Master in Energy and Bioenergy Dissertation Generic life cycle assessment of the Jatropha biodiesel system Joana Almeida Promoter: Prof. Dr. Bart Muys Department of Earth and Environmental Science K U Leuven Co-promoter: Prof. Dr.ª Paula Duarte Grupo de Disciplinas da Ecologia da Hidrosfera FCT - UNL Introduction Energy and biofuels 1 Introduction Jatropha Low inputs Wild plant High yields Unknown optimal inputs Non edible High variability Marginal soils Lack of scientific information Pest resistant … HYPE = RISK Adapted from Trabucco et al. (in preparation) 2 Introduction Problem statement Environmental Economic Sustainable Social Aim Generic environmental impact assessment of the Jatropha biodiesel system life cycle. 3 Introduction Life cycle assessment Goal and scope Inventory Interpretation Conclusions Recommendations Product/system improvement Policy making Impact assessment 4 Methodology Base system System boundary expansion Reference system Cultivation Extraction Seeds Extraction Crude oil Seed cake Fertilizer Processing Oil Transesterification Diesel Glycerine Glycerine Distribution and storage JME Consumption Consumption Functional Unit: X 100 km 5 Methodology Adapted from Trabucco et al. (in preparation) IMPACT2002+ Ecoindicator99 X Global warming/Climate change Fossil energy consumption Eutrophication+acidification Ozone layer Land use/occupation 6 Scenarios Centralized Decentralized Extraction and transesterification Seed cake as fertilizer Seed cake as energy carrier Biodiesel exporting to Europe Base D A C Transesterification E B 7 Scenarios C A Base system System boundary expansion Extraction Cultivation Seeds Extraction Oil Transesterification Reference system Pellets to Biogas electricity Electricity Natural from gascoal Seed cake Crude oil Processing Slurry Glycerine Fertilizer Glycerine Diesel Distribution and storage JME Consumption Consumption 8 Results 80 1.60E-05 70 1.40E-05 60 1.20E-05 50 1.00E-05 40 8.00E-06 30 6.00E-06 20 4.00E-06 10 2.00E-06 0 0.00E+00 Base A BAntwerp B - Lisbon C D E Reference Climate change (DALY) Global warming (kg CO2 eq) Global warming / Climate change IMPACT2002+ Ecoindicator99 9 Results 3000 300 2500 250 2000 200 1500 150 1000 100 500 50 0 0 Base -500 Fossil fuels (MJ surplus) Non-renewable energy (MJ primary) Non-renewable energy / Fossil fuels A B - Antwerp B - Lisbon C D E Reference -50 IMPACT2002+ Ecoindicator99 10 Results Energy efficiency Net Energy Ratio NER 1.97 2.0 1.8 1.6 1.47 1.42 1.33 1.4 1.33 1.32 1.2 1.10 1.0 0.8 0.6 0.4 0.26 0.2 0.0 Base A B - Antwerp B - Lisbon C D E Reference 11 Results Acidification and eutrophication 9 7 8 7 Terrestrial acidification/nutrification (kg SO2 eq) 6 6 5 5 4 4 3 3 2 Acidification/ Eutrophication (PDF.m2.yr) 8 2 1 1 0 0 Base A BAntwerp B - Lisbon C D E Reference IMPACT2002+ Ecoindicator99 12 Results 2.5E-05 2.5E-08 2.0E-05 2.0E-08 1.5E-05 1.5E-08 1.0E-05 1.0E-08 5.0E-06 5.0E-09 0.0E+00 0.0E+00 Base A B - Antwerp B - Lisbon C D E Reference -5.0E-06 -5.0E-09 -1.0E-05 -1.0E-08 -1.5E-05 IMPACT2002+ Ozone layer (DALY) Ozone layer depletion (kg CFC-11 eq) Ozone layer -1.5E-08 Ecoindicator99 13 Results Land occupation / use 0.8 1.2 0.7 1 0.8 0.5 0.4 0.6 0.3 0.4 Land use (PDF.m2.yr) Land occupation (m2orgarable) 0.6 0.2 0.2 0.1 0 0 Base A B - Antwerp B - Lisbon C D E Reference IMPACT2002+ Ecoindicator99 14 Discussion Methodology Data quality Methodological options Missing categories (land use change) Generic = highly variable Assumptions Scarcity Uncertainty Incompleteness Results 15 Discussion Results Eutrophication and Acidification Global warming Ozone layer Energy efficiency Exporting and centralizing Cultivation processes Seed cake as energy carrier Overall balance follows trends described in literature for JME and biodiesel… 16 Discussion Reduction in Global Warming Potential (%) Benchmarking ~50% 59% 67% 77% 84% 67-77% ~91% Fobelets, 2009 Prueksakorn and Gheewala, 2006 Ndong et al., 2009 Vandenbempt, 2008 17 Discussion Benchmarking (Prueksakorn and Gheewala, 2006; Tobin, 2005; Reinhardt et al., 2007; Ndong et al., 2009; Fobelets, 2009; Sahapatsombut and Suppapitnarm, 2006) (Angarita et al., 2009; Plenangai and Gheewala, 2009; Papong et al., 2009; Yee et al., 2009; Vandenbempt, 2008; Sahapatsombut and Suppapitnarm, 2006) (Venturi et al., 2003; Hovelius and Hansson, 1999) SF Soy Rape Palm Jatropha Net Energy Ratio Ref (Venturi et al., 2003) 18 Conclusions Trade offs Impact categories Evaluation Data improvement + Include further criteria Complete evaluation of the system’s sustainability Recommendations: Know and improve Jatropha (biotechnology, breeding) Know and optimize cultivation inputs Benefit from by product use Build scientifically sound information to guide investments 19 Acknowledgements Prof. Dr. Bart Muys Ir. Wouter Achten FORECOMAN Team Prof. Dr. Paula Duarte Prof. Dr. Benilde Mendes 20
© Copyright 2026 Paperzz