKRZ WKHHTXLOLEULXP 6HTXHQWLDO3UREOHPV KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ >Ĺ@ 3UREOHP :KDWLVWKH0DUNRYDVVXPSWLRQ":KDWGRHVD0DUNRYGHFLVLRQSURFHVVFRQVLVWRI":KDWLVDVWDWLRQDU\0'3" 'UDZDFRPSDFWUHSUHVHQWDWLRQRIDVWDWLRQDU\0'3 3UREOHP :KDWLVWKHSXUSRVHRIWKHGLVFRXQWIDFWRULQLQILQLWHKRUL]RQSUREOHPV":KDWLVDQDOWHUQDWLYHWRXVLQJDGLVFRXQW IDFWRULQLQILQLWHKRUL]RQSUREOHPV":KDWHIIHFWGRHVDVPDOOGLVFRXQWIDFWRUKDYH":KDWDERXWDODUJHRQH" :KHQLVRQHSUHIHUDEOHWRWKHRWKHU" 3UREOHP 'RHVWKHRSWLPDOSROLF\KDYHWREHXQLTXH"'RHVWKHRSWLPDOYDOXHIRUHDFKVWDWHKDYHWREHXQLTXH" 3UREOHP :KDWLVWKH%HOOPDQHTXDWLRQ"+RZGRHVLWVLPSOLI\LIWUDQVLWLRQVDUHGHWHUPLQLVWLF" 3UREOHP 7KHSROLF\HYDOXDWLRQHTXDWLRQLQPDWUL[IRUPLV U π π = (I − γT ) −1 π R ZKHUHU DQGR DUHWKHXWLOLW\DQGUHZDUGIXQFWLRQVUHSUHVHQWHGDVYHFWRUV:KDWLVWKHPHDQLQJRIT " +RZGRHVWKLVWRUHODWH0DUNRYGHFLVLRQSURFHVVHVDQG0DUNRYFKDLQV" π π π 3UREOHP :KDWLVG\QDPLFSURJUDPPLQJ"&DQ\RXJLYHDQH[DPSOH":K\LVG\QDPLFSURJUDPPLQJPRUHHIILFLHQWWKDQ EUXWHIRUFHPHWKRGVIRUVROYLQJ0'3V" 3UREOHP &DQ\RXH[SODLQZKDWSROLF\LWHUDWLRQDQGYDOXHLWHUDWLRQDUH":KDWDUHWKHLUVLPLODULWLHVDQGGLIIHUHQFHV" 3UREOHP :KDWLVWKHGLIIHUHQFHEHWZHHQRSHQDQGFORVHGORRSSODQQLQJ" 3UREOHP &RQVLGHUWKHVLPSOHJULGZRUOGVKRZQEHORZ$QDJHQWLQWKLVZRUOGFDQPRYHWRWKHFHOOWRLWVLPPHGLDWHOHIWRUWR WKHFHOOWRLWVLPPHGLDWHULJKWDQGWKHWUDQVLWLRQVDUHGHWHUPLQLVWLF0RYLQJOHIWLQs1 JLYHVDUHZDUGRIDQG WHUPLQDWHVWKHJDPH0RYLQJULJKWLQs4 GRHVQRWKLQJ3HUIRUPYDOXHLWHUDWLRQDQGGHWHUPLQHWKHXWLOLW\RIEHLQJLQ HDFKVWDWHDVVXPLQJDGLVFRXQWIDFWRURI KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ LPDJHVVLPSOHJULGSQJ 3UREOHP +RZGRHVDV\QFKURQRXVYDOXHLWHUDWLRQGLIIHUIURPVWDQGDUGYDOXHLWHUDWLRQ":KDWLVWKHLPSRUWDQFHRIWKHVWDWH RUGHULQJ" $SSO\*DXVV6HLGHOYDOXHLWHUDWLRQWRWKHVLPSOHJULGZRUOGIURPWKHSUHYLRXVSUREOHP)LUVWXVHDVWDWHRUGHULQJ RIs1 s2 s3 s4 7KHQXVHDQRUGHULQJRIs4 s3 s2 s1 +RZPDQ\LWHUDWLRQVGLGHDFKRUGHULQJWDNHWR