Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Biological Waste Treatment – Aerobic and Anaerobic Tobias Bahr, Sept. 2010 – Hong Kong Baptist University Waste Compositions % Germany avarage China Brazil Thailand India Java solo Paper / Cardboard 15.7 15,0 10.2 7.7 1.5 3.5 Glass 6.4 2.0 2.0 2.0 0.2 1.7 Organic 46.9 63,9 67.1 62.0 75.2 78.5 Plastic 9.8 16,9 8.7 12.0 0.9 2.6 Textiles 4.0 1,4 3.1 1.0 Metal 4.6 0,7 3.2 0.5 0.1 Rest 16.8 3.2 8.8 16 19.0 13,7 35 - 45 42 - 60 46- 58 41 - 53 42 - 60 49 - 63 8 - 9.000 4 - 7.300 < 4.000 < 4.000 Water content Calorific V kJ/ kg 3 - 6.900 4 - 7.500 Waste with a calorific value lower 3.500 - 4.000 kJ/kg needs additional fuel for combustion Collection Systems - Germany Rest Waste MBT or Incineration + Organics + Anaerobic digestion / Composting Facility Paper + + Packaging Sorting Facility 3 Glas Collection Systems (Formal Sector) 2 Bin System Dry Waste Sorting Facility MBT Incineartion Wet Waste Anaerobic digestion and Composting Facility Collection Systems (Formal Sector) 2 Bin System Rest Waste Sorting Facility MBT Incineration Organics Anaerobic digestion and Composting Facility Utilisation of Biomass from MSW material Composting ca. 880 Composting facilities material/energetic energetic Fermentation Combustion Incineration, Gasification (Pyrolysis) ca. 85 Fermentation facilities ca. 100 Incineration facilities Technical options for biowaste treatment Biowaste and Other organic green waste wastes Coarse fraction Mechanical pretreatment Anaerobic Composting Aerobic drying digestion (aerobic) Biomass Biogas Organic combustion fertilizer Substrates for anaerobic digestion Anaerobic digestion Combustion Tree clippings Green waste (winter/summer) Biowaste (rural/urban) Industrial org. waste Kitchen waste Food waste Manure Increasing water content Increasing structure (lingnin) Resource Management by closing the natural circle of life Aerobic Treatment Composting is the biological decomposition of biodegradable solid waste under controlled aerobic conditions to a state that ist sufficiently stable for storage and handling . C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + energy (heat and ATP) • Biological Decomposition of • biodregradable solid waste • under controlled aerobic conditions Steps Composting Process The aerobic decomposition process can be described as follows: Organic Compounds + Oxygen → Carbon Dioxide + Water + Energy Aerobic decomposition can be shown by the decomposition of glucose: C6 H12 O6 + 6 O2 → 6 CO2 + 6 H2O + Energy (Heat and ATP) Steps Composting process Entrance, weighting, controlling , Storage greenwaste and bio waste Pre condition: Screening, homogenisation, splitting Composting, Aeration, Irrigation Refining, Screening 8 to 20 mm Compost storage and packing 12 Pre condition: Material Flow Splitting Aerobic digestion/ Small particles (~ 70 %) Green Waste Screen Shredder Garden Organics Large particles (~ 30 %) Composting Fuel e.g. Fertilisers and Renewable Fuels from Bio Waste Pre condition: Removal Undesired Components Composition of undesiredplastic components film 49,4% textiles 1,8% glass 3,0% others 3,1% Various plastics 4,0% packaging 24,5% metals 4,9% compounds 9,4% < 4,5Vol.% Störst. Sichtung HD 43+44 KW 1997 Vol.% Content of undesired components up to 10 % Waste Quality - Grain-size distribution: undesirable components in Bio Waste mass % Undesirable components Gew.