EET426 Power Electronics II Thermal Management Prepared by : Mohd Azrik Roslan EET 426 – Power Electronis II 1 What you should know after this lecture Thermal basic Dissipated power vs junction temperature Thermal management Mosfet Schottky EET 426 – Power Electronis II 2 EET 426 – Power Electronis II 3 Thermal Basics EET 426 – Power Electronis II 4 ELECTRICAL voltage potential difference current power conductivity resistivity EET 426 – Power Electronis II V DV I P ANALOGY T DT PD Q th th THERMAL temperature temperature difference power dissipated heat thermal conductivity thermal resistivity 5 IDEAL WORLD PD,max PD REAL WORLD TJ,max Tambient PD = dissipated power slope 1 RTH ( J A ) T J A RTH = Thermal Resistance EET 426 – Power Electronis II 6 PD,max slope RTH , J A J A PD PD slope RTH , J A J A PD Tambient EET 426 – Power Electronis II TJ,max T 7 PD,max PD f n ( RTH , J A) Tambient EET 426 – Power Electronis II TJ,max T 8 f n (external _ system) f n (device _ package) PD,max PD f n ( RTH , J A) Tambient EET 426 – Power Electronis II TJ,max T 9 DEVICE PD / T PD Tambient T NOMINAL OPERATING POINT SYSTEM HEAT REMOVAL = DEVICE DISSIPATION dPrem oval dPD dT dT EET 426 – Power Electronis II 10 RTH ( J A) LOW TH ( J A) HIGH dPremoval dPD dT dT SYSTEM HEAT REMOVAL SYSTEM HEAT REMOVAL > PDEVICE PD DEVICE PD / T TJN,op EET 426 – Power Electronis II T 11 RTH ( J A) HIGH TH ( J A) LOW dPrem oval dPD dT dT DEVICE PD / T SYSTEM HEAT REMOVAL < PDEVICE PD SYSTEM HEAT REMOVAL TJN,op EET 426 – Power Electronis II T 12 Non-linear characteristic dPrem oval dPD dT dT PD dPremoval dPD dT dT Tambient EET 426 – Power Electronis II DEVICE PD / T T 13 dPrem oval dPD dT dT DEVICE PD / T PD Tambient EET 426 – Power Electronis II T 14 Thermal instability stable boundary unstable DEVICE PD / T PD T Tambient TJN,op1 dPrem oval dPD dT dT EET 426 – Power Electronis II TJN,op2 dPrem oval dPD dT dT 15 non-linear power dissipation vs device junction temperature curve has a boundary operational junction temperature above which power dissipation > the removal capability resulting in thermal instability EET 426 – Power Electronis II 16 Schottky off-state and mosfet on-state exhibit non-linear power dissipation curves versus device junction temperature and have a boundary operational junction temperature above which power dissipation exceeds the removal capability resulting in thermal instability EET 426 – Power Electronis II 17 Thermal Management Mosfets EET 426 – Power Electronis II 18 Tj Rth,j-c Tc Rth, j c DT TJ Tc P P D Rth,c-s(case) Ts Rth,s-a(heatsink) Ta ELECTRICAL voltage potential difference current power conductivity resistivity EET 426 – Power Electronis II V DV I P ANALOGY T DT PD Q th th THERMAL temperature temperature difference power dissipated heat thermal conductivity thermal resistivity 19 HIGHER VOLTAGE RATED MOSFETS LARGER RDSON LARGER Pconduction loss HIGHER VGS DRIVE LOWER RDSON EET 426 – Power Electronis II 20 RDSON TENDS to be INDEPENDENT of IDS if HIGH VGS DRIVE EET 426 – Power Electronis II 21 RDSON value RDSON INCREASES at HIGHER TJN op LARGER Pconduction loss EET 426 – Power Electronis II 22 RDSON NORMALISED value RDSon RDS,normalised RDS,25o C EET 426 – Power Electronis II 23 PD ON STATE LOSS SWITCHING LOSS INTERNAL DIODE LOSS + gate charge loss EET 426 – Power Electronis II 24 PD ON STATE LOSS Irms 2 RDS on fn (T) EET 426 – Power Electronis II 25 Thermal Runaway Thermal runaway refers to a situation where an increase in temperature changes the conditions in a way that causes a further increase in temperature, often leading to a destructive result. EET 426 – Power Electronis II 26 TJN fn (TJN) fn (PD) fn (RDSon) TJN RDSon PD EET 426 – Power Electronis II 27 transcendental equations resulting from the non-linear characteristics requires graphical or computer solutions to avoid laborious iteration Mosfet on-state