A Self-Reference Watermarking Scheme Based on Wet Paper Coding Chair Professor Chin-Chen Chang Feng Chia University National Chung Cheng University National Tsing Hua University http://msn.iecs.fcu.edu.tw/~ccc 1 Outline Introduction Related works Self-reference watermarking scheme Experimental results Conclusions 2 Introduction (1/2) Fragile watermarking technique Protect the integrity of image content Detect and locate the tampered areas (a) Original image (b) Tampered image (c) Detected image 3 Introduction (2/2) Detect and locate the tampered areas Restore the tampered areas (a) Original image (b) Tampered image (c) Detected image (c) Restored image 4 Related works — VQ Compression Original Image 0 (16, 200, …, 90) 1 60 61 175 … 1 (35, 22, …, 100) 100 95 203 175 … 2 (40, 255, …, 59) . . . . . . . . . ... Index table 254 (90, 102, …, 98) 255 (145, 16, …, 99) Codebook 5 Vector Quantization (VQ) Codebook Training Codebook Generation 0 1 2 . . . . . . Training Images N-1 N Training Set Separating All Training Images to Vectors 6 Vector Quantization (VQ) Codebook Training Codebook Generation (Ex: Codebook Size = 256) 0 1 . . . . . . N-1 N Training Set 0 1 . . . 254 255 Initial Codebook Codebook Initiation 7 Vector Quantization (VQ) Codebook Training LBG Algorithm X X X X X X Training Set Training 256 codewords each time K times Until the difference between every two times is smaller than the threshold 8 CODEBOOK Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 32 57 49 36 42 30 92 73 65 29 17 24 36 90 12 37 1 12 11 14 162 17 116 37 197 15 43 67 59 38 92 44 72 2 64 37 92 115 24 123 69 183 23 47 96 2 54 39 47 92 3 49 36 50 67 15 238 21 212 22 142 19 31 49 11 36 5 4 82 47 96 55 63 79 82 56 43 92 99 41 41 44 21 3 247 43 12 39 56 78 211 30 120 51 164 19 21 34 12 34 96 248 22 63 11 57 2 113 27 49 32 56 93 28 49 72 88 59 249 50 45 20 59 23 27 93 49 77 82 10 22 49 33 56 57 250 18 45 43 72 59 170 44 72 83 43 81 9 52 55 9 251 43 54 36 44 72 83 92 120 13 49 87 56 31 12 252 92 91 24 210 30 251 32 43 99 85 96 43 72 90 66 43 253 73 33 44 92 90 85 79 36 49 37 58 72 63 77 65 42 254 2 44 32 59 50 237 46 124 15 170 12 92 79 83 65 72 255 9 57 92 99 81 124 13 192 77 18 23 41 82 42 96 33 6 2 codeword 10 9 Codebook Example To encode an input vector, for example, v = (150,145,121,130) (1) Compute the distance between v with all vectors in codebook d(v, cw1) = 114.2 d(v, cw2) = 188.3 d(v, cw3) = 112.3 d(v, cw4) = 124.6 d(v, cw5) = 122.3 d(v, cw6) = 235.1 d(v, cw7) = 152.5 d(v, cw8) = 63.2 (2) So, we choose cw8 to replace the input vector v. 10 Related works — Wet Paper Coding Wet Paper Coding Key 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 Fridrich, J. Goljan, M., Lisonek, P. and Soukal, D., “Writing on Wet Paper,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3923- 3935, 2005. 11 The important area is marked as wet pixel 21 30 30 Cover Image ? × Random Matrix = LSB of Cover Image 20 30 31 Stego-image Secret Data 12 Self-reference watermarking scheme (1/3) : wet pixel Authentication embedding layer i 102 125 124 01100110 011111010 136 151 10001000 10010111 authentication code : Ai H SK (0011 ) 10 wet paper coding Original image [ D][ Lx ] [ Ai ] LSBs secret key 0001 [D ] 0100 0 1 [Lx ] 0 1 0 0001 10 1 [ D] [ Lx ] 0100 0 0 1 13 Self-reference watermarking scheme (2/3) Restoration embedding layer VQ Encoding i r 0 1 2 3 (120,155,…,80) (100,125,…,150) (217,135,…,120) (49,117,…,25) Codebook Original image 1 1 3 2 Index table 14 Self-reference watermarking scheme (3/3) : wet pixel Restoration embedding layer i 157 159 116 10011101 1 01110100 200 223 221 11001000 11011111 0 r wet paper coding [D][Ly] [R] Original image 1 1 3 2 Index table Restoration bits: 01 0 1 0001 0 0 [ D ] [ Ly ] 1000 0 1 1 0 15 Verification and restoration (1/2) Verification layer i 102 124 01100110 01111100 136 151 10001000 10010111 authentication code : Ai H SK (0011 ) 10 wet paper coding Original image [ D][ Lx ] [ Ai ] LSBs secret key 0001 [D ] 0100 0 0 [Lx ] 0 1 0 0001 0 1 [ D ] [ Lx ] 0100 0 0 1 16 Verification and restoration (2/2) Reconstruction layer i 159 116 10011111 01110100 200 221 11001000 11011101 r wet paper coding [D][Ly] [R] Original image 0 (120,155,…,80) 1 (100,125,…,150) 2 (217,135,…,120) 3 (49,117,…,25) Codebook Restoration bits: 01 1 0001 0 0 [ D ] [ Ly ] 1000 0 1 0 17 Experimental Results 18 Tampering attack and the detection results (1/3) for smooth image Airplane (a) Airplane, PSNR=47.17 dB (b) Noised image from (a) (c) Detected result from (a) 19 Tampering attack and the detection results (2/3) for smooth image Lena (a) Lena, PSNR=47.19 dB (b) Manipulated image from (a) (c) Detected result from (a) 20 Tampering attack and the detection results (3/3) for smooth image Pepper (a) Pepper, PSNR=47.16 dB (b) Manipulated image from (a) (c) Detected result from (a) 21 Detection and restoration (1/3) for smooth image Airplane (a) Enlarged watermarked image Airplane, PSNR=47.17 dB (b) Manipulated image with cropping, PSNR=28.64 dB (c) Detection result (marked with black dots) (d) Restoration result, PSNR=41.35 dB 22 Detection and restoration (2/3) for normal image Lena (a) Enlarged watermarked image Lena, PSNR=47.19 dB (b) Manipulated image with cropping, PSNR=25.78 dB (c) Detection result (marked with black dots) (d) Restoration result, PSNR=44.89 dB 23 Detection and restoration (3/3) for rough image Pepper (a) Enlarged watermarked image Pepper, PSNR=47.16 dB (b) Manipulated image with cropping, PSNR=22.46 dB (c) Detection result (marked with black dots) (d) Restoration result, PSNR=41. 96 dB 24 Conclusions Propose a self-reference watermarking approach Utilize VQ to achieve the reconstruction data with high compression rate Using wet-paper coding to improve the security Detect and locate the tampered regions sensitively Reconstruct the invalid regions with satisfactory quality Protect the integrity of image content 25
© Copyright 2026 Paperzz