-% (Bioabf鄟le und St顤stoffe auf je 100% normiert) 80 74 70 60 50 Bio Waste 40 36 35 30 20 16 13 13 12 10 6 8 12 0 < 25 mm 25-50 mm Bio Bio Waste Waste 51-80 mm Undesirables Bioabfall St顤stoffe > 80 mm Examples for a drum screen Manufacturing of a HORSTMANN drum screen Hand sorting – negative sorting of the Course fraction Technical systems of composting low-tech-approach: open windrow composting Triangle Trapezoid high-tech-approach: fully enclosed technicaly advanced system, emission controlled Bio-waste delivery – open area Witzenhausen (Germany) Low standard of air - emissions control (odour) Bio-waste delivery – closed bunker Composting Process – open windrow composting <10.000 t/a general process of building windrows 1. Chop/shred the waste 2. Mix different types of waste thoroughly and spread hindhigh 3. Spray additives (mostly not required) 4. Moisten if necessary 5. Add further layers of waste in the same way 6. Finished compost heap (windrow) aeration systems • passive aeration systems natural aeration (diffusion), because of gradients of CO2concentration and heat only < 80 cm, can be supported by chimney effect and turning • forced aeration systems ventilation-systems (sucking or blowing systems) Before turning After turning process factors – 1 • kind of substrate: content of biodegradable components interstices volume (structure material) moisture content particle size of input material • temperature Active organisms producing thermal energy C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + energy (heat and ATP) Should never rise over 65°C process factors – 2 • moisture micro-organisms need water to survive and for metabolic process problem: very close relation between moisture and aeration both needs interstices which can only be filled with free water or air depends on input material Particle Interstices process factors – 3 • aeration (passive or forced) has many different functions supply with oxygen, removal of CO2 reduction of water to dry the material leading away the heat to prevent temperatures over 65°C • pH-level Activity of micro-organisms is related to pH-level, good for biological activity are levels between 7-11 pH < 7 reduction of speed in decomposting process pH < 5 strong inhibition low ph-levels can be caused by uncontrolled anaerobic cond. process factors – 4 • C/N – ratio ratio betwen carbon and nitrate atoms in input material has a close relation to speed of the composting process Optimum: 1:20 to 1:35 < 1:10 growing inhibition > 1:40 less nitrates are available out of this range micro-organsim-populations are not able to grow Adequate oxygen supply waste-water effluent (discharge) Aeration aggregat Pile Skizze Versuchsaufbau Kessler & Luch Compost pile Suking canal Collecting (Sucking) pipe Folie Temperature Appropriate temperature Duration (time) self heating cause of low warmth conductivity KKK..Appropriate temperature < 60-65° C, cause of protein denaturation 29 Rotting degree of compost Defines the required composting process time (market-dependent) Process Time (Weeks) 2 -3 fresh compost 3 -6 6-10 finished compost 8-16 Bio waste composting plant > 10.000 t/a Completely encapsulated composting systems (emission control) Treatment of bio waste prior to composting > 10.000 t/a Turning device – table composting system Schematic cross section of an intensive composting facility (e.g. table composting System) 33 Turning device Tunnel Composting System 35 Aeration systems Sucking System Combination of Sucking and Blowing System 36 Biological Treatment of Gaseous Emissions Air Transport to the Biofilter Air Purification - Biofilter System clean gas dirty gas ventilator moistener container Biofilter in Operation Refining Process Compoststorage Mass Balance Composting Process Biowaste Organic Waste Entry 100 % 65 % Water 23 % TSbio* 