loss Irms2 RDS,on is the problem due to the non-linear RDS,on versus temperature characteristic EET 426 – Power Electronis II 28 Solving Transcendentals Iterative Process EET 426 – Power Electronis II 29 ASSUME TJN op < TJN max RDSon @ TJN op conservative re SELECT HIGHER TJN op data sheet calculate PD @ TJN op SELECT Tambient re SELECT LOWER TJN op Y RTH J-A data sheet TJN << TJN op calculate D TJ-A calculate TJN EET 426 – Power Electronis II Y TJN > TJN op N OK N 30 EET 426 – Power Electronis II 31 Mosfet conduction loss THERMAL INSTABILITY THERMAL STABILITY DETERMINE THERMAL STABILITY BOUNDARY T (oC) Tamb TJN,op < TJN,boundary EET 426 – Power Electronis II TJN,boundary 32 Mosfet conduction loss slope 1 RTH ( J A ) J A Pop T (oC) Tamb TJN,op EET 426 – Power Electronis II 33 LINE PLOTTING : JUNCTION-CASE Tjunction Rth,j-c Tcase DP Rth,c-s(contact) Tsink DT Rth,s-a(heatsink) Tamb T (oC) DT 5 oC Rth 1 oC / W DP Tcase TJN,op slope 1 RTH ( jn case ) DT 5W Rth EET 426 – Power Electronis II 34 LINE PLOTTING: CASE-AMBIENT Tjunction Rth,j-c Tcase DP Rth,c-s(contact) Tsink PD,op DT Rth,s-a(heatsink) Tamb T (oC) DT 20 oC Rth 5 oC / W DP TJN,op Tamb DT 4W Rth EET 426 – Power Electronis II slope 1 RTH (case amb ) Tcase 35 Thermal Management Schottky Rectifiers EET 426 – Power Electronis II 36 Schottky Rectifiers VF forward voltage drop TJN TJ junction temperature TJN ,OP junction temperature operating point TJN , MAX maximum junction temperature I F forward current VR reverse voltage I R reverse leakage current EET 426 – Power Electronis II 37 SCHOTTKY RECTIFIER IF 2 Vf ( Tj) a Tj b Tj c VF T EET 426 – Power Electronis II TJmax VF 38 SCHOTTKY RECTIFIER VF IF T TJmax VF EET 426 – Power Electronis II 39 SCHOTTKY RECTIFIER VF T TJmax Pcon, schottky VF ,on I ave VF ,on Don, schottky I out EET 426 – Power Electronis II 40 SCHOTTKY RECTIFIER IR mA IR T TJmax EET 426 – Power Electronis II VR 41 SCHOTTKY RECTIFIER IR T TJmax Prev, schottky Vrev I rev ,ave Vrev (1 Don, schottky) I out EET 426 – Power Electronis II 42 SCHOTTKY RECTIFIER ON-STATE predominant EET 426 – Power Electronis II OFF-STATE predominant 43 TJN fn (TJN) fn (Prev) fn (Irev) TJN IREV Prev EET 426 – Power Electronis II 44 transcendental equations resulting from the non-linear characteristics requires graphical or computer solutions to avoid laborious iteration Schottky reverse leakage current versus temperature has an exponentially rising characteristic that creates the problem EET 426 – Power Electronis II 45 EET 426 – Power Electronis II 46 EET 426 – Power Electronis II 47 SCHOTTKY TOTAL LOSS THERMAL INSTABILITY DETERMINE THERMAL STABILITY BOUNDARY THERMAL STABILITY T (oC) Tamb TJN,op < TJN,boundary EET 426 – Power Electronis II TJN,boundary 48 20 oC margin is a rule of thumb “Thermal stability requires a heat removal capability that is greater than the heat dissipation” SCHOTTKY operational junction temperature should be lower than the temperature at the tangent from Tambient to the PSCH1 curve EET 426 – Power Electronis II 49 D1 L NP NR NS D2 C R Vout Ein DR SCH2 conduction loss P SCH1conduction loss Schottky rectifier forward loss curves reduce with junction temperature increase due to the reduction in forward voltage drop Psc ,on (T ) Dsch I out Vak (T ) T Dsch,1 Dsw EET 426 – Power Electronis II Dsch,2 (1 Dsw ) 50 D1 L NP NR NS D2 C R Vout Ein DR SCH1 reverse loss Schottky rectifier reverse loss curves increase exponentially with junction temperature P SCH2 reverse loss T EET 426 – Power Electronis II Psc,off (T ) (1 Dsch ) Vrev I rev (T ) 51 17.5 (W) P (W) SCH2 SCH1 Power dissipation starts the upward rise at lower temperature and has a much greater increase with temperature hence this curve determines the designers operational boundary. SCH1 3.5 (W) T (oC) Tamb EET 426 – Power Electronis II Tbdy 52 below Teff,msax the Schottky losses are predominantly