Bounds for the expected value of one-step processes Ádám BESENYEI [email protected] Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Budapest & Numerical Analysis and Large Networks Research Group, Hungarian Academy of Sciences Joint work with Benjamin Armbruster & Péter L. Simon 10QTDE Szeged, July 3, 2015 Outline 1. Formulation of the problem • One-step processes • Mean-field approximation and accuracy 2. Towards the main result • Moments of the process • Approximating system • Main result, tools and idea of the proof 3. Applications • SIS epidemic propagation • SIS epidemic with airborne infection • Voter model Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 0 / 15 Setting • Continuous-time Markov process X(t) with state space {0, 1, . . . , N }. • One-step or Birth–Death process: transition from state k is possible only to state k − 1 at rate ck and to state k + 1 at rate ak (and let a−1 = aN = c0 = cN +1 = 0). ak−1 ak−2 ak+1 aN −1 ak a0 ... 0 c1 k−1 ck−1 ck ... k+1 k ck+2 ck+1 N cN • Example: SIS epidemic or voter model. • Probability distribution of X(t): pk (t) = P [X(t) = k]. ⇓ • Time-evolution is described by Kolmogorov or master equation: p0k = ak−1 pk−1 − (ak + ck )pk + ck+1 pk+1 Ádám BESENYEI (ELTE) Bounds for the expected value. . . (k = 0, . . . , N ). 10QTDE Szeged, July 3, 2015 1 / 15 Expected value of the process Expected value of the process 3 0 1 N≤ Numerical solution of the master equation Approximation of the process tic o pt ∞ ym → N Mean-field approximation as Ádám BESENYEI (ELTE) Bounds for the expected value. . . Monte Carlo simulation fo ra ll N Upper and lower bounds 10QTDE Szeged, July 3, 2015 2 / 15 Accuracy of the mean-field approximation • T. G. Kurtz (1970, 2005): density-dependent Markov processes, stochastic convergence of the exact stochastic to the deterministic mean-field model. (Tools: Trotter-type results, martingale theory.) • A. Bátkai, I. Z. Kiss, E. Sikolya, P. L. Simon (2012): uniform convergence of the expected value to the mean-field model, precisely, if y1 (t) = E[X(t)/N ] is the expected value of the scaled process and y(t) is the mean-field approximation, then CT |y1 (t) − y(t)| ≤ (t ∈ [0, T ]). N (Tools: operator semigroups.) • B. Armbruster, E. Beck (2015): SIS epidemic model on a complete graph, upper and lower bounds for y1 . (Tools: elementary ODE.) • B. Armbruster, Á. B., P. L. Simon (2015): extension of the results of Armbruster & Beck to a wider class of Markov chains. Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 3 / 15 Formulation of the main result: ODEs for the moments • Transition rates are density dependent polynomials: m m X X ak ck = Aj (k/N )j and = Cj (k/N )j N N j=0 j=0 such that A(1) = 0 and C(0) = 0 hold. ⇓ • ODEs for the scaled moments: yn = E[X(t)/N ] (n = 0, 1, 2, . . . ). y10 = m X Dj yj , j=0 m X yn0 = n Dj yn+j−1 + j=0 where Dj = Aj − Cj , 0 ≤ Rn ≤ Ádám BESENYEI (ELTE) 1 Rn N (n = 2, 3, . . . ), m X n(n − 1) c, and c = (|Aj | + |Cj |). 