Controls of dissolved inorganic and organic carbon discharge from permafrost ecosystems Prokushkin Anatoly S. V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk Siberian Federal University [email protected] ИЛ СО РАН: School of the young scientists on Biogeochemical Matter Cycling In Permafrost Ecosystems 1 Presentation structure: • Terms • Processes • Dissolved carbon in watersheds of Siberian rivers : interactions of hydrology, vegetation, permafrost, fires and C fluxes 2 • from Latin dissolvere : dis- + solvere, to release Physicochemical background: Wikipedia: Dissolution is the process by which a solute forms a solution in a solvent. The solute, in the case of solids, has its crystalline structure disintegrated as separate ions, atoms, and molecules form. For liquids and gases, the molecules must be adaptable with those of the solvent for a solution to form. The outcome of the process of dissolution (the amount dissolved at equilibrium, i.e., the solubility) is governed by the thermodynamic energies involved, such as the heat of solution and entropy of solution, but the dissolution itself (a kinetic process) is not. Overall the free energy must be negative for net dissolution to occur. In turn, those energies are controlled by the way in which different chemical bond types interact with those in the solvent. 3 Dissolved carbon species: • Dissolved inorganic carbon [CO2*] + [HCO3−] + [CO32−] • Dissolved organic carbon Complex mixture of organic volecules • Dissolved gases CO2, CH4 Other portion of C in waters is called particulate C: Particulate organic C Particulate inorganic C 4 Dissolved carbon: definitions and species Initially in hydrochemistry dissolved matter is operationally defined as matter which is passed through 0.45 um pore-size filter Wikipedia: …The "dissolved" fraction of organic carbon is an operational classification. Many researchers use the term "dissolved" for compounds below 0.45 micrometers, but 0.22 micrometers is also common... A practical definition of dissolved typically used in marine chemistry is all substances that pass through a GF/F filter (0.7 um pore size!). So, to work with dissolved carbon in a sample one need first to filter sample! 5 Advantages and disadvantages of filters: • 0.22 micrometers: to get rid of microbes… less loss during storage, but may contaminate with C (nitrocellulose, acetate cellulose matrix) • 0.7 um precombusted glass fiber filters (GF/F): miserable or no contamination by OC, but microbes… 6 How to measure? • DOC (TOC = TC-IC, NPOC – nonpurgeable OC) - The recommended measure technique is the high temperature catalytic oxidation (IR detection) - Previous technique (still in use by Roshydromet) Bichromate/permanganate oxidation 7 How to measure? • DIC - The recommended measure technique is acidification with further IR detection - Potentiometric titration with HCl for alkalinity H+ + HCO3- = H2CO3 = H2O + CO2 8 Why it is important? • DOC loss from terrestrial ecosystems to fresh waters constitutes 1-15% of NEP • DIC and specifically dissolved CO2/CH4 