Problem 1.1: In an air standard otto cycle the condition of air at beginning of compression is 1 bar, 300K, compressor ratio 6, the maximum temperature is 1000°C. Determine thermal efficiency th. Solution Beginning of compression : P1 = 1 bar, T1 = 300 K Compression ratio :r=6 Tmax T3 1000C 1273K th 1 1 r 1 1 1 6 0.4 0.51164 or 51.16% 1.4 Problem 1.2 : In an air standard otto cycle the condition of air at beginning of compression is 1 bar, 300K. The temperature at the beginning, end of burning are 400°C, 1000°C. Determine (a) Compression ratio, (b) thermal efficiency th. Solution Beginning of compression : P1 = 1 bar, T1 = 300 K Beginning, ending of burning : T2 = 400°C = 693K, T3 =1000°C= 1273K 1 – 2 isentropic T2 V2 T1 V1 673 300 r 1 1 / 1.41 V1 V2 V1 v1 7.53762 V2 v2 (a) Compression ratio (r) = 7.53762 (b) Thermal efficiency th 1 1 r 1 1 1 0.44576 7.53762 1.41 th 0.55423 or 55.423% Problem 1.3 : The condition of air at the beginning of compression of an Otto cycle is 1 bar, 300K.The max temperature is 1400K. The exhaust temperature is 700K. Determine (a) Compression ratio, (b) max. pressure, (c) thermal efficiency th. Solution Beginning of compression : P1 = 1 bar, T1 = 300 K Beginning, ending of burning : Tmax = T3 = 1400K, T4= 700K T2, P2, r are not given. So we cannot go by the usual method P4V4 RT4 P1V1 RT1 P1V1 RT1 V1 V4 P4 T4 P1 T1 P4 700 1 300 P4 2.33333bar P1V1 RT1 V1 RT1 280 300 0.861m 3 / kg P1 1 V1 0.861m 3 / kg Isentropic Process Ideal gas T3 V4 T4 V3 1400 400 1 1 / 0.4 V 4 V3 V4 0.861 5.65685 V3 V3 V3 0.15220m 3 / kg V2 V3 r V1 0.861 0.565685 V2 0.15220 (i) Compression Ratio (r) =5.65685 (ii) Thermal Efficiency th 1 1 r 1 1 1 5.656850.4 Pmax P3 ; P3V3 RT3 P3 50% RT3 287 400 V3 0.15220 P3 26.39947 bar P2 V1 0.861 P1 V2 0.15220 rp 1.4 P2 11.3137 bar P3 26.39947 2.33333 P2 11.3137 rp 2.33333 (iii) Mean effective pressure (MEP) MEP P1 r r rp 1 1r 1 1 5.656851.4 5.65685 2.33333 1 MEP 1.4 15.65685 1 MEP 4.04912 bar Problem 1.4 : The condition of air at the beginning of compression of an diesel cycle is 1 bar, 300K. The max.temperature is 1400K. The exhaust temperature is 700K. Determine (a) Compression ratio, (b) max. pressure, (c) thermal efficiency th, (d) MEP Solution Beginning of compression : P1 = 1 bar, T1 = 300 K Tmax = T3 = 1400K, T4 = Exhaust temp = 700K T2, P2, r are not given. So we cannot go by the usual method P4V4 RT4 …(1) P1V1 RT1 …(2) P4 T4 P1 T1 P4 700 P1 300 P4 2.33333bar P1V1 RT1 V1 RT1 280 300 0.861m 3 / kg P1 1 V1 0.861m 3 / kg Process (3) – (4) Isentropic T3 V4 T4 V3 T3 T4 1 1 / 1 1400 400 V4 V3 1 / 0.4 1 0.801 V3 V3 0.15220m 3 / kg P3 RT3 287 1400 V3 0.15220 P3 26.39865 bar P3 P2 Pmax 26.39865 bar Process (1) – (2) Isentropic P P2 V1 2 P1 V2 P1 26.39865 1 1 / 1.4 V1 V2 1/ V1 V2 (i) Compression Ratio (r) r V1 10.36133 V2 P2 P1 1 0.4 T T 26.39865 1.4 2 2 T1 300 1 T2 764.341534K (ii) Thermal Efficiency T4 T1 T3 T2 700 300 th 1 0.550522 1.41400 764.341534 th 1 th 55.052% Qs C p T3 T2 Qs 10051400 764.341534 Qs 638518.9291 J / kg W Qs th 638518.9291 0.550522 W 351518.7179 J / kg (iii) Mean effective pressure (MEP) MEP r W W 351518.7179 Vs V1 V2 0.861 V2 V1 V2 V1 / r 0.083m 3 / kg V2 MEP 351518.7179 0.861 0.083 MEP 451880Pa MEP 4.5188 bar
© Copyright 2026 Paperzz