Generic life cycle assessment of the Jatropha biodiesel system

Master in Energy and Bioenergy Dissertation
Generic life cycle assessment
of the Jatropha biodiesel system
Joana Almeida
Promoter:
Prof. Dr. Bart Muys
Department of Earth and Environmental Science
K U Leuven
Co-promoter:
Prof. Dr.ª Paula Duarte
Grupo de Disciplinas da Ecologia da Hidrosfera
FCT - UNL
Introduction
Energy and biofuels
1
Introduction
Jatropha
 Low inputs
 Wild plant
 High yields
 Unknown optimal inputs
 Non edible
 High variability
 Marginal soils
 Lack of scientific information
 Pest resistant
…
HYPE = RISK
Adapted from Trabucco et al. (in preparation)
2
Introduction
Problem statement
Environmental
Economic
Sustainable
Social
Aim
Generic environmental impact assessment of the
Jatropha biodiesel system life cycle.
3
Introduction
Life cycle assessment
Goal and scope
Inventory
Interpretation
 Conclusions
 Recommendations
 Product/system
improvement
 Policy making
Impact assessment
4
Methodology
Base system
System boundary expansion
Reference system
Cultivation
Extraction
Seeds
Extraction
Crude oil
Seed
cake
Fertilizer
Processing
Oil
Transesterification
Diesel
Glycerine
Glycerine
Distribution and storage
JME
Consumption
Consumption
Functional
Unit:
X 100 km
5
Methodology
Adapted from Trabucco et al. (in preparation)
IMPACT2002+
Ecoindicator99
X
Global warming/Climate change
Fossil energy consumption
Eutrophication+acidification
Ozone layer
Land use/occupation
6
Scenarios
Centralized
Decentralized
Extraction and
transesterification
Seed cake as
fertilizer
Seed cake as
energy carrier
Biodiesel exporting
to Europe
Base
D
A
C
Transesterification
E
B
7
Scenarios
C
A
Base system
System boundary expansion
Extraction
Cultivation
Seeds
Extraction
Oil
Transesterification
Reference system
Pellets to
Biogas
electricity
Electricity
Natural
from
gascoal
Seed
cake
Crude oil
Processing
Slurry
Glycerine
Fertilizer
Glycerine
Diesel
Distribution and storage
JME
Consumption
Consumption
8
Results
80
1.60E-05
70
1.40E-05
60
1.20E-05
50
1.00E-05
40
8.00E-06
30
6.00E-06
20
4.00E-06
10
2.00E-06
0
0.00E+00
Base
A
BAntwerp
B - Lisbon
C
D
E
Reference
Climate change
(DALY)
Global warming
(kg CO2 eq)
Global warming / Climate change
IMPACT2002+
Ecoindicator99
9
Results
3000
300
2500
250
2000
200
1500
150
1000
100
500
50
0
0
Base
-500
Fossil fuels (MJ surplus)
Non-renewable energy
(MJ primary)
Non-renewable energy /
Fossil fuels
A
B - Antwerp
B - Lisbon
C
D
E
Reference
-50
IMPACT2002+
Ecoindicator99
10
Results
Energy efficiency
Net Energy
Ratio
NER
1.97
2.0
1.8
1.6
1.47
1.42
1.33
1.4
1.33
1.32
1.2
1.10
1.0
0.8
0.6
0.4
0.26
0.2
0.0
Base
A
B - Antwerp
B - Lisbon
C
D
E
Reference
11
Results
Acidification and eutrophication
9
7
8
7
Terrestrial acidification/nutrification
(kg SO2 eq)
6
6
5
5
4
4
3
3
2
Acidification/ Eutrophication
(PDF.m2.yr)
8
2
1
1
0
0
Base
A
BAntwerp
B - Lisbon
C
D
E
Reference
IMPACT2002+
Ecoindicator99
12
Results
2.5E-05
2.5E-08
2.0E-05
2.0E-08
1.5E-05
1.5E-08
1.0E-05
1.0E-08
5.0E-06
5.0E-09
0.0E+00
0.0E+00
Base
A
B - Antwerp
B - Lisbon
C
D
E
Reference
-5.0E-06
-5.0E-09
-1.0E-05
-1.0E-08
-1.5E-05
IMPACT2002+
Ozone layer (DALY)
Ozone layer depletion
(kg CFC-11 eq)
Ozone layer
-1.5E-08
Ecoindicator99
13
Results
Land occupation / use
0.8
1.2
0.7
1
0.8
0.5
0.4
0.6
0.3
0.4
Land use
(PDF.m2.yr)
Land occupation
(m2orgarable)
0.6
0.2
0.2
0.1
0
0
Base
A
B - Antwerp
B - Lisbon
C
D
E
Reference
IMPACT2002+
Ecoindicator99
14
Discussion
Methodology
Data quality
Methodological options
Missing categories (land use change)
Generic = highly variable
Assumptions
Scarcity
Uncertainty
Incompleteness
Results
15
Discussion
Results
Eutrophication and
Acidification
Global warming
Ozone layer
Energy efficiency
Exporting and centralizing
Cultivation processes
Seed cake as energy carrier
Overall balance follows trends described in literature for JME and biodiesel…
16
Discussion
Reduction in Global Warming Potential (%)
Benchmarking
~50%
59%
67%
77%
84%
67-77%
~91%
Fobelets, 2009
Prueksakorn and
Gheewala, 2006
Ndong et al.,
2009
Vandenbempt, 2008
17
Discussion
Benchmarking
(Prueksakorn and
Gheewala, 2006;
Tobin, 2005;
Reinhardt et al.,
2007; Ndong et al.,
2009; Fobelets,
2009;
Sahapatsombut and
Suppapitnarm, 2006)
(Angarita et al.,
2009; Plenangai and
Gheewala, 2009;
Papong et al., 2009;
Yee et al., 2009;
Vandenbempt, 2008;
Sahapatsombut and
Suppapitnarm, 2006)
(Venturi et al., 2003;
Hovelius and
Hansson, 1999)
SF
Soy
Rape
Palm
Jatropha
Net Energy Ratio
Ref
(Venturi et al., 2003)
18
Conclusions
Trade offs
Impact categories
Evaluation
Data improvement
+
Include further
criteria
Complete evaluation of the system’s sustainability
Recommendations:
 Know and improve Jatropha (biotechnology, breeding)
 Know and optimize cultivation inputs
 Benefit from by product use
 Build scientifically sound information to guide investments
19
Acknowledgements
Prof. Dr. Bart Muys
Ir. Wouter Achten
FORECOMAN Team
Prof. Dr. Paula Duarte
Prof. Dr. Benilde Mendes
20