2 j=0 Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 4 / 15 Formulation of the main result: approximations • Mean-field equation: we approximate yn ≈ y1n , then by y10 = y0 = m X m X Dj yj , j=0 Dj y j , y(0) = y1 (0). j=0 • ODEs for the powers of y: (y n )0 = n m X Dj (y n ) n+j−1 n , y n (0) = y1n (0) (n = 2, 3, . . . ). j=0 • Approximating system for the moments: z10 = m X D j zj , j=0 m X zn0 = n z1 (0) = y1 (0), n+j−1 n Dj z n j=0 + n(n − 1) c, zn (0) = y1n (0) 2N (n = 2, 3, . . . , m), where we let z0 = 1. Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 5 / 15 Main result Theorem (B. Armbruster, Á. B., P. L. Simon, 2015) Assume that D0 ≥ 0, D1 ∈ R and Dj ≤ 0 for j ≥ 2, and let y1 (0) = u ∈ (0, 1] be fixed. Then for the solutions y of the mean-field equation and z1 of the approximating system, it holds that z1 (t) ≤ y1 (t) ≤ y(t) for t ≥ 0 and for every T > 0 there exists a constant CT > 0 such that CT |z1 (t) − y(t)| ≤ in [0, T ]. N Idea of the proof. Smart application of three familiar inequalities. Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 6 / 15 Tools of the proof: familiar inequalities • Comparison: If f : [0, T ] × [a, b] → R is Lipschitz continuous in its second variable, then ) x01 (t) = f (t, x1 (t)), x1 (0) = x0 , =⇒ x2 (t) ≤ x1 (t) for t ∈ [0, T ]. x02 (t) ≤ f (t, x2 (t)), x2 (0) ≤ x0 • Peano’s inequality: Assume that f1 , f2 : [0, T ] × [a, b] → R are Lipschitz continuous in their second variable with Lipschitz constant L and |f1 (t, x) − f2 (t, x)| ≤ M in [0, T ] × [a, b] with some M . Then x01 (t) = f1 (t, x1 (t)), x1 (0) = x0 , ) x02 (t) = f2 (t, x2 (t)), x2 (0) = x0 M Lt e − 1 for t ∈ [0, T ]. L • Jensen’s inequality: If X is a random variable and ϕ : R → R is a convex function, then =⇒ |x1 (t) − x2 (t)| ≤ ϕ(E[X]) ≤ E[ϕ(X)]. Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 7 / 15 Flow of the proof Comparison Step 1: a priori bounds independent of N Step 2: comparison of y and y1 Step 3: comparison of yn , y n and zn Step 4: comparison of y1 and z1 Ádám BESENYEI (ELTE) Comparison ison Compar Jensen Peano Comparison Peano Bounds for the expected value. . . Lipschitz continuity guaranteed y1 (t) ≤ y(t) (t ∈ [0, T ]) yn (t), y n (t) ≤ zn (t) (t ∈ [0, T ], n ≥ 2) CT,n N (t ∈ [0, T ], n ≥ 2) |y n (t) − zn (t)| ≤ z1 (t) ≤ y1 (t), CT |y1 (t) − z1 (t)| ≤ N 10QTDE Szeged, July 3, 2015 8 / 15 Application: SIS epidemic propagation • Random d-regular graph with N nodes in two possible states: S S = Susceptible I I S I S I S I = Infected infection rate: τ I I recovery rate: γ I S • State space ≈ {0, 1, . . . , N } the number of infected nodes. • Average number of SI edges is (N − k) · d Nk . ⇓ • Transition rates are ak = τ d(N − k) Ádám BESENYEI (ELTE) k and ck = γk. N Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 9 / 15 Application: SIS epidemic propagation • Mean-field equation: y 0 = (τ d − γ)y − τ dy 2 , y(0) = i/N. • Approximating system: z10 = (τ d − γ)z1 − τ dz2 , z1 (0) = i/N, 2τ d + γ 3/2 , z20 = 2(τ d − γ)z2 − 2τ dz2 + N z2 (0) = (i/N )2 . expected value 0.6 0.5 Figure: SIS epidemic propagation. Parameters: γ = 1, τ = 0.1, d = 30. Curves: y; z1 for N = 106 ; 7 z1 for N = 10 . 