fluxes is not still well counted … • C exported from terrestrial ecosystems to rivers are rarely included in NEP estimates, causing its underestimation • DOM (DOC, DON, DOP etc…) is important driver of foodwebs in both terrestrial and aquatic systems 9 Dissolved organic C • To be microbially mineralized to CO2/CH4 all organic matter must be dissolved 10 Dissolved inorganic C Carbonate weathering… H2CO3 + CaCO3 → Ca(HCO3)2 Silicate weathering… 2 KAlSi3O8 + 2 H2CO3 + 9 H2O ⇌ Al2Si2O5(OH)4 + 4 H4SiO4 + 2 K+ + 2 HCO3− Temperature dependent process high potential for sequestration of atmospheric CO2… 11 • Weathering of basalts of Central Siberian Plateau may be important factor for atmospheric CO2 sequestration Illustration of the correlations between weathering fluxes and (A) thermal regimes and (B) hydrological regimes for 22 representative silicate sites around the world (excerpt from Beaulieu et al., 2010). Our study shows clear increase of DIC annual yield from 1.04 gC m−2 yr−1 for Tembenchi River (MAAT = −10.9 ◦C) to 2.77 gC m−2 yr−1 for Nizhnyaya Tunguska River (MAAT = −7.5 ◦C). The other basaltic boreal rivers such as Kamchatka River and its tributaries (MAAT = −2.5 ◦C) exhibit significantly higher annual fluxes of DIC: 4.8 gC m−2 yr−1 12 Dissolved organic C: dissolved or colloidal? 8000 7000 450 6000 [Na], ppb 400 350 [Fe], ppb 300 200 150 100 2000 1000 0 18.0 50 5 um 1.2 um 0.22 um 1 kDa Pore diamter 300 250 10.0 600 8.0 500 6.0 400 0.22 um 1 kDa 0.22 um 1 kDa 300 200 0.0 December 100 March April May June July September 100 Month 0 50 20 um 20 um 10 um 5 um 1.2 um 0.22 um 5 um 1.2 um LMW 1 kDa HMW 25 Pore diamter 10 um Pore diamter 30 0 12000 20 0.02 0.015 0.01 10000 15 8000 [Ca], ppb NPOC [mgC/L] 0.025 [Tb], ppb 1.2 um 700 12.0 2.0 150 5 um 14.0 4.0 200 10 um Pore diamter [K], ppb 10 um NPOC [mgC/l] 20 um 20 um LMW HMW 16.0 0 [Al], ppb 4000 3000 LMW = 1 kDa (Dialysis) 250 5000 10 5 6000 4000 0 2000 07.06.2013 07.06.2013 20.06.2013 20.06.2013 05.08.2013 05.08.2013 0.005 NT KO NT KO River/sampling date 0 20 um 10 um 5 um 1.2 um Pore diamter 0.22 um 1 kDa NT KO 0 20 um 10 um 5 um 1.2 um Pore diamter 0.22 um 13 1 kDa What is DOC? How to investigate the composition? • Complex mixture of organic molecules • Fulvic acids (dissolved at pH 2) • Hydrophobic acid (by XAD fractionation) • Spectral characteristics (e.g. SUVA, spectral slope) • Fluorescence (chromatophoric groups) • Biomarkers (e.g. lignin, sugars etc.) • Isotopic composition (i.e. 13C) • Radiocarbon age (compound specific) • Pyr-GC/MS-IRMS, 13C NMR CP MAS, electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESIFT-ICR-MS) 14 • etc. Dissolved organic carbon in terrestrial systems Rainfall 0.9-4.5 mgC/l (< 0.5 gC/m2/a) Throughfall/stemflow 0 6-70 mgC/l (ca 1.0 gC/m2/a) Soil Depth, cm 20 40 60 Jun Jul 80 O Ah Aug Sept 20-120 mgC/l (2-18 gC/m2/a) 15-40 mgC/l B 5-15 mgC/l C 2-5 mgC/l 100 0 ALT Time Export to stream 10 20 NPOC, mgC/l 30 5-31 mgC/l 2-10 gC/m2/a 40 15 moss O layer 5 cm 20 cm 40 cm 35 30 Active layer NPOC, mgC/l 5 cm 20 cm 25 20 15 10 5 0 