Problem Set 4: Externalities Matthew Robson University of York Microeconomics 2 1 Question 1 Consider a two-commodity (π₯ and π¦), two-consumer (π΄ and π΅) pure-exchange economy. Suppose consumer π΄βs utility function is ππ΄ π₯π΄ , π¦π΄ , π₯π΅ = π₯π΄0.5 π¦π΄0.5 π₯π΅β1 and she is endowed with 100 units of π₯ and zero units of π¦. Suppose consumer Bβs utility function is ππ΅ π₯π΅ , π¦π΅ = π₯π΅0.5 π¦π΅0.5 and she is endowed with zero units of x and 100 units of y. Derive the conditions for Pareto optimality in the above economy(notice that an externality is present). 2 Question 1 Choose an allocation π₯π΄ , π¦π΄ , π₯π΅ , π¦π΅ to maximise: π₯π΅0.5 π¦π΅0.5 subject to: π₯π΄0.5 π¦π΄0.5 π₯π΅β1 = ππ΄ π₯π΄ + π₯π΅ = 100 π¦π΄ + π¦π΅ = 100 Feasible Allocations 3 Question 1 Form the Lagrangian: β = π₯π΅0.5 π¦π΅0.5 + π π₯π΄0.5 π¦π΄0.5 π₯π΅β1 β ππ΄ + πΌ 100 β π₯π΄ β π₯π΅ + πΎ 100 β π¦π΄ β π¦π΅ Where π, πΌ and πΎ are Lagrange multipliers. Derive the FOCβs: π₯π΄ : π0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅β1 β πΌ = 0, (1) π¦π΄ : π0.5π₯π΄0.5 π¦π΄β0.5 π₯π΅β1 β πΎ = 0 π₯π΅ : 0.5π₯π΅β0.5 π¦π΅0.5 β ππ₯π΄0.5 π¦π΄0.5 π₯π΅β2 β πΌ = 0, (3) π¦π΅ : 0.5π₯π΅0.5 π¦π΅β0.5 β πΎ = 0 π: π₯π΄0.5 π¦π΄0.5 β ππ΄ = 0, (5) πΌ: 100 β π₯π΄ β π₯π΅ = 0 πΎ: 100 β π¦π΄ β π¦π΅ = 0 (2) (4) (6) (7) 4 Question 1 (1)=(3) π0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅β1 = πΌ = 0.5π₯π΅β0.5 π¦π΅0.5 β ππ₯π΄0.5 π¦π΄0.5 π₯π΅β2 0.5π₯π΅β0.5 π¦π΅0.5 π= 0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅β1 + π₯π΄0.5 π¦π΄0.5 π₯π΅β2 (2)=(4) π0.5π₯π΄0.5 π¦π΄β0.5 π₯π΅β1 = πΎ = 0.5π₯π΅0.5 π¦π΅β0.5 π₯π΅0.5 π¦π΅β0.5 π = 0.5 β0.5 β1 π₯π΄ π¦π΄ π₯π΅ 0.5π₯π΅β0.5 π¦π΅0.5 π₯π΅0.5 π¦π΅β0.5 β0.5 0.5 β1 0.5 0.5 β2 = π = 0.5 β0.5 β1 0.5π₯π΄ π¦π΄ π₯π΅ + π₯π΄ π¦π΄ π₯π΅ π₯π΄ π¦π΄ π₯π΅ 0.5π₯π΄0.5 π¦π΄β0.5 π₯π΅1.5 π¦π΅β0.5 β0.5 0.5 β1 0.5 0.5 β2 = β0.5 0.5 0.5π₯π΄ π¦π΄ π₯π΅ + π₯π΄ π¦π΄ π₯π΅ π₯π΅ π¦π΅ 5 Question 1 0.5π₯π΄0.5 π¦π΄β0.5 π₯π΅2 = 0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅β1 + π₯π΄0.5 π¦π΄0.5 π₯π΅β2 π¦π΅ π₯π΄β0.5 