FRQYHUJH" 3UREOHP ,QZKDWFDVHVZRXOG\RXSUHIHUWRXVHG\QDPLFSURJUDPPLQJ"$SSUR[LPDWHG\QDPLFSURJUDPPLQJ"2QOLQH PHWKRGV" 0RGHO8QFHUWDLQW\ >Ĺ@ 3UREOHP )RUZKDWW\SHVRISUREOHPVGRZHXVHUHLQIRUFHPHQWOHDUQLQJ":KDWDUHWKHWZRPDLQDSSURDFKHV" 3UREOHP :K\LVWKHFRQFHSWRIH[SORUDWLRQYHUVXVH[SORLWDWLRQVRLPSRUWDQWLQUHLQIRUFHPHQWOHDUQLQJ" :KDWLVDPXOWLDUPHGEDQGLW"'HVFULEHWKHYDULRXVSDUDPHWHUVLQYROYHGLQDPXOWLDUPHGEDQGLWSUREOHP ,PDJLQH\RXKDYHDWZRDUPHGEDQGLWDQGDUHFRQYLQFHGWKDWRQHRIWKHOHYHUV\LHOGVDSD\RXWRIZLWK SUREDELOLW\<RXKDYHQHYHUSXOOHGWKHRWKHUOHYHUDQGDUHXQVXUHLILWKDVDQ\SD\RXW5HODWHWKLVWRWKH SUREOHPRIH[SORUDWLRQDQGH[SORLWDWLRQ 3UREOHP 6XSRVHZHKDYHDWZRDUPHGEDQGLW2XUHVWLPDWHRIWKHSD\RXWUDWHRIWKHILUVWOHYHULVDQGRXUHVWLPDWHRI WKHSD\RXWUDWHIRUWKHVHFRQGOHYHULV7KDWLVρ1 = 0.7 DQGρ2 = 0.6 2XUFRQILGHQFHLQWHUYDOVIRU θ1 DQGθ2 DUHDQGUHVSHFWLYHO\ :KDWLVWKHGLIIHUHQFHEHWZHHQθi DQGρi "6XSSRVH\RXXVHGDQϵ JUHHG\VWUDWHJ\ZLWKϵ = 0.5 +RZPLJKW \RXGHFLGHZKDWOHYHUWRSXOO"6XSSRVH\RXXVHGDQLQWHUYDOH[SORUDWLRQVWUDWHJ\ZLWKFRQILGHQFHLQWHUYDOV :KDWOHYHUZRXOG\RXSXOO" KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ 3UREOHP :KDWDUH4YDOXHVDQGKRZGRWKH\GLIIHUIURPXWLOLW\YDOXHV8",PDJLQH\RXKDYHDPRGHORIWKHUHZDUGDQG WUDQVLWLRQIXQFWLRQV,I\RXZHUHWRUXQDYDOXHLWHUDWLRQXVLQJWKH4YDOXHVLQVWHDGRIWKHXWLOLW\YDOXHV8ZKDW ZRXOGEHWKHXSGDWHHTXDWLRQ" 3UREOHP :KDWLVWKHFHQWUDOHTXDWLRQEHKLQGLQFUHPHQWDOHVWLPDWLRQ",GHQWLI\WKHWHPSRUDOGLIIHUHQFHHUURUDQGWKH ^ = 3 ,I OHDUQLQJUDWH,PDJLQH\RXKDYHDQHVWLPDWHRIVRPHUDQGRPYDULDEOHX,PDJLQHWKDWWKLVHVWLPDWHLVx WKHOHDUQLQJUDWHLVZKDWKDSSHQVWR\RXUHVWLPDWHDIWHUREVHUYLQJDQHZVDPSOHx = 7 ":KDWKDSSHQVLI WKHOHDUQLQJUDWHLV"&RPPHQWRQWKHHIIHFWWKDWOHDUQLQJUDWHKDVRQLQFUHPHQWDOHVWLPDWLRQ 3UREOHP :KDWDUHWKHVLPLODULWLHVDQGGLIIHUHQFHVEHWZHHQ4OHDUQLQJDQG6DUVD" 3UREOHP 8VH4YDOXHVWKH%HOOPDQHTXDWLRQDQGWKHLQFUHPHQWDOXSGDWHHTXDWLRQWRGHULYHWKHXSGDWHHTXDWLRQVIRU4 OHDUQLQJDQG6DUVD 3UREOHP :KDWLVWKHGLIIHUHQFHEHWZHHQ6DUVDDQG6DUVDλ":KDWW\SHVRISUREOHPVFDQEHVROYHGPRUHHIILFLHQWO\ XVLQJHOLJLELOLW\WUDFHV" 3UREOHP :KDWDUHWKHGLIIHUHQFHVEHWZHHQPRGHOEDVHGUHLQIRUFHPHQWOHDUQLQJDQGPRGHOIUHHUHLQIRUFHPHQWOHDUQLQJLQ WHUPVRIWKHTXDOLW\RIWKHOHDUQHGSROLF\DQGFRPSXWDWLRQDOFRVW" 6WDWH8QFHUWDLQW\ >Ĺ@ 3UREOHP :KDWLVD320'3DQGKRZGRHVLWGLIIHUIURPDQ0'3"'UDZWKHVWUXFWXUHRID320'3DQGFRPSDUHLWWRWKDWRI DQ0'3 3UREOHP ([DPLQHWKHWZRJULGZRUOGVVKRZQEHORZ,QWKHOHIWPRVWJULGZRUOG\RXNQRZWKHSRVLWLRQRIWKHDJHQW UHSUHVHQWHGE\WKHUHGVTXDUH,QWKHULJKWPRVWJULGZRUOG\RXRQO\KDYHDSUREDELOLW\GLVWULEXWLRQRYHUSRVVLEOH VWDWHV+RZPLJKW\RXUHSUHVHQWWKHVWDWHIRUHDFKFDVH"8VHWKLVWRH[SODLQZK\320'3VDUHVRPHWLPHV FDOOHGEHOLHIVWDWH0'3VDQGDUHJHQHUDOO\LQWUDFWDEOH KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ LPDJHVWZRJULGSQJ 3UREOHP $NH\WRVROYLQJ320'3VLVWKHDELOLW\WRPDLQWDLQDEHOLHIRUSUREDELOLW\GLVWULEXWLRQRYHUVWDWHV:KDWPHWKRGV FDQEHXVHGWRXSGDWHEHOLHIV":KHQPLJKWRQHEHSUHIHUUHGRYHUWKHRWKHUV" 3UREOHP 'HULYHWKHIROORZLQJHTXDWLRQIRUDGLVFUHWHVWDWHILOWHU ′ ′ ′ b (s ) ∝ O(o ∣ s , a) ∑ T (s ′ ∣ s, a)b(s) s IURPWKHGHILQLWLRQRIDEHOLHIXSGDWHb′ (s′ ) = P (s ′ ∣ o, a, b) 3UREOHP :K\ZRXOG\RXXVHDSDUWLFOHILOWHUZLWKUHMHFWLRQ":K\ZRXOG\RXXVHDSDUWLFOHILOWHUZLWKRXWUHMHFWLRQ":K\LVLW EHWWHUWRXVHDODUJHUQXPEHURISDUWLFOHVLQ\RXUSDUWLFOHILOWHU":KDWLVSDUWLFOHGHSULYDWLRQDQGKRZFDQ\RX SUHYHQWLW" 3UREOHP :RUNWKURXJKWKHFU\LQJEDE\H[DPSOHSUHVHQWHGLQWKHWH[WERRN:RUNWKURXJKWKHPDWKXSGDWLQJ\RXUEHOLHI ZLWKWKHDFWLRQVDQGREVHUYDWLRQVJLYHQ9HULI\WKDW\RXUQXPEHUVPDWFKWKRVHLQWKHWH[W 3UREOHP ,Q0'3VWKHSROLF\LVDPDSSLQJIURPVWDWHVWRDFWLRQV:KDWGRHVD320'3SROLF\ORRNOLNH"+RZGR\RXXVH WKLVSROLF\WRILQGWKHXWLOLW\RIDEHOLHIVWDWH" KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ 3UREOHP ,PDJLQH\RXKDYHDQH[DPWRPRUURZEXWWKHUHLVDQRQQHJOLJLEOHFKDQFHWKHSURIHVVRUDQG7$VIRUJRWDERXW WKHH[DP<RXKDYHDFKRLFH\RXFDQVWXG\RU\RXFDQWDNHWKHHYHQLQJRII,I\RXVWXG\DQGWKHUHLVDQH[DP \RXJHWDUHZDUGRI,I\RXVWXG\DQGWKHUHLVQRH[DP\RXUHFHLYHQRUHZDUG,I\RXWDNHWKHHYHQLQJRII DQGWKHUHLVQRH[DPWKHHQMR\PHQWRIQRWVWXG\LQJJLYHV\RXDUHZDUGRI%XWLI\RXWDNHWKHHYHQLQJRII DQGWKHUHLVDQH[DPWKHFHUWDLQ)DQGDVVRFLDWHGVWUHVVJLYH\RXDUHZDUGRI :ULWHGRZQWKHDOSKDYHFWRUVIRUWKLVSUREOHP+RZVXUHVKRXOG\RXEHWKDWWKHUHZLOOEHQRH[DPEHIRUH\RX WDNHWKHHYHQLQJRII",PDJLQH\RXKDYHDWKLUGRSWLRQZKLFKLVWRGURSRXWRIVFKRRODQGOLYHLQWKHZLOGHUQHVV 7KLVVLPSOHOLIHVW\OHZRXOGJLYH\RXDUHZDUGRIUHJDUGOHVVRIZKHWKHUWKHH[DPWDNHVSODFHRUQRW:KDWFDQ \RXVD\DERXWWKLVRSWLRQ":RXOG\RXHYHUWDNHLW" 3UREOHP ,PDJLQHWKDW\RXKDYHDOUHDG\VROYHGIRUWKHSROLF\RIDVWDWH320'3DQG\RXKDYHWKHIROORZLQJDOSKD YHFWRUV ⎛ 300 ⎞ ⎛ 167 ⎞ ⎛ 27 ⎞ ⎜ 100 ⎟ , ⎜ 10 ⎟ , ⎜ 50 ⎟ ⎝ 0 ⎠ ⎝ 100 ⎠ ⎝ 50 ⎠ 7KHILUVWDQGWKLUGDOSKDYHFWRUVFRUUHVSRQGWRDFWLRQDQGWKHVHFRQGDOSKDYHFWRUFRUUHVSRQGVWRDFWLRQ ,VWKLVHYHQDYDOLGSROLF\"&DQ\RXKDYHPXOWLSOHDOSKDYHFWRUVSHUDFWLRQ",IWKHSROLF\LVYDOLGGHWHUPLQHWKH DFWLRQ\RXZRXOGWDNHJLYHQ\RXKDYHWKHIROORZLQJEHOLHIFKDQFHLQVWDWHFKDQFHLQVWDWH FKDQFHLQVWDWH 3UREOHP :KDWGRHVLWPHDQWRVROYHD320'3RIIOLQHYHUVXVVROYLQJLWRQOLQH":KDWDUHWKHDGYDQWDJHVDQG GLVDGYDQWDJHVRIHDFK"+RZGR40'3),%DQGSRLQWEDVHGYDOXHLWHUDWLRQZRUN":KDWDUHWKHDGYDQWDJHV DQGGLVDGYDQWDJHVRIHDFK" 3UREOHP 7KHXSGDWHHTXDWLRQIRU40'3LVVKRZQEHORZ (k+1) αa (s) = R(s, a) + γ ∑ T (s ′ ∣ s, a) max α ′ s a ′ (k) ′ a ′ (s ) +RZPDQ\RSHUDWLRQVGRHVHDFKLWHUDWLRQWDNH"&RPSDUHWKLVZLWKWKHQXPEHURIRSHUDWLRQVUHTXLUHGSHU LWHUDWLRQUHTXLUHGIRU),%ZKRVHXSGDWHHTXDWLRQLVVKRZQEHORZ (k+1) αa ′ (s) = R(s, a) + γ ∑ max ∑ O(o ∣ s , a)T (s ′ o a s ′ ∣ s, a)α (k) ′ a ′ (s ) ′ :ULWHFRGHWKDWDSSOLHVERWK40'3DQG),%WRWKHFU\LQJEDE\SUREOHP KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG $$&6'HFLVLRQ0DNLQJXQGHU8QFHUWDLQW\ :HEVLWHJHQHUDWHGZLWK0'ZLNLKWWSZZZPGZLNLLQIR7LPR'|UUDQGFRQWULEXWRUV KWWSZHEVWDQIRUGHGXFODVVDDTXHVWLRQVPG
© Copyright 2026 Paperzz