1-Jun 40 cm 15-Jun 29-Jun 13-Jul 27-Jul 10-Aug 24-Aug 7-Sep 21-Sep Sampling date 15 60 cm 10 5 Permafrost 0 5.8.09 May September Soil solution sampling and temperature monitoring 19.9.09 3.11.09 18.12.09 1.2.10 18.3.10 2.5.10 16.6.10 31.7.10 -5 -10 Nfs 5 cm Nfs 20 cm Nfs 40 cm 16 -15 Terrestrial C links to aquatic moss O layer 0 10 Depth, cm 20 30 40 50 Sfs Nfs 60 70 0 Active layer 20 40 60 80 DOC Permafrost 17 Dissolved organic carbon in aquatic systems • Authochtonous low C:N, high 15N, LMW, specific biomarkers • Allochtonous (terrigenic) High C:N, low 15N, low 13C, HMW, specific biomarkers 18.0 LMW HMW 16.0 NPOC [mgC/l] 14.0 12.0 10.0 8.0 6.0 4.0 2.0 18 0.0 December March April May Month June July September DOC production • Biological - Exudates - Cell lysis - Microbial breakdown of SOM DOM • Physical Freeze-thaw cycles SOM DOM 19 Terrestrial controls over C export: soil C stocks and C:N ratio Frey and Smith 2005, GRL 20 DOC “consumption” • Microbial mineralization DOC = CO2/CH4 + H2O 20 y = 0.6295x - 5.5604 DOC released or retained, mmol kg -1 10 • Sorption to mineral matrix 0 y = 0.6365x - 18.041 y = 0.6484x - 19.44 -10 y = 0.612x - 26.517 -20 y = 0.5812x - 32.144 -30 -40 Ah (05CP) Ah (05BP) B (05BP) Bf (05BP) B (05CP) -50 0 • Precipitation 10 20 30 40 50 DOC added, mmol kg-1 0.80 0.80 0.60 0.50 0.40 0.30 0.20 0.10 50 y = 0.0138x + 0.3777 R2 = 0.9391 0.70 0.60 b, mmol DOC/kg partition coefficient (m) partition coefficient (m) y = 0.0466x - 0.2044 R2 = 0.8213 0.70 0.50 0.40 0.30 0.20 0 5 10 Fe(d) 15 20 30 20 10 0.10 0.00 0.00 y = 5.8368x + 5.4781 R2 = 0.7657 40 0 0 10 20 SSA, m2/g 30 0.0 2.0 4.0 6.0 OC, mol C/kg soil 21 8.0 Permafrost and dissolved C: A Органический слой СТС СТС Periodic forest fires ? мерзлота мерзлота Июнь Июнь Октябрь Пожар Октябрь Послепожарная восстановительная сукцессия B Органический слой СТС Permafrost degradation мерзлота СТС мерзлота Деградация мерзлоты DOC DIC 22 Arctic and subarctic ecosystems: why dissolved carbon is important • Largest amount of carbon (of which 1-2% is dissolved) locked in soils and particularly conserved within the frozen ground (SOC = 1672 PgC, Tarnocai et al 2009) • Dissolved carbon is most labile and indicative component of soil C reservoir • Highest rates of warming and permafrost degradation • Highest sensitivity of ecosystem processes to ongoing climate change • Little is known about behavior of dissolved carbon in arctic 23 and subarctic watersheds Global change: permafrost degradation and an increase of active layer thickness Monitoring sites By 2091-2100, permafrost extent will be decreased 3075% and active layer thickness increased about 55-125 cm, compared to 1991-2010 (Park and Walsh 2013, EGU General Assembly) Implications for C export: Higher retention times in soil (DOC negative) Higher mineralization rates (DIC, pCO2 positive) Higher weathering rates (DIC positive) Positive trend in ALT depth Negative trend in freezing depth IPCC 2007, 24 from Frauenfeld et al 2004 Global change: hydrology Eurasian river annual runoff to the Arctic Ocean tends to