CARBON NANOTUBE BASED ORGANIC SOLAR CELLS Arun Tej M. PhD Student EE Dept. and SCDT Outline Carbon Nanotubes Properties Useful for Solar Cells Efficiency Limiting Factors Nanotubes in Organic Solar Cells Results and Future Challenges Arun Tej M, REACH - 2008 • • • • • 2 Carbon Nanotubes S. Iijima - MWNT (1990), SWNT (1993) Rolled graphene sheet with end caps Large aspect ratios Unique properties Finds applications in • Conductive plastics and adhesives • Energy storage • Efficient heat conduits • Structural composites • Biomedical devices • Numerous electronic applications Arun Tej M, REACH - 2008 • • • • • www.applied-nanotech.com 3 Nanotube Field Emission Display Arun Tej M, REACH - 2008 W.B. Choi, Samsung, APL, 1999 4 Nanotube Random Access Memory Most Important Feature Applications DRAM High Density Computer Operating Memory SRAM Flash Memory High Speed Non-volatility Cell Phones, Computer Caches PDAs, Cameras MRAM High Density High Speed Non-volatility All Uses NRAM High Density High Speed Non-volatility All Uses Thomas Rueckes, Nantero, 2000 5 Arun Tej M, REACH - 2008 Type of Memory Nanotube Liquid Flow Sensor Arun Tej M, REACH - 2008 A.K.Sood, IISc Bangalore, Science, 2003 6 Nanotube Integrated Circuit Arun Tej M, REACH - 2008 5 Stage Ring Oscillator on one SWNT Z.Chen, IBM, 2006 7 Nanotube Based Inorganic Solar Cell Arun Tej M, REACH - 2008 8 W.J.Ready, Georgia Tech, JOM, 2007 Nanotube Properties Useful for Solar Cells High carrier mobilities (~1,20,000 cm2 V-1 s-1) Large surface areas (~1600 m2 g-1) Absorption in the IR range (Eg: 0.48 to 1.37 eV) Conductance - Independent of the channel length Enormous current carrying capability – 109 A cm-2 Semiconducting CNTs – Ideal solar cells Mechanical strength & Chemical stability Arun Tej M, REACH - 2008 • • • • • • • 9 Arun Tej M, REACH - 2008 Split-Gate device, Energy band diagram and I-V characteristics 10 Efficiency Improvement with SWNTs SWNTs Improve mobility • Low Carrier Mobilities (~10-5 cm2 V-1 s-1) Arun Tej M, REACH - 2008 • Low Exciton Diffusion SWNTs provide Lengths (5-15 nm) Large interfacial area • Large Exciton Binding SWNTs have Energies (up to 1.5 eV) Suitable energy levels SWNTs have Low energy gaps • Large Energy Gaps (2-3 eV) Combine the advantages of Organics and SWNTs 11 Nanotubes in Organic Solar Cells Exciton dissociation sites As electron acceptors in bulk heterojunction solar cells Carrier transport Thin transparent films of m-SWNTs as electrodes Wu et al, Science, 2004 Arun Tej M, REACH - 2008 • • • • Chhowalla et al, APL, 2005 12 Results (1) Arun Tej M, REACH - 2008 Photoluminescence Quenching Higher Efficiency 13 Arun Tej M, S.S.K.Iyer, and B.Mazhari, IEEE INEC, 2008, Shanghai Results (2) 1 0.01 1E-3 Slope: 4.2 Slope: 4.0 1E-4 Slope: 1.0 1E-5 1E-6 1E-7 1E-8 Slope: 8.7 SWNT wt% 0.1 1 Forward Voltage (Log Scale) Trap filling behaviour Current Density (mA/cm2) Forward Current Density (Log Scale) 0.1 40 JP3HT 35 JSWNT (1wt%) 30 25 20 Negative resistance region showing tunneling behavior 15 10 5 0 0 1 2 3 4 5 6 7 Forward Voltage Tunneling behaviour 14 Arun Tej M, S.S.K.Iyer, and B.Mazhari, IEEE PVSC, 2008, San Diego Arun Tej M, REACH - 2008 0.0 wt% 0.1 wt% 0.5 wt% 1.0 wt% 2.0 wt% Results (3) 1.2 Arun Tej M, REACH - 2008 Open Circuit Voltage (v) High Voc of 1.15V at 1 Sun 1.0 0.8 0.6 0.4 0.2 P3HT+SWNT (1wt%) P3OT+SWNT (1wt%) 0 20 40 60 80 100 -2 Light Intensity (mW cm ) High Open Circuit Voltages with Bulk Heterojunction Devices Our Work To be published 15 Future REACH (1) e- Arun Tej M, REACH - 2008 • Synthesis of stable organic compounds • Separate semiconducting and metallic SWCNTs • Aligned CNTs inside the semiconducting polymers give improved charge transport eh+ e- e- h+ h+ 16 Future REACH (2) • Add nanoparticles, quantum dots, fullerenes etc to the side walls of SWNTs e- e- Arun Tej M, REACH - 2008 e- e- h+ eh+ h+ h+ 17 Future REACH (3) New device structures Arun Tej M, REACH - 2008 “A Solar Cell with Improved Light Absorption Capacity” S. Sundar Kumar Iyer and Arun Tej M. Patent Appln. No. 933/DEL/2006 Dt: 31st March, 2006 18 Acknowledgements • Faculty, Staff and Students, SCDT • Prof. Ashutosh Sharma, Chemical Engineering Arun Tej M, REACH - 2008 19 Arun Tej M, REACH - 2008 20 Organic Solar Cell Schematic and energy diagram of a typical polymer solar cell and its operation Arun Tej M, REACH - 2008 Exciton formation Exciton diffusion e Exciton Carrier dissociation transport Charge collection h+ 21 Anode Donor Acceptor Cathode Arun Tej M, REACH - 2008 22 H.Hoppe and N.S. Sariciftci, 2004 Arun Tej M, REACH - 2008 Conjugated polymers Conduction due to sp2– hybridised carbon atoms and (pz-pz)bonds electrons are delocalised in nature giving high electronic polarisability High absorption in the UV-Visible range of the solar spectrum 23 METALLIC SWNTS Arun Tej M, REACH - 2008 24 Arun Tej M, REACH - 2008 Conductance length. is independent of the channel 25 Landauer Formula: 2e 2 G T h With N parallel 1D channels (subbands): 2e2 G ( EF ) Tn ( EF ) h n m-SWNTs: Only two subbands cross EF (N=2) Source of R: Mismatch in the number of conduction channels in the SWNT and the macroscopic metal leads. 2e 2 4e 2 G *2 155S h h R ~ 6.5k 26 Arun Tej M, REACH - 2008 Conductance through a barrier with transmission probability T.
© Copyright 2026 Paperzz