Date of download: 7/31/2017 Copyright © ASME. All rights reserved. From: The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics J. Comput. Nonlinear Dynam. 2016;12(3):031016-031016-10. doi:10.1115/1.4035197 Figure Legend: Nonlinear two mass oscillator Date of download: 7/31/2017 Copyright © ASME. All rights reserved. From: The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics J. Comput. Nonlinear Dynam. 2016;12(3):031016-031016-10. doi:10.1115/1.4035197 Figure Legend: Interpolation of the Hessian Date of download: 7/31/2017 Copyright © ASME. All rights reserved. From: The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics J. Comput. Nonlinear Dynam. 2016;12(3):031016-031016-10. doi:10.1115/1.4035197 Figure Legend: PUMA industrial robot (a) the schematic of the PUMA robot and (b) the start and end configuration Date of download: 7/31/2017 Copyright © ASME. All rights reserved. From: The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics J. Comput. Nonlinear Dynam. 2016;12(3):031016-031016-10. doi:10.1115/1.4035197 Figure Legend: Planar overhead crane (a) schematic of the crane and (b) optimal input Date of download: 7/31/2017 Copyright © ASME. All rights reserved. From: The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics J. Comput. Nonlinear Dynam. 2016;12(3):031016-031016-10. doi:10.1115/1.4035197 Figure Legend: Convergence of the two optimization problems (a) convergence of version 1 and (b) convergence of version 2 Date of download: 7/31/2017 Copyright © ASME. All rights reserved. From: The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics J. Comput. Nonlinear Dynam. 2016;12(3):031016-031016-10. doi:10.1115/1.4035197 Figure Legend: Solution of the nonlinear two mass oscillator (a) optimal input and (b) convergence of cost functional Date of download: 7/31/2017 Copyright © ASME. All rights reserved. From: The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics J. Comput. Nonlinear Dynam. 2016;12(3):031016-031016-10. doi:10.1115/1.4035197 Figure Legend: Solution of the robot example (a) convergence of the cost functional of the PUMA and (b) optimal joint torques of the PUMA
© Copyright 2026 Paperzz