increase for ca. 2.0 km3/year/year (Peterson et al 2002, Science) Implications for C export: causes are debatable, but C export is considered to be increased (e.g. Gordeev and Kravchishina 2009) 25 Global change: vegetation Figure from Dolman et al 2012, Biogeosciences Changes and their effects on C export: Net ecosystem productivity (likely +) Northward shift of vegetation zones (likely +) Desertification in Eastern and Central Siberia (-) Shortened Fire Return Interval (-) 26 Studies of projected changes on riverine C export • Long-term monitoring data • Space-for-time approach Central Siberian Plateau: RFBR-CRDF RUG1-2980-KR10 “Megaprojects”, RSF Circum-polar studies: Yenisey River basin: Arctic-GRO (PARTNERS), “Megaprojects”, RSF project project Rosgydromet data (Gordeev et al 1996) 2005 -… 2010-2012, 2013-2015… 27 Long-term monitoring: Rosgydromet R-ArcticNet - A Database of Pan-Arctic River Discharge http://www.r-arcticnet.sr.unh.edu/v4.0/main.html 28 General characteristics of Arctic rivers 11% of global freshwater input to the world ocean >10% of global C export to the world ocean Siberian sector: Q, km3/a DOC, Tg/a DIC, Tg/a Tg = 1012 g Ob’ Yenisey Lena Kolyma sum 427 4.12 6.15 636 4.65 6.66 581 5.68 5.43 111 0.82 0.70 1755 15.3 18.9 % of 6 major % of total Arctic rivers to the AO 77.6 84.3 67.0 35.1 44.8 Source: Gordeev et al 1996, 2009, Raymond et al 2007, Striegl et al 2007, Cai et al 2008, Cooper et al 2008, McGuire et al 2009, Holmes et al 2011, Prokushkin 29 et al 2011, Amon et al 2011 Recent estimates of carbon in rivers… Dolman et al. 2013 Biogeosciences (based on Meybeck et al., 2006) East Kara sea (Yenisey) West Kara sea (Ob) 13% 19% East Laptev sea (Kolyma) West Laptev sea (lena) ! 17% 28% 35% 39% DIC flux DIC flux DIC flux DOC flux DOC flux DOC flux DOC flux POC flux POC flux POC flux POC flux DIC flux 31% 56% 22% 61% 42% 37% 7.7 TgC/a 11.1 TgC/a 9.6 TgC/a 2.4 TgC/a McGuire et al. 2009, Ecol Monogr (based on numerous sources) Yenisey 1% Ob 4% Kolyma Lena 6% ! 16% 33% 29% 41% 35% 59% 58% 67% 51% 9.9 TgC/a 12.8 TgC/a 9.9 TgC/a 2.3 TgC/a 30 Basin characteristics Amon et al 2011, GCA 31 Seasonality of Hydrology and C fluxes in major Siberian Rivers 60 freshet summer-fall winter 90000 60000 3 Discharge, km /month 70000 R-ArcticNet 50000 40000 30000 50 % of annual runoff 80000 Ob' Yenisey Lena Kolyma 40 30 20 20000 10 10000 0 Feb Mar Apr May Jun Jul Aug Sep Oct Nov 0 Dec Ob' Yenisey Lena 70 Kolyma spring summer-fall winter 60 % of annual DOC flux Jan 50 40 30 20 10 0 Ob’ Welp et al 2005, GRL Yenisey Lena Kolyma Freshet (May-June) water flux: 30-50% C flux: 30-60% Holmes et al 2011 Estuaries and Coasts 32 Major Arctic Rivers Dissolved C: annual values 8 30 а) 25 DIC b) DOC 15 10 (gC m-2 a-1) Annual C export 6 20 4 2 Yukon Mackenzie Аmguema Kolyma Yana Indigirka Lena Khatanga Ob Yenisey Tembenchi Nidym Kochechum P.Tunguska* N. Tunguska** Yukon Mackenzie Аmguema Kolyma Yana Indigirka Lena Olenek Anabar Yenisey Khatanga Ob Tembenchi Nidym Kochechum P.Tunguska* 0 Olenek 0 Anabar 5 N. Tunguska** (mgС l-1) Mean