on-state losses and the combined ‘on’ and ‘off’ losses exhibit a dropping loss curve as temperature increases due to the reduction in Schottky forward voltage drop with rise in junction temperature efficiency Ptotal PSCH2 PSCH1 Pmos Teff,max EET 426 – Power Electronis II T combined forward and reverse losses usually exhibit a dropping loss curve at lower junction temperatures where the conduction losses are predominant. As the junction temperature rises and reverse loss starts to increase faster than the conduction loss falls the combined curve then starts an upward path 53 P1tot + P2tot 17.5 (W) SCH2 19.3 W P2tot 15.8 W P (W) SCH1 P1tot 3.5 W 3.5 (W) T (oC) Tamb EET 426 – Power Electronis II Tjn1,op 54 THERMAL IMPEDANCE THERMAL RESISTANCE POWER PULSE DURATION EET 426 – Power Electronis II 55 Determine a single heat sink thermal management design for the mosfet and Schottky rectifiers operating at 50oC ambient temperature and with a minimum 20oC Schottky junction temperature boundary margin. EET 426 – Power Electronis II 56 (W) Ptot,SCH2 Pop , SCH 2 9W Ptot,SCH1 Pmosfet T jn , SCH 2 140C EET 426 – Power Electronis II 57 Tjunction Finding Tsink Tsink,SCH2 T jn , SCH 2 Pop , SCH 2 Rth , j s , sch 140 9 2 122C Rth,j-c Tcase Rth,c-s(contact) Tsink Rth,s-a(heatsink) Tamb EET 426 – Power Electronis II 58 (W) Ptot,SCH2 Pop , SCH 2 9W Ptot,SCH1 Pop , SCH 1 4W Pmosfet Tsink, SCH 2 122C T jn , SCH 2 140C T jn , SCH 1 130C EET 426 – Power Electronis II 59 Tjunction Finding junction temperature for mosfet o Based on Rth,ju-sink =0.42 C/W 0.42C 1W Difficult to draw line too small What if we try to find how much power change if temperature increase by 5oC Rth,j-c Tcase Rth,c-s(contact) Tsink Rth,s-a(heatsink) Tamb 0.42C 5C 1W xW 5 1 x 11.9 W 0.42 EET 426 – Power Electronis II 60 (W) Ptot,SCH2 Pop , SCH 2 9W Pop ,mosfet 4.4 W Ptot,SCH1 Pop , SCH 1 4W Pmosfet Tsink, SCH 2 122C T jn , SCH 2 140C T jn , SCH 1 130C T jn ,mosfet 124C EET 426 – Power Electronis II 61 Find Ptotal Ptotal Pop, sch1 Pop, sch 2 Pop ,mosfet 4 9 4.4 17.4W EET 426 – Power Electronis II 62 Rth , s amb Tsink Tamb Ptotal 122 50 17.4 4.14 C W EET 426 – Power Electronis II Tjunction Rth,j-c Tcase Rth,c-s(contact) Tsink Rth,s-a(heatsink) Tamb 63 (W) Ptotal 17.4W Ptot,SCH2 Pop , SCH 2 9W Pop ,mosfet 4.4 W Ptot,SCH1 Pop , SCH 1 4W Pmosfet Tamb 50C Tsink, SCH 2 122C T jn , SCH 2 140C T jn , SCH 1 130C T jn ,mosfet 124C EET 426 – Power Electronis II 64 Q2) Thermal Management Rth,junction-case 1.5 oC / W Rth,case-sink 0.5 oC / W Determine the common heat sink design requirement for thermal management of the Schottky rectifiers at an ambient temperature of 50 oC if the operating junction temperature of SCH1 is 125 oC. EET 426 – Power Electronis II 65 Pop , SCH 1 4W T jn , SCH 1 125C EET 426 – Power Electronis II 66 Finding Tsink Tsink,SCH1 T jn , SCH 1 Pop , SCH 1 Rth , j s Rth,junction-case 1.5 oC / W Rth,case-sink 0.5 oC / W T jn , SCH 1 Pop , SCH 1 Rth , j c Rth ,c s 125 4 1.5 0.5 125 8 117C Tjunction Rth,j-c Tcase Rth,c-s(contact) Tsink We want to make sure that Tsink,SCH1 Tsink,SCH2 117C EET 426 – Power Electronis II Rth,s-a(heatsink) Tamb 67 Pop , SCH 2 9W Pop , SCH 1 4W Tsink 117C T jn , SCH 1 125C T jn , SCH 2 135C EET 426 – Power Electronis II 68 Tjunction Verify Tsink,SCH2 T jn , SCH 2 Pop , SCH 1 Rth , j s T jn , SCH 1 Pop , SCH 1 Rth , j c Rth ,c s 135 9 1.5 0.5 135 18 117C EET 426 – Power Electronis II Rth,j-c Tcase Rth,c-s(contact) Tsink Rth,s-a(heatsink) Tamb 69 Find Ptotal Ptotal Pop, sch1 Pop, sch 2 49 13W EET 426 – Power Electronis II 70 Rth , s amb Tsink Tamb Ptotal 117 50 13 5.15 C W EET 426 – Power Electronis II Tjunction Rth,j-c Tcase Rth,c-s(contact) Tsink Rth,s-a(heatsink) Tamb 71 Ptotal 13W Pop , SCH 2 9W Pop , SCH 1 4W Tamb 50C Tsink 117C T jn , SCH 1 125C T jn , SCH 2 135C EET 426 – Power Electronis II 72
© Copyright 2026 Paperzz