Asymmetric Photochemistry Liu-Zhu Gong Group Meeting September 12, 2009 Wei-Jun Liu 1. Fundemental Reaction 2. Solid-Phase 3. Solution-Phase Covalently-bound chiral auxilliaried Chiral complexing agents Chiral sensitizer Review: Rau, H. Chem. Review. 1983, 83, 535-547. Inoue, Y. Chem. Review. 1992, 92, 741-770. Konig, B. Chem. Review. 2006, 106, 5413-5430. Fagnoni, M. Chem. Review. 2007, 107, 2725-2756. Hoffmann, N. Chem. Review. 2008, 108, 1052-1103. 1. Fundmental Reactions 1.1 [2+2] photocycloaddition Synlett 2002, 1305 J. Am. Chem. Soc. 2009, 131, ASAP. Paternò-Büchi Reaction (between a ketone and alkene) J. Org. Chem. 2003, 68, 9899. J. Org. Chem. 2004, 69, 33. Ang. Chem., Int. Ed. 2003, 42, 1642 1.2 Photochemical Rearrangments (di-ПЛ Synthesis 2001, 1175 The Herteroatom Variant Photochemical Rearrangments Ang. Chem., Int. Ed. 2002, 41, 4090 1.3 Norrish-Yang Reaction Synthesis 2001, 1253 1.4 Intermolecular Addition onto Double or Triple C-C Bonds J. Org. Chem. 2001, 66, 7320. O O O O Ph O RCOOH O R1O t-Bu t-Bu R2 R3 O O O O O N N O O O Et OH OH R O N PhCH2 R O Ph PhCH3 R OMe SiMe3 H Ph N Et OMe H2N O H2N O 1.5 Photo-oxygenation Why Study Asymmetric Photochemistry? Prebiotic photochemistry ---- enantiomeric excess of biomolecules may have been generated by circularly polarized light (CPL) Environmentally benign processes ---- light is ubiquitous, generates no waste. Different mode of reactivity ---- access to novel, strained compounds which are thermally inaccessible or diffcult to synthesize and low reaction temperature Why few Examples in Enantioselective Photochemical Transformations Short excited lifetime low activation energy for reactions in excited states A few energy difference of a few kilocalories per mole is sufficient to give >99% stereodifferentiation. Inoue, Y. Chem. Review. 1992, 92, 741-770. 2. Enantioselective Solid-Phase Photochemistry 2.1 Host-Gest Cocrystals Toda, Chem. Comm. 1995, 621 100% ee Toda, Tanaka ACIE, 1999, 38, 3523 91-99.5% ee Tanaka OL, 2002, 4, 3255 2.2 Ionic Chiral Auxiliary Scheffer ACR, 1996, 29, 203 2.3 Chiral Modified Supercages of Zeolites Ramamurthy ACR, 2003, 36, 509 3. Enantioselective Solution-Phase Photochemistry 3.1 Covalently-bound chiral auxillaries Meyer, JACS, 1986, 108, 306 Carreira, JACS, 1994, 116, 6622 JACS, 1997, 119, 2597 3.2 Chiral Complexing Agents (Templated Photochemsitry) 3.2.1 Noncovalent Asseemblies EJOC, 2002, 2298 Glycol-Metal Cation JOC, 1995, 60, 7984 Diaminotriazine-barbiturate (二氨基三唑-巴比妥酸盐) CR, 2006, 106, 5413-5430 3.2.2 Complementary DNA Strands as Templates DNA RNA T G U G A C A C CR, 2006, 106, 5413-5430 3.2.3 Templates with a Covalently Bound Chromophore and Recognition Site • The reaction did not proceed in the absence of the template • As an artificial functional model of a photolyase CR, 2006, 106, 5413-5430 3.2.4 Photochemical reaction in a molecular flask The molecular flask is significantly larger than the guest and can therefore protect Substrates from the surrounding environment and thus controls the course of a Photochemical reaction. Cyclodextrin • The syn isomers were the major. • The syn isomers changed to the minor. Favorite temperate scaffolds Good availability Various sizes Inherent chirality CR, 2006, 106, 5413-5430 Self-Assembled Molecular Cage 3.2.5 Templates Containing a Shield Coumarin group (香豆素) Thymine (胸腺嘧啶) Mori and Nakamura, TL, 1996, 37, 8523-8526 dr: 95/5 yield: 56% Bach, T. JACS, 1999, 121, 10650-10651 Bach, T. ACIE, 2000, 39, 2302-2304 dr: up to 95/5 ee: up to 98 Bach, T. JACS, 2000, 122, 11525-11526 dr: up to 95/5 ee: up to 97 Bach, T. ACIE, 2003, 42, 3693-3696 Bach, T. OL, 2001, 3, 601-603 Bach, T. CC, 2001, 607 Bach, T. CEJ, 2002, 8, 2464 Catalytic Enantioselective Photochemical Reaction Krische, J. JOC, 2003, 68, 15-21 Catalyst 30%, dr: 85/15 Bach, T. Nature, 2005, 436, 1139-1140 Bach, T. ACIE, 2009, 48, 1-4 Polymer-Bound Chiral Temple dr: up to 96/4 ee: up to 99% Bach, T. ACIE, 2008, 47, 7957-7959 3.3 Chiral Sensitizer Photosensitized ant-Markovnikov methanol additiong to 1,1-diphenylpropene Inoue JCS CC, 1993, 718 [4+2] cycloaddition between electron-rich diene and electron-rich dienophile Schuster, JACS, 1990, 112, 9635 Sens* 2b : up to 70% ee • Switching the product chiralty by solvent • lower temperature higher ee • The higheat ee ever reported for an enantiodifferentiating photosensitization. Inoue, JACS, 2000, 122, 406-407 Ph O Ph N Ph BF4 HO O hv (>300 nm) O O O Sens* 7% ee Garcia, JOC, 2002, 67, 5184-5189 3.3 Activation of Substates by Chiral Catalysts (Organocatalysis) 3 O2 Ph hv, TPP O N H COOH N COOH 1O 2 Ph O BF4 Ph N COO HOO R R R OH NaBH4 HO O HOO R R R O i-Pr Yield CH2Ph 77% ee 66% 75% n-Pent 77% n-Bu 73% 57% 54% 57% NH2 O 20% OH O HO 87% yield, 56% ee Cordova, JACS, 2004, 126, 8914 ACIE, 2004, 43, 6532 O H Y Br O fluorenscent light R FG organocatalyst Ru(bpy)3Cl2 R FG H Y N N BPY MacMillan Science, 2008, 322, 77 JACS, 2009, 131, 10875 4 Photecatalysts A: Via electron transfer CN CO2Me O Cl Cl NC CN Cl Cl NC CN Chloranil CN CN DCN O DMT TCB Ph DCB O Ph TPP CN O CN O Anthraquinone OMe OMe BP BF4 CN CO2Me O Ph DMN DCA MeO2C CO2Me MeO2C CO2Me TMPM B: Via H abstraction O NaO3S O SO3Na BPSS UO22+ (Uranyl) BP (Bu4N)4W10O32 (TBADT) O O 5. Conclusion Solid-Phase asymmetric photochemistry can work very well, but has limited. Solution-phase photochemistry is more attractive for the catalytic enantioselective photochemistry. More excellent catalysts as Bach’ catalysts and assymmetric inducing model will be developed. Asymmetric photochemistry using chiral sensitizers is usually poorly selective.
© Copyright 2026 Paperzz