annual C concentrations Gordeev et al 1996, 2009, Raymond et al 2007, Striegl et al 2007, Cai et al 2008, Cooper et al 2008, McGuire et al 2009, Holmes et al 2011, Prokushkin et al 2011, Amon et al 2011 Rivers of Arctic Ocean basin Rivers of Arctic Ocean basin Decreasing trend of concentrations and annual fluxes from West to East, specifically for DIC Limitation for response prediction: -Data quality -Different parent materials -Disturbances 33 Case study in Western Siberia: Ob’ basin (Frey and Smith 2005, GRL) Projected “2.7–4.4 Tg yr-1 increase in terrestrial DOC flux (from 9.2 Tg yr-1 to 11.9–13.5 Tg yr-1) from West Siberia to the Arctic Ocean by 2100. These estimates are in fact conservative if DOC concentrations peak during spring flood. Furthermore, if the recently observed increases in Siberian precipitation [Serreze et al., 2000; Frey and Smith, 2003] and river discharge [Peterson et al., 2002; Wu et al., 2005] continue, even larger increases are likely.” 34 Central Siberian River basins and study goals Yenisey River basin Central Siberian Plateau river basins Gradients: Climate, permafrost, vegetation, parent rocks Gradients: Climate, permafrost, vegetation, SIMILAR parent rocks (Siberian basalts) Stream basins within Nizhnyaya Tunguska river watershed Gradients: Fire history (burned 0, 4, 20, 50 and >100 years), permafrost, vegetation, size, SIMILAR: climate, parent rocks (Siberian basalts) 35 Yenisey River basin characteristics 36 100 5 permafrost Total C flux 80 4 60 3 40 2 20 1 0 TC flux g/m2/June Continuous permafrost, % Yenisey basin: DOC and DIC 0 -12 -10 -8 -6 -4 -2 0 MAAT, oC Cryohydromorphic landscapes of 61-65oN latitude zone produce elevated C fluxes 40 Dissolved carbon [mgC/l] 35 30 25 DIC 20 15 10 DOC 69о45'30.6'' Енисей 66о25'7.41'' 58о01'01.3'' Енисей 65о36'04.6'' 51o42' Енисей 63о15'09.7'' 51o26' 0 60о54'18.1'' 5 Енисей Енисей Енисей Енисей Енисей sampling stations 37 Total C flux in Yenisey River from South to North shows substitution of IC to OC се й е Ан 1 га ра Бо ль Кем шо ь й Пи т К Га ас ре вк а Во Сы ро м го вк По Ду а дк бч ам ен Ени ес на с е яТ йе ун 2 гу ск а Ба хт а Ел о Ен гуй ис ей 3 Су ха Ко я Т мс ун а М гус ир ка ое д Ен иха ис ей Ни жн Тур 4 яя ух Т у ан нг у Ер ска ач и Се мо ве рн а Ле я тн Ку я я ре й Ен ка ис е р. й 5 Иг а Гр рка ав ий Ха ка нт ай к Фо а ки Ду на М д ин ал к Бо ая а л ь Хе ша та я Хе Су Ени та ха с я Д ей уд 6 ин ка Ен и pCH4 [ppm] 1000 К ль е м шо ь й Пи т Ка Га с ре вк а Во Сым ро го Ен вк а По исе Ду дк й б е ам 2 ( чес ен З на оти я Т но ун ) гу ск а Ба хт а Ел ог Ен уй ис ей 3 Су ха Ком яТ с ун а М гуск ир а ое ди Ен ха ис ей Ни 4 жн Тур яя уха н Ту нг ус Ер ка ач и Се мо ве рн ая Ле тн Ку я я ре йк р. Е а Иг ар нис ей ка 5 (С та р Гр ая ) ав ий Ха ка нт ай к Фо а ки Ду на ди М ал нка Бо ая Х ль е ша та я Хе т Су Ени а с ха я Д ей уд 6 ин ка Бо се й е Ан 1 га ра Ен и pCO2 [ppm] Yenisey basin: dissolved gases 4000 3500 3000 2500 2000 1500 1000 500 0 100 10 1 0.1 River flows showed supersaturation by GHG (relative to atmospheric levels), reflecting