Reducing Vertical Transport Over Complex Terrain in Photochemical Grid Models Chris Emery, Ed Tai, Ralph Morris, Greg Yarwood ENVIRON International Corporation Novato, California 8th Annual CMAS Conference Chapel Hill, NC October 20, 2009 Template Introduction • Regional photochemical models over predict springtime ozone throughout the inter-mountain western U.S. – CMAQ: 2002 WRAP – CAMx: 2005 FCAQTF – Typically ~20 ppb higher than remote measurements • Results from stratospheric ozone levels in top model layer – Enters CMAQ/CAMx via lateral boundary conditions (BCs) Derived from output of GEOS-CHEM global chemistry model • Stratospheric ozone is too efficiently transported to surface over complex/high terrain – Rockies, Sierras, Cascades Template 2 Introduction 2002 CMAQ Annual Max Daily 8-hour Ozone Template 3 Introduction • WRAP CMAQ and FCAQTF CAMx runs use 19 layers 16000 14000 12000 Height MSL (m) – Top layer spans 8-15 km – 3 to 5 layers above PBL – MM5 run for 34 layers 19-layer Structure 10000 8000 6000 4000 2000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 • WRAP CMAQ and FCAQTF CAMx runs use 2002 BCs 20 21 – Ozone in layer 19 range 100-300 ppb Ozone [ppb] Grid Cell 300 280 260 240 220 200 180 160 140 120 100 80 60 40 Max (Layer 19) Max (Layer 18) Max (Layer 17) Max (Layer 16) 1 Template 31 61 91 121 151 181 211 Julian Date 241 271 301 331 361 4 Introduction • Contributors to high ozone over the Rockies: – High surface altitudes (2-3 km MSL) Surface is closer to stratosphere – Deep PBL mixing and convection (through 4-6 km MSL) Couple surface to mid-troposphere – Vigorous resolved vertical circulations (through 4-8 km MSL) Transport layer 19 ozone downward • Solutions we’ve identified in this study: – Coarse vertical grid structure (more aloft layers help) – GEOS-CHEM BC interface (improved interpolation helps) – Vertical advection technique (alternative approach helps) Template 5 Approach • Test bed: CAMx 2005 FCAQTF application – Inert, ozone only, no sources/sinks – Single 12-km regional grid covering western U.S. – Track ozone IC/BC over April 2005 Original IC/BC from 2002 GEOS-CHEM extraction (WRAP) New IC/BC from 2005 GEOS-CHEM extraction • Test and evaluate several ideas: – – – – – Template Modify input wind fields (smoothers, filters, etc.) Improve treatment of CAMx top boundary condition Test alternative vertical grid structures/resolution Improve GEOS-CHEM interface technique Modify CAMx vertical advection solver 6 Modify Input Winds • Original Rationale – Vertical velocity derived from input horizontal winds CAMx and CMAQ “yamo” approaches are similar – Filter strong divergences in input winds to calm vertical velocity – Apply aggressively to upper layers only – Test on 19-layer structure and compare to un-modified case • Three approaches were investigated – Smoother-desmoother approach of Yang and Chen (2008) – Divergence minimization from CALMET (Scire et al., 2000) – Mass filter of Rotman et al. (2004) Template 7 Modify Input Winds • Results – Minor (~10 ppb) reductions in peak April ozone – Troubling effects on vertical velocity profiles in upper layers – CAMx surface ozone reductions not caused by improved vertical advection Instead by artificial dilution of top layer ozone Caused by CAMx arbitrary top boundary condition (70 ppb) • CAMx was revised to use “zero-gradient” top boundary conditions for all subsequent tests – Top BC assigned from top layer concentration (a la CMAQ) – Removes artificial dilution of top layer – BUT increases surface ozone Template 8 More Model Layers • Reprocess input meteorology, no smoothers/filters – Zero-gradient top boundary condition – Full 34 MM5 layer structure Runs ~2x slower than 19 layers, 10-15 ppb ozone reduction – Intermediate 22 layers to improve resolution aloft Runs ~1.1x slower than 19 layers, ~10 ppb ozone reduction 19-layer Template 22-layer 34-layer 9 2005 Day-Specific BCs • New 2005 GEOS-CHEM BCs recently became available – Zero-gradient top boundary condition – Much higher stratospheric ozone (occasionally ~1000 ppb) Higher surface ozone, different spatial patterns – NOTE CHANGES TO COLOR SCALE! 