π¦π΄0.5 π₯π΅β1 π₯π΄0.5 π¦π΄0.5 π₯π΅β2 π¦π΅ 0.5 β0.5 + 0.5 β0.5 = π₯ 2 π₯π΄ π¦π΄ 0.5π₯π΄ π¦π΄ π΅ π¦π΄ π¦π΄ π¦π΅ + 2 = 2 0.5π₯ π₯π΅ π₯π΄ π₯π΅ π΅ π¦π΄ π₯π΄ + 2π¦π΄ π₯π΅ = π¦π΅ π₯π΅ Condition required for Pareto Optimality 6 Question 1 (Extension) Generalise the Utility Function ππ΄ π₯π΄ , π¦π΄ , π₯π΅ = π₯π΄0.5 π¦π΄0.5 π₯π΅π ππ΅ π₯π΅ , π¦π΅ = π₯π΅0.5 π¦π΅0.5 β’ Use π as a parameter to enable differences in the preference for π₯π΅ by π΄. β’ We can then see no externalities, positive externalities and negative externalities. 7 Question 1 Form the Lagrangian: β = π₯π΅0.5 π¦π΅0.5 + π π₯π΄0.5 π¦π΄0.5 π₯π΅π β ππ΄ + πΌ 100 β π₯π΄ β π₯π΅ + πΎ 100 β π¦π΄ β π¦π΅ Where π, πΌ and πΎ are Lagrange multipliers. Derive the FOCβs: π₯π΄ : π0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅π β πΌ = 0, (1) π₯π΅ : 0.5π₯π΅β0.5 π¦π΅0.5 + πππ₯π΄0.5 π¦π΄0.5 π₯π΅πβ1 β πΌ = 0, (3) π: π₯π΄0.5 π¦π΄0.5 β ππ΄ = 0, π¦π΄ : π0.5π₯π΄0.5 π¦π΄β0.5 π₯π΅π β πΎ = 0 (2) π¦π΅ : 0.5π₯π΅0.5 π¦π΅β0.5 β πΎ = 0 (5) πΌ: 100 β π₯π΄ β π₯π΅ = 0 πΎ: 100 β π¦π΄ β π¦π΅ = 0 (7) (4) (6) 8 Question 1 (1)=(3) π0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅π = πΌ = 0.5π₯π΅β0.5 π¦π΅0.5 + πππ₯π΄0.5 π¦π΄0.5 π₯π΅πβ1 0.5π₯π΅β0.5 π¦π΅0.5 π= 0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅π β ππ₯π΄0.5 π¦π΄0.5 π₯π΅πβ1 (2)=(4) π0.5π₯π΄0.5 π¦π΄β0.5 π₯π΅π = πΎ = 0.5π₯π΅0.5 π¦π΅β0.5 π₯π΅0.5 π¦π΅β0.5 π = 0.5 β0.5 π π₯π΄ π¦π΄ π₯π΅ 0.5π₯π΅β0.5 π¦π΅0.5 π₯π΅0.5 π¦π΅β0.5 β0.5 0.5 π 0.5 0.5 πβ1 = π = 0.5 β0.5 π 0.5π₯π΄ π¦π΄ π₯π΅ β ππ₯π΄ π¦π΄ π₯π΅ π₯π΄ π¦π΄ π₯π΅ 0.5π₯π΄0.5 π¦π΄β0.5 π₯π΅0.5βπ π¦π΅β0.5 β0.5 0.5 π 0.5 0.5 πβ1 = 0.5π₯π΄ π¦π΄ π₯π΅ β ππ₯π΄ π¦π΄ π₯π΅ π₯π΅β0.5 π¦π΅0.5 9 Question 1 0.5π₯π΄0.5 π¦π΄β0.5 π₯π΅1βπ β0.5 0.5 π 0.5 0.5 πβ1 = 0.5π₯π΄ π¦π΄ π₯π΅ β ππ₯π΄ π¦π΄ π₯π΅ π¦π΅ π₯π΄β0.5 π¦π΄0.5 π₯π΅π ππ₯π΄0.5 π¦π΄0.5 π₯π΅πβ1 π¦π΅ β = π₯π΅1βπ π₯π΄0.5 π¦π΄β0.5 0.5π₯π΄0.5 π¦π΄β0.5 π¦π΄ π₯π΅π π₯π΄ ππ¦π΄ πβ1 π¦π΅ β π₯π΅ = 1βπ 0.5 π₯π΅ π¦π΄ ππ¦π΄ β1 π¦π΅ β π₯π΅ = 1βπ π 0.5 π₯π΅ π₯π΅ π₯π΄ π¦π΅ = π¦π΄ β 2ππ¦π΄ π₯π΅ π₯π΄ π₯π΅ Condition required for Pareto