large flux of C to the Arctic Ocean in gaseous form 38 River basins of Central Siberian Plateau 39 Prokushkin et al 2011, ERL Hydrology of rivers of Central Siberian Plateau 25000 Freshet (May-June) water flux: >60% Daily discharge, m3/s 20000 15000 10000 5000 01.10.12 01.07.12 01.04.12 01.01.12 01.10.11 01.07.11 01.04.11 01.01.11 01.10.10 01.07.10 01.04.10 01.01.10 01.10.09 01.07.09 01.04.09 01.01.09 01.10.08 01.07.08 01.04.08 01.01.08 01.10.07 01.07.07 01.04.07 01.01.07 01.10.06 01.07.06 01.04.06 01.01.06 0 -12,0 NT -14,0 KO d18O -16,0 -18,0 1% a year -20,0 -22,0 -24,0 -26,0 1.10.05 29.5.06 24.1.07 21.9.07 18.5.08 13.1.09 10.9.09 8.5.10 3.1.11 31.8.11 Date Prokushkin et al 2011, ERL 40 Dissolved carbon in Central Siberia 50 Discharge Discharge [m3/s] 20000 DOC 45 DIC 40 35 15000 30 25 10000 20 15 5000 Concentrations [mgC/l] 25000 10 5 0 28.05.2005 10.10.2006 22.02.2008 06.07.2009 18.11.2010 01.04.2012 0 14.08.2013 Freshet (May-June) 55–71% for water runoff 64–82% for DOC 37–41% for DIC Temporal and Spatial variation of DOC, DIC: Dominance of snowmelt season and increased flux in wet years Large differences in amounts of DIC and DOC among rivers (for DIC causes are still questionable) 41 8 30 а) 25 DIC b) DOC 15 10 (gC m-2 a-1) Annual C export 6 20 4 2 Yukon Mackenzie Аmguema Kolyma Yana Indigirka Lena Khatanga Ob Yenisey Tembenchi Nidym Kochechum P.Tunguska* N. Tunguska** Yukon Mackenzie Аmguema Kolyma Yana Indigirka Lena Olenek Anabar Yenisey Ob Tembenchi Nidym Kochechum P.Tunguska* N. Tunguska** 0 Olenek 0 Anabar 5 Khatanga (mgС l-1) Mean annual C concentrations Dissolved carbon in rivers of Central Siberian Plateau Rivers of Arctic Ocean basin Rivers of Arctic Ocean basin 25 20 y = 4.2629e 0.0132x R2 = 0.7721 DOC DOC concentrtions, mgC/l Positive correlation with MAAT, forested areas (Prokushkin et al 2011, ERL) DOC/DIC concentrations, mgC/l Decreasing trend of concentrations and annual fluxes from South to North 25 A y = 1.8607x + 29.371 2 R = 0.6577 15 y = 1.5256x + 20.032 R2 = 0.89 10 DIC 5 B 20 15 10 5 0 0 -12 -10 -8 -6 MAAT, oC -4 -2 0 0 20 40 60 80 Conifer forest coverage, % 100 42 120 Coniferous forests are the major source of DOC! 1000 Lignin S8 [ug/L] 100 NT 10 KO Ob' Yenisey Lena Kolyma 120000 1 300 0 4.0 80000 200 60000 150 40000 100 20000 50 2.0 0 0 28.6.03 14.1.04 1.8.04 17.2.05 Date 5.9.05 24.3.06 10.10.06 28.4.07 10 15 NPOC [mgC/L] 20 25 NT 1.0 10.12.02 5 Data: ArcticGRO, PARTNERS (http://www.arcticgreatrivers.org/data.html) Prokushkin et al unpublished 3.0 SUVA (m/l/mgC) 250 Sig8. ng/l Discharge, m3/s Q lignin 100000 KO 0.0 0.01 0.1 1 Discharge (m3/s) 10 100 43 DOC composition (unexplained patterns): Pyr-GC/MS-IRMS, 13C NMR CP MAS data 60 Anaheim lake (USA) Phenolics Proteinaceous 40 Alkylaromatics NT 03.08.2008 30 NT 28.08.2009 20 NT 03.06.2010 10 NT 19.07.2010 0 21-May 11-Jun 2-Jul 23-Jul 13-Aug 3-Sep NT 16.08.2010 Date NT 15.09.2010 350 300 250 200 150 100 50 0 -50 -100-150 chemical shift (ppm) -25 -26 -27 13 C [‰] Relative amount [%] Carbohydrates 50 KO 01.06.2008 African swamp -28 KO 