12 % TSmin** up to 5% Pre Conditioning Undesirables 5 % Störstoffe Air, Water Composting Aerob Process up to 65% Waste Water 11 % Biogas CO2 29 % Abwasser bio Fine Conditioning Sieving Foreign Material Removal Compost 29 % 10,2 % Water 8,2 % OTSbio ** 10,7 % Tsmin ** up to 5% Foreign Mat. 2 % Störstoffe * Burn Res. t/OTSbio 65 % ** Water Content 35 % i. d. TS Loss TS bio 43 % Anaerobic Processes - Digestion Stoichiometric formula for the conversion from Glucose: C6H12O6 3CO2 + 3CH4 + Energy The majority of the energy is stored in the decomposition product methane. Barcelona / Spain 300.000 t/y Procedure and Mass Balance of Organic Waste Fermentation and Coposting Organic Waste Entry 100 % 65 % Water 23 % TSbio* 12 % TSmin** Coarse Conditioning Process Water Prozesswasser Sieving Foreign Material Removal Pulper ** 55 % % Undesirables Störstoffe Fermentation Entry 95 % Process Water Prozesswasser Degradation of the Organic Substance Fermentation Discharge 55 % Air Luft Post-composting 11 11 % % Biogas Biogas 29 Water 29 % % Waste Abwasser 24 Losses 24 % % Matur. Rotteverluste 18,4 18,4 OTS OTSbio bio 220,4 220,4 Water Wasser Fine Conditioning Sieving Foreign Material Removal Compost 29 % 10,2 % Water 8,2 % OTSbio ** 10,7 % Tsmin ** 22 % Mat. % Foreign Störstoffe * Burn Res. t/OTSbio 65 % ** Water Content 35 % i. d. TS Loss TS bio 43 % Biogas-Production and Quality by Mechanical-Biological Waste Treatment Biogas Production Gas Amount Waste Input (plant) fresh matter 60 – 110 m3/t Waste Input (plant) dry matter 113 – 160 m3/t Biogas Quality CH4-Content Energy Content 57 – 68% 5.8 – 6.8 (KWh/Nm3) Biogas quality from different substrates Substrate Biogas composition Source CH4 CO2 H2S [Vol.-%] [Vol.-%] [Vol. -%] 57 – 65 k.A. < 0,05 Bio waste Fricke et al., 2002 62 – 741) k.A. k.A. Residual waste 57 – 65 k.A. (0,07–0,09)1) 0,40–0,45 Liquid manure 53 – 69 (80)2) (15)2) 30 - 46 0,05 – 1,0 Sewage sludge 55 - 65 35 – 45 0,001 – 0,0043) Tentscher, 2002 Landfill gas 45 - 55 30 - 40 0,005 – 0,03 Tentscher, 2002 Fricke et al.,1993 u. 2002 Hüttner, 1997 Heating value of different gases Gas Heating value Hu [MJ/m3] Natural gas 30,2 Bio-gas 23,3 Town gas 19,9 coal gasification Quality of Biogas Component Raw gas Clean gas CH4 65 % > 96 % CO2 35 % <4% H2S max. 200 ppm max. 5 mg/Nm3 H2O variable < 10 mg/Nm3 Anaerobic digestion Suitable organic substrates One-stage, two-stage process Mesophilic, thermophilic operation Wet or dry anaerobic digestion Biogas Conditioning Desulfurization Refining Compression Pressurized storage Gas heating boiler CHP Heat Fuel cell Electricity Motor fuel Energetic equivalent of biowaste as car fuel Energetic Equivalent of bio-waste (approximated values) 10 kg Kitchen waste 1,5 m3 Bio-gas 1 m3 Clean-gas 10 Km Car drive 1 kg waste = 1 Km car drive Comparison anaerobic an aerobic Process • Energy • Air Emissions • Leachate Emissions • Required area • Ecological evaluation • Potential for further development • Operation stability • Costs anaerob ++ + aerob + ++ ++ ++ + + The Future belongs to Anaerobic Treatment Mass flow MSW- Germany - 2006 reuse + recycle + energetic recovery 19 Mio [t/y] avoidance ?? 48% municipal solid waste 40 Mio [t/y] waste Disposal 21 Mio [t/y] Landfill??? 