Optimality (take this further to get π¦π΄ = β―) 10 Question 1 From (6): 100 β π₯π΄ β π₯π΅ = 0 π₯π΅ = 100 β xA From (7): 100 β π¦π΄ β π¦π΅ = 0 π¦π΅ = 100 β yA Plug into: π¦π΅ π₯π΅ = π¦π΄ π₯π΄ 100 β yA π¦π΄ 2ππ¦π΄ = β 100 β xA π₯π΄ 100 β xA 100 π¦π΄ β1= 100 π₯π΄ β 2ππ¦π΄ π₯π΅ 100 β yA β΄ β 1 β 2π 1 π¦π΄ β΄ 2π π¦π΄ = β 100 π₯π΄ 1 π¦π΄ = 100 β xA π₯π΄ β 2π 1 2π = β 100 π₯π΄ β1 11 Question 2 For the economy in Question 1, derive the conditions that prevail in a general competitive equilibrium, and thus demonstrate that the general competitive equilibrium allocation is not Pareto optimal. 12 Question 2 General Competitive Equilibrium β’ Both consumers are maximising utility subject to their budget constraints β’ max ππ΄ (π₯π΄ , π¦π΄ ) subject to ππ₯ π₯π΄ + ππ¦ π¦π΄ = ππ΄ = ππ₯ ππ₯π΄ + ππ¦ ππ¦π΄ β’ max ππ΅ (π₯π΅ , π¦π΅ ) subject to ππ₯ π₯π΅ + ππ¦ π¦π΅ = ππ΅ = ππ₯ ππ₯π΅ + ππ¦ ππ¦π΅ β’ Market Clear (Demand = Supply) β’ π₯π΄ + π₯π΅ = ππ₯π΄ + ππ₯π΅ β’ π¦π΄ + π¦π΅ = ππ¦π΄ + ππ¦π΅ 13 Question 2 For Consumer A: β = π₯π΄0.5 π¦π΄0.5 π₯π΅π + π 100ππ₯ β ππ₯ π₯π΄ β ππ¦ π¦π΄ FOC: (1)=(2) π₯π΄ : 0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅π β ππ₯ Ξ» = 0 (1) π¦π΄ : 0.5π¦π΄β0.5 π₯π΄0.5 π₯π΅π β ππ¦ Ξ» = 0 (2) π: 100ππ₯ β ππ₯ π₯π΄ β ππ¦ π¦π΄ = 0 (3) 0.5π₯π΄β0.5 π¦π΄0.5 π₯π΅π 0.5π¦π΄β0.5 π₯π΄0.5 π₯π΅π =π= ππ₯ ππ¦ ππ₯ π¦π΄ = π₯π΄ , ππ¦ ππ¦ π₯π΄ = π¦π΄ , ππ₯ β΄ π¦π΄ ππ₯ = π₯π΄ ππ¦ 14 Question 2 For Consumer B: β = π₯π΅0.5 π¦π΅0.5 + π 100ππ¦ β ππ₯ π₯π΅ β ππ¦ π¦π΅ FOC: (1)=(2) π₯π΅ : 0.5π₯π΅β0.5 π¦π΅0.5 β ππ₯ Ξ» = 0 (1) π¦π΅ : 0.5π¦π΅β0.5 π₯π΅0.5 β ππ¦ Ξ» = 0 (2) π: 100ππ¦ β ππ₯ π₯π΅ β ππ¦ π¦π΅ = 0 (3) 0.5π₯π΅β0.5 π¦π΅0.5 0.5π¦π΅β0.5 π₯π΅0.5 =π= ππ₯ ππ¦ ππ₯ π¦π΅ = π₯π΅ , ππ¦ ππ¦ π₯π΅ = π¦π΅ , ππ₯ β΄ π¦π΅ ππ₯ = π₯π΅ ππ¦ 15 Question 2 β’ Therefore, in General Competitive Equilibrium, we have: π¦π΄ ππ₯ π¦π΅ = = π₯π΄ ππ¦ π₯π΅ β’ However, for Pareto Optimality our (generalised) condition is: π¦π΅ π₯π΅ = π¦π΄ π₯π΄ β 2ππ¦π΄ π₯π΅ β’ Then, GE = PO when π = 0 (i.e. no externalities) 16
© Copyright 2026 Paperzz