28.08.2009 -29 -30 -31 KO 09.06.2010 -32 2-Methoxy-phenol Ethybenzen 2,4-Pentadienal -33 -34 20-May 17-Jun 15-Jul 12-Aug KO 19.07.2010 KO 16.08.2010 9-Sep Date KO 15.09.2010 300 250 200 150 100 50 0 -50 -100-150 chemical shift (ppm) • Surprisingly little seasonal and geographic variation in riverine DOM composition • Large temporal changes in 13C signature of individual compounds 44 Dissolved GHG 3500 [CO2] ugC/l 3000 2500 2000 1500 1000 500 0 5 31.05.12 20.06.12 10.07.12 30.07.12 19.08.12 08.09.12 28.09.12 [CH4] ugC/l 4 3 2 1 0 31.05.12 Kochechum N Tunguska 20.06.12 10.07.12 30.07.12 19.08.12 08.09.12 28.09.12 River waters are supersaturated with GHG Dissolved GHG is important portion in total C flux (10% of total DC) 45 Future of C export from Central Siberian Plateau N Tunguska River: the Southern part of Central Siberian Plateau Kochechum River: the Northern part of Central Siberian Plateau Only projected increase in water flux to 2100 (e.g. 0.33 km3/year/year for N Tunguska River) may almost double terrestrial C export to rivers Together with an increase in NEP/terrestrial C accumulation of Northern territories it may increase total C flux up to 700% of current values (e.g. Gordeev and Kravchishina, 2009, Frey and Smith, 2005) Prokushkin et al 2011, Doklady Earth Sciences 46 DOC behavior concept: latitude DOC concentration [mgC/l] Boreal deciduous conifer forests Evergreen taiga and mixed boreal forests Forest-tundra, tundra High labile C Hydromorhism Permafrost Climate change Low productivity Low labile C Mineralization Retention in soil Mineralization 50 55 60 65 Latitude [oN] 70 75 Gymnosperm vegetation (the middle of boreal belt) is the primary source of DOC in Arctic rivers (A. Myers-Pigg et al submitted). 47 DOC/DIC/pCO2 behavior 100% 90% DIC 70% 60% DIC/p CO2 [mgC/l] DIC/DOC proportion 80% Climate change 50% 40% 30% DOC 20% 10% 0% Freshet Seasonal changes: Summer-fall Winter 50 55 60 65 70 75 Latitude [oN] Retention in soil, DOC mineralization and rock weathering rates tend to increase Result: substitution of DOC for DIC in total carbon flux (TC changes might be negligible (Striegl et al., 2005, 2007)) 48 Wildfire effects ca. 1% of territory burned annually MODIS (modeled GPP) Major Siberian Rivers: Central Siberian streams Fire year of 2003 burned 4, 20, 65 and >100 years ago Central Siberian Rivers Fire scars demonstrate low NPP: territories have potentially higher DOC production at no fire scenario 49 2013… July 20, 2013 August 6, 2013 35 30 NPOC SO4 30 25 25 15 15 SO4, mg/l NPOC, mgC/l 20 20 10 10 5 5 0 6.5.13 0 26.5.13 15.6.13 5.7.13 25.7.13 14.8.13 3.9.13 23.9.13 13.10.13 Date 50 Stream C fluxes in post fire chronosequence Changes in DOC, SUVA, DIC and specific conductivity (SC) of streams draining watersheds of different fire history. Note log scale for SC. Parham et al, 2013, submitted to Biogeochemistry Fires combusting OM and deepening the ALT - decrease DOC release from basins, - increase the release of DIC and other inorganic solutes - change in DOM composition (e.g. lower aromaticity of