52 Treatment Before Landfilling – Aims: Minimizing volume and mass of waste delivered to the landfill Inactivation of biological and chemical processes thus preventing landfill gas production and settlement Immobilizing contaminants of the waste in order to reduce leachate emissions Separation of recyclable materials, Fe- and non-Fe-metals, fuels, biogas etc. Limit values for the landfilling of waste according to the German AbfAblV (2001) Respiration activity in 4 days (AT4) Gas formation in 21 days (GB 21) Upper heating value Ho Unit % of dry matter % of dry matter mg/l eluate mg O 2/g dry matter l/kg dry matter kJ/kg dry matter Mechanical–biological pre-treatment (MBT) Parameter Organic matter, determined as loss on ignition TOC in solid matter TOC in eluate Incineration (IP) German Ordinance for Environmentally Safe Landfilling of MSW stipulates criteria for waste to be landfilled. Main requirements are: Landfill Class I Landfill Class II MBT-Waste 3 1 20 5 3 100 18 300 - - 5 20 6.000 *) Treatment capacities for municipal solid waste in Germany (2006) MBS 8,7% MT 2.9% mi. 3,2% MBT 15,5% Incineration 69,7% Incineration MBT 75 % 25 % 17.0 Mio t 5,7 Mio t Source: Prognos 2006 Status quo of MBT Technologies in Germany by June 2005 68 Plants – Treatment capacity 7,2 Mio. t/a Mechanical Treatment (MT) Substance separation Mechanicalbiological Stabilisation (MBS) • Substance separation • Mass reduction • Biological stabilisation mechanically 17 Plants Mechanicalbiological drying (MBD) • Substance separation • Mass reduction • Biological drying Mechanical-physical drying (MPD) • Substance separation • Mass reduction • Thermal drying aerobic anaerobic/ aerobic aerobic anaerobic/ aerobic thermal mechanical 23 plants 13 plants 12 plants - 3 plants - Products and residues • Refuse Derived Fuel (RDF) • Metals (ferrous and non-ferrous) • Residues (for thermal treatment) • RDF • Metals • Residues for landfill • Bio-gas • RDF • Metals (ferrous and non-ferrous) • mineral secondary building materials • preliminary products for the production of „sunfuels“ (gasification) Characterization of Different Waste Categories Parameters Municipal Solid Waste Bulky Waste Commercial Waste Dry Matter (dm) 65% 81% 77% Organic dm (% of dm) 64% 72% 56% Aerobic biodegradable organics (% of dm) 44% 52% 23% Anaerobic biodegradable organics (% of dm) 37% 3% 13% 14% 5% 18% 8,300 MJ/t fm 13,200 MJ/t fm 11,400 MJ/t fm Inerts (% of fm) Calorific value (l) MBT- Procedure and Mass-balance Municipal solid waste Shreddering Sieving 120 mm > 120 mm Refuse derived fuel Fe 25 - 35 % Hu= 11 – 12,500 MJ/Mg < 120 mm Fe Biological treatment aerobic Further mechanical treatment Ferrous metals 2-4% Reduction of organic matter, water 25 - 30 % Refuse derived fuel 5-8% Hu = 12 – 13,500 MJ/Mg Filter material Methane oxidation layer Landfill 35 - 45 % TOC < 18 % MBT Municipal solid waste Shreddering Sieving 120 mm > 120 mm Refuse derived fuel Fe 25 - 35 % Hu= 11 – 12,500 MJ/Mg <120 mm Fe Biological treatment aerobic Further mechanical treatment Ferrous metals 2-4% Reduction of organic matter, water 25 - 30 % Refuse derived fuel 5-8% Hu = 12 – 13,500 MJ/Mg Filter material Methane oxidation layer Landfill 35 - 45 % TOC< 18 % MBT Municipal solid waste Shreddering Sieving 120 mm > 120 mm Refuse derived fuel Fe 25 - 35 % Hu= 11 – 12,500 MJ/Mg <120 mm Fe Biological treatment aerobic Further mechanical treatment Ferrous metals 2-4% Reduction of organic matter, water 25 - 30 % Refuse derived fuel 5-8% Hu = 12 – 13,500 MJ/Mg Filter material Methane oxidation layer Landfill 35 - 45 % TOC< 18 % MBT Municipal solid waste Shreddering Sieving 80 mm > 120 mm Refuse derived fuel Fe 25 - 35 % Hu= 11 – 12,500 MJ/Mg <120 mm Fe Biological treatment aerobic Further mechanical treatment Ferrous metals 2-4% Reduction of organic matter, water 25 - 30 % Refuse derived fuel 5-8% Hu = 12 – 13,500 MJ/Mg Filter material Methane oxidation layer Landfill 35 - 45 % TOC< 18 % Process Conditions – Aerobic Process C6 H12 