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 time Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 10 / 15 Application: SIS epidemic with airborne infection k • Infection also due to external forcing: ak = τ d(N − k) + β(N − k). N • Mean-field equation: y 0 = β + (τ d − β − γ)y − τ dy 2 , y(0) = i/N. • Approximating system: z10 = β + (τ d − β − γ)z1 − τ dz2 , z20 = z1 (0) = i/N, c 3/2 + 2(τ d − β − γ)z2 − 2τ dz2 + , z2 (0) = (i/N )2 . N 1/2 2βz2 c = β + |τ d − β| + τ d + γ expected value 0.6 0.5 Figure: SIS with airborne infection. Parameters: N = 100, γ = 1, τ = 0.05, d = 20, β = 1. Curves: y; z1 ; y1 . Inset: stationary part of the curves. 0.62 0.4 0.615 0.61 0.3 0.605 0.2 0.1 0 0.6 2 1 2.5 2 3 3.5 3 4 4 time Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 11 / 15 Application: voter model • Two opinions, 0 and 1 are changing: 1 0 1 0 rate: τ 1 1 0 0 rate: γ ⇓ • Transition rates are ak = τ d(N − k) • Mean-field equation: k N −k and ck = γdk . N N y 0 = (τ d − γd)(y − y 2 ), y(0) = i/N. • Approximating system: z10 = (τ d − γd)z1 − (τ d − γd)z2 , z1 (0) = i/N, 2τ d + 2γd 3/2 , z20 = 2(τ d − γd)z2 − 2(τ d − γd)z2 + N Ádám BESENYEI (ELTE) Bounds for the expected value. . . z2 (0) = (i/N )2 . 10QTDE Szeged, July 3, 2015 12 / 15 Application: voter model 1 expected value N = 107 0.8 0.6 N = 105 0.4 N = 104 Figure: Voter-like model: case D2 < 0. Parameters: γ = 0.1, τ = 0.2, d = 10. y; z1 . Curves: 0.2 0 0 2 4 6 8 10 time 0.1 −4 expected value 1 0.08 x 10 0.8 0.6 0.06 0.4 0.2 0.04 0 7 8 9 10 0.02 0 0 2 4 6 8 Figure: Voter-like model: case D2 > 0. Parameters: N = 200, γ = 0.2, τ = 0.1, d = 10. Curves: y; z1 ; y1 . Inset: stationary part of the curves. 10 time Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 13 / 15 Further directions • Relaxing the sign condition: convexity arguments? • Improving the lower bound with modified approximating systems: 1. z10 = D0 + D1 z1 + D2 z2 . 1/2 2. z20 = 2D0 z2 expected value 0.6 3/2 + 2D1 z2 + 2D2 z2 2τ d + γ . N z22 /z1 Figure: Lower bounds of the SIS model. Parameters: N = 100, γ = 1, τ = 0.1, d = 30. Curves: y; y1 ; z1 in case 1; z1 in case 2. 0.4 q=1 0.3 0.2 0 0 + q = 0.5 0.5 0.1 q/2 z2 z12−q q=2 1 2 3 4 5 time Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 14 / 15 References B. Armbruster, E. Beck, An elementary proof of convergence to the mean-field equations for an epidemic model, arXiv:1501.03250 B. Armbruster, Á. Besenyei, P. L. Simon, Bounds for the expected value of one-step processes, arXiv:1505.00898 A. Bátkai, I. Z. Kiss, E. Sikolya, P. L. Simon, Differential equation approximations of stochastic network processes: an operator semigroup approach, Netw. Heter. Media, 7 (2012), 43–58. S. N. Ethier, T. G. Kurtz, Markov Processes: Characterization and Convergence, John Wiley & Sons Ltd, New York, 2005. T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Prob., 7 (1970), 49–58. Ádám BESENYEI (ELTE) Bounds for the expected value. . . 10QTDE Szeged, July 3, 2015 15 / 15 Thank you for your attention!
© Copyright 2026 Paperzz