released DOC) Recovery of ecosystem structure in ca. 50 years after a fire coincides with the recovery of stream C fluxes 51 Pyrogenic carbon (dissolved black carbon, DBC) is intrinsic component of Siberian riverine DOC Nizhnyaya Tunguska River 25 1000 800 15 600 10 400 5 200 0 0 J F J J 2006 A S O N D Q 1000 BC 800 12 10 600 8 400 6 4 200 y = 0.0229x - 0.1757 R2 = 0.8601 0 0 J F M A M J J A S O N D 2006 0.3 DBC concentrations in rivers of Central Siberian Plateau. Prokushkin et al, unpublished 0.2 0.1 0.0 0 5 10 15 NPOC [mgC/l] 20 25 30 DBC versus DOC concentrations of Siberian rivers. Myers-Pigg et al 2013, ASLO meeting 52 BC-BPCA (mgC/l) 3 Discharge (1000 m /s) M 2 0.4 BC-BPCA [mgC/l] A b 14 0.5 M Kochechum River 16 DBC versus DOC concentrations of global rivers. Jaffé et al 2013, Science BC-BPCA (mgC/l) 20 3 Discharge (1000 m /s) a Indicators of permafrost degradation 1000 N10 Cl- (mg/l) 100 10 N2 N15 1 N13 N9 N14 0.1 0.01 1 10 100 1000 10000 Basin area (km2) 100000 1000000 Evaporite signal as NaCl/CaCl2 appeared in river/stream waters through “through taliks” and wildfires may accelerate this process Parham et al, 2013, Biogeochemistry 53 Wildfire effect Implication for C export: • Combustion products of terrestrial OM constitutes up 8% of DOC in Siberian rivers • Combustion of C source leads to decreased DOC production in terrestrial ecosystems and lower release to rivers • Deepen active layer leads to higher retention of DOC in soils and lower DOC release, but higher mineralization and weathering rates cause elevated DIC flux • DOC flux from large Siberian rivers can be potentially larger with no fire scenario 54 Conclusions • Rivers draining Siberia demonstrate significant potential to increase the release of terrestrial carbon to the Arctic Ocean. Increased hydrological C losses are projected through: (i) enhancement of temperature-controlled DOC, DIC, POC and CO2 production processes within watersheds; (ii) raised precipitation, thereby increasing C mobilization from organic-rich layers; (iii) introduction of a new source of C as NEP increases/vegetation shifts northward and (iv) release of old C from degrading permafrost Increased DOM (C,N and P) input may significantly change NPP in river, estuarine and ocean ecosystems Dry scenario of warming in high latitudes undoubtedly leads to decreased terrestrial C export due to: • inhibition of DOC production in terrestrial ecosystems and less DIC and pCO2/pCH4 transport • shorten fire return interval, removing the source of OC in terrestrial ecosystems 55 Thank you for attention! Acknowledgements Thanks all colleagues from IF SB RAS, GET-CNRS, MPI-BGC, TAMUG, Uni Hannover, FFPRI and others for joint field and laboratory works and constructive discussions. 56 Themes for working groups • 1. Compare C concentrations and fluxes by major Siberian rivers: spatial patterns and different estimates... • 2. Calculate flow-weighted mean annual C concentrations for Siberian rivers. • 3. Analyze elements bound to DOC • 4. Calculate seasonal C fluxes 57
© Copyright 2026 Paperzz