19-layer 22-layer Template 34-layer 10 2005 Day-Specific BCs • Issues found in GEOS-CHEM interface program – High ozone bias in topmost layers for coarse vertical layer structures • We improved the vertical layer-weighting technique – Figure below shows new ozone profiles Vertical Profile of Ozone, 19 vs 34 layers GEOSCHEM Run 4, 19 layers Run 4, 34 layers Height above ground[m] 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Conc Template 11 Improved 2005 BCs • Improved vertical weighting technique – – – – Template Zero-gradient top boundary condition Lower stratospheric ozone, lower surface ozone Ozone still higher than with 2002 BCs NOTE CHANGES TO COLOR SCALE! 19-layer 22-layer 34-layer 12 Revised Vertical Advection • Revised vertical velocity calculation to remove downward • bias Revised vertical solver to be consistent – Zero-gradient top BC, improved lateral BC – 40-70 ppb reduction in April maximum ozone 19-layer BASE MODIFIED ADVECTION Template 13 Revised Vertical Advection • Comparison of 19, 22, and 34-layer configurations – NOTE CHANGES TO COLOR SCALE! 19-layer Template 22-layer 34-layer 14 Full Photochemical Run • Run CAMx on 36/12/4-km FCAQTF grids for April and • July 2005 Compare 3 runs: – Original 19-layer, 2002 BCs*, original vertical advection – New 22-layer, 2005 BCs, original vertical advection – New 22-layer, 2005 BCs, revised vertical advection • Look at monthly maximum 8-hour ozone fields on 12 and 4 km grids *2002 BCs: stratospheric ozone levels removed in layer 19 Template 15 Full Photochemical Run April 2005, 4-km Grid 19-layer 2002 BCs Orig CAMx 22-layer 2005 BCs Orig CAMx 22-layer 2005 BCs Revised CAMx -150 -150 -150 -200 -200 -200 68 -250 68 -250 60 59 63 -300 60 59 63 63 -300 64 -300 64 -350 -350 -350 -400 -400 -400 -450 -450 -450 -500 -500 -1150 -1100 -1050 -1000 -950 -900 -850 -800 -1100 -1050 -1000 -950 -900 -850 -800 max = 108 PPB 0 40 64 -500 -1150 max = 80 PPB Template 68 -250 60 59 50 60 70 75 80 85 -1150 -1100 -1050 -1000 -950 -900 -850 -800 max = 83 PPB 90 95 16 Full Photochemical Run April 2005, 12-km Grid 19-layer 2002 BCs Orig CAMx 22-layer 2005 BCs Orig CAMx 22-layer 2005 BCs Revised CAMx 600 600 600 400 400 400 200 200 200 0 0 0 -200 -200 -200 -400 -400 -400 -600 -600 -600 -800 -800 -800 -2200 -2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -2200 -2000 -1800 max = 83 PPB -1400 -1200 -1000 -800 -600 -400 -2200 40 50 60 70 75 80 -2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 max = 85 PPB max = 110 PPB 0 Template -1600 85 90 95 17 Full Photochemical Run July 2005, 4-km Grid 19-layer 2002 BCs Orig CAMx 22-layer 2005 BCs Orig CAMx 22-layer 2005 BCs Revised CAMx -150 -150 -150 -200 -200 -200 78 -250 78 -250 72 62 75 -300 72 62 75 75 -300 79 -300 79 -350 -350 -350 -400 -400 -400 -450 -450 -450 -500 -500 -1150 -1100 -1050 -1000 -950 -900 -850 -800 -1100 -1050 -1000 -950 -900 -850 -800 max = 83 PPB 0 40 79 -500 -1150 max = 80 PPB Template 78 -250 72 62 50 60 70 75 80 85 -1150 -1100 -1050 -1000 -950 -900 -850 -800 max = 85 PPB 90 95 18 Full Photochemical Run July 2005, 12-km Grid 19-layer 2002 BCs Orig CAMx 22-layer 2005 BCs Orig CAMx 22-layer 2005 BCs Revised CAMx 600 600 600 400 400 400 200 200 200 0 0 0 -200 -200 -200 -400 -400 -400 -600 -600 -600 -800 -800 -800 -2200 -2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -2200 -2000 -1800 max = 127 PPB -1400 -1200 -1000 -800 -600 -400 -2200 max = 129 PPB 0 Template -1600 40 50 60 70 75 80 85 -2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 max = 133 PPB 90 95 19 On-Going Work • Additional testing of modified CAMx for full photochemical/PM applications – Complete 2005 FCAQTF Application; evaluate ozone and PM – O&G projects in Rocky Mountains – Denver SIP modeling • CMAQ exhibits similar problems – EPA/ORD is working on a vertical advection modification See Young, Pleim, Mathur poster – Interact with ORD and OAQPS – Test improvements using a western U.S. CMAQ database Template 20 Acknowledgement • The authors acknowledge funding support from the American Petroleum Institute (API) • Questions… Template 21
© Copyright 2026 Paperzz