O6 + 6 O2 → 6 CO2 + 6 H2O + Energy (Heat and ATP) The most important process conditions are: Adequate oxygen supply Appropriate temperature Appropriate water supply and adequate supply of nutrient substances. Air Demand and Energy – MBT 62 MBT Anaerobic-Aerobic Principle of Biological Stabilisation Degradation of organic matter in the course of aerobic treatment process Reduction of Gas Potential During Aerobic Treatment 220 200 180 lower area upper area GB21 (l /kg dm) 160 140 120 100 80 60 40 20 Limit value 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Duration of treatment (weeks) exponetial Reduction of DOC during Aerobic Treatment 4000 3500 DOC-Eluat (mg/l) DOC 3000 lower area upper area 2500 2000 1500 1000 Limit Value 500 300 0 0 2 4 6 8 10 12 14 16 18 20 Duration of treatment (weeks) 22 24 26 Stabilisation performance – MBT with anaerobic stabilisation and aerobic post-treatment 160 Anaerobic Aerobic post treatment 140 Linde-BRV; 3 W. Fermentation 120 GB21 (l /kg dm) Valorga, 3 week fermentation 100 80 60 40 German limit value for open aerobic curing 20 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 Duration of treatment (weeks) 13 14 15 16 Stabilisation performance – MBT with anaerobic stabilisation and aerobic post-treatment 2750 Anaerobic Aerobic post treatment 2500 Linde-BRV; 3 W. fermentation 2250 Kogas; 2 week fermentation TOC-Eluat Eluat (mg/l) 2000 Valorga, 3 week fermentation 1750 1500 1250 1000 750 500 Limit value 300 250 0 0 1 2 3 4 5 6 7 8 9 10 Duration of treatment (weeks) 11 12 13 14 15 16 Landfill gas – Methane Initial Situation Water Content (WC) 40 % = 0,40 Mg Dry Matter (DM) 60 % = 0,60 Mg 1 Mg Municipal Solid Waste Lost on Ignition = 80 % 0,80 x 0,60 (Mg DM) = 0,48 Mg organic dry matter (oDM) Approximative Calculation of methane aerosis in landfill empirical formula organic matter : C99 H148O59 N Buswell-equation for approximative calculation of methane aerosis: b c a b c a b c Ca H bOc + a - − H 2O → + − CH 4 + − + CO2 4 2 2 8 4 2 8 4 Periodic System Approximative Calculation of methane aerosis in landfill empirical formula organic matter : C99 H148O59 N Buswell-equation for approximative calculation of methane aerosis: b c a b c a b c Ca H bOc + a - − H 2O → + − CH 4 + − + CO2 4 2 2 8 4 2 8 4 molar mass C99 = 12 x 99 = 1188 g oDM = 0.48 Mg = 480.000 g molar mass H148 = 1 x 148 = 148 g mol oDM before dagradation: molar mass O59 = 16 x 59 = 944 g 480.000 g / 2.280 g = 210,5 mol ∑ of molar mass = 2.280 g Calculation according to Buswell 99 148 59 99 148 59 → + − CH 4 + + − CO2 = 53,25 CH 4 + 53,25 CO2 8 4 8 4 2 2 molar mass of methane CH4 : 16,04 mass of methane aerosis CH4 : 16,04 x 53,25 x 210,5 = 179.794,4 g density CH4 : 0,667 g/dm³ Volume CH4 : 179.794,4 g / 0,667 g/dm³ = 269.557 dm³ ≈ 270 m³ Reduction of methane aerosis by composting organic degradation by composting: approx. 60 % of oDM =0,60 x 0,48 Mg oDM = 0,288 Mg lost by composting remained organic compostmass(dry) = 0,48 Mg – 0,288 Mg = 0,192 Mg = 192.000 g oDM Mol oDM after composting = 192.000 / 2.280 = 84,2 molar mass CH4 = 16,04 x 53,25 x 84,2 = 71.917,7 g Volume CH4 = 71.917,7 g / 0,667 g/dm³ = 107,822 dm³ ≈ 108 m³ CH4-Reduction by composting 1 Mg FS 270 m³ CH4 1 Mg FS 108 m³ CH4 Avoidance : 162 m³ CH4 162 * 21 = 3402 m³ CO2-eq Mass flow MSW- Germany - 2006 reuse + recycle + energetic recovery 19 Mio [t/y] CO2, H2O + energy recovery 13.7 Mio [t/y] avoidance ?? 48% municipal solid waste 40 Mio [t/y] 34% recycle 2.6 Mio [t/y] (Fe, Ne, slag) 6,5% landfill/ disposal 4,7 Mio [t/y] waste treatment 21 Mio [t/y] 75% Incin. / 25% MBT 12% 77
© Copyright 2026 Paperzz