Document

Supporting Information Figs S1–S10 & Table S1
W
D307
D207
D321
2D Stress: 0.41
D02-061
D02-089
2D Stress:
2D Stress: 0.41 Mef selected
Mef
2012
20110.41
D02-062
D02-090
D80
D227
D80 D02-063
D227
D02-091
D260
D139
D83
D258
D83
D258
D83
D311
D02-064
D02-092
D110
D93
D260
D93
D260
D214
D227
D02-065
D02-093
D94
D263
D94
D263
D125
D167
D125
D307
D110D02-066
D277
D02-094
D161
D139
D311
D125D02-067
D283
D02-095
D263
D220
D161
D321
D139
D307
K
D02-071
D02-096
D167
D334
D161
D311
D338
D80
D283
D207
D338
D02-098
D167D02-072
D321
D94
D214
W
D207D02-075
D334
D02-099
D222
D220
K
D214
D338
D258
D02-076
D02-100
D334
D222
D220
W
D93
D02-101
D222D02-078
K
D02-079
D02-102
D02-080
D02-103
D02-082
D02-104
Fig. S1 The non-metric multi-dimensional scaling of 24 double haploid (DH) lines (colored in grey) in the
D02-083
D02-105
background of 225 DH lines (colored in blue) of wheat Triticum aestivum
varieties, Westonia
and Kauz,
D02-084
D02-106
based on 195 simple sequence repeat (SSR) markers and two Rht1-B1
and Rht2-D1 gene
markers (2011).
Points that are close together represent samples that are genetically
similar, while points
that are far apart
D02-087
D02-107
are genetically divergent. In 2012, 21 DH lines were repeated. *W,
Westonia;
ᴼK,
Kauz.
D02-088
D02-108
D277
D02-110
D02-111
D02-112
D02-114
D02-115
D02-117
D02-119
D02-121
D02-124
D04-125
D04-126
D04-127
D04-128
D04-129
D04-130
D04-132
D04-133
D04-134
D04-135
2011
2012
15
Irrigated
Drought
a
10
Volumetric soil water content (v/v %)
a
5
Irrigated
Drought
10 cm depth
a
b
10 cm depth
a
a a
b
b
b b b
0
30 cm depth
30 cm depth
50 cm depth
50 cm depth
a
b
10
5
0
10
5
0
-10
0
10
20
30
Days after anthesis
40
50
-10
0
10
20
30
40
50
Days after anthesis
Fig. S2 Volumetric soil water content (v/v, %) at 10, 30 and 50 cm depth, respectively, in
drought experiments at Merredin field station in 2011 and 2012. The average of the days after
anthesis of all lines is presented. Closed circles, irrigated conditions; open circles, drought
conditions. The vertical bars represent SE. Values with the same letter are statistically not
different at P = 0.05.
2012
KN per main spike
TGW in main spike (g) GW in main spike (g)
2011
2
a
a
b
b
1
40
30
20
10
60
a
b
a
b
40
20
0
Irrigated
Drought
Irrigated
Drought
Fig. S3 The average reduction in core phenotypes. Grain weight per main spike (GW), thousand
grain weight (TGW) and seed number per main spike (KN) are shown in pooled selected double
haploid (DH) lines and their parental lines (wheat Triticum aestivum varieties, Westonia and Kauz)
under irrigated (closed bars) and drought (open bars) conditions at Merredin field station in 2011
and 2012. The vertical bars represent SE. Values with the different letter are significantly different
at P = 0.05.
Rafinose
1-Kestose
Maltose
6-Kestose
Neo-Kestose
Nystose
Bifurcose
Glucose
Fructose
Sucrose
ref
ref
1-KD1
1-KD2
1-KD3
1-KI1
5-KD1
5-KD2
5-KD3
5-KI1
5-KI2
5-KI3
ref
1-KI2
1-KI3
ref
5.00
10.00
15.00
20.00
5.00
25.00
10.00
15.00
20.00
25.00
ref
ref
6-KD1
6-KD2
6-KD3
6-KI1
6-KI2
6-KI3
ref
2-KD1
2-KD2
2-KD3
2-KI1
2-KI2
2-KI3
ref
5.00
10.00
15.00
20.00
5.00
25.00
10.00
15.00
20.00
25.00
ref
ref
7-KD1
7-KD2
3-KD1
3-KD2
3-KD3
3-KI1
3-KI2
3-KI3
ref
5.00
10.00
15.00
20.00
25.00
7-KD3
7-KI1
7-KI2
7-KI3
ref
5.00
10.00
15.00
20.00
25.00
ref
4-KD1
4-KD2
4-KD3
4-KI1
4-KI2
4-KI3
ref
5.00
10.00
15.00
20.00
25.00
Fig. S4 The accumulation and degradation of stem WSC components in wheat Triticum aestivum variety,
Kauz under drought and irrigated conditions from -4-41 d post anthesis (DPA). KD1-3, Kauz in three
replicates under drought; KI1-3,Kauz in three replicates under well-watered conditions. 1, -4 DPA; 2, 3
DPA; 3, 11 DPA; 4, 17 DPA; 5, 25 DPA; 6, 31 DPA; 7, 41 DPA.
(a)
10.0
Westonia
Sucrose concentration (% DW)
7.5
5.0
2.5
Irrigated
Drought
0.0
Kauz
7.5
5.0
2.5
0.0
-10
0
10
20
30
40
50
Days after anthesis
(b)
10.0
Westonia
Glucose concentration (% DW)
7.5
ab
a
5.0
ab
ab
ab
Irrigated
Drought
2.5
b
0.0
Fig. S5 The patterns of stem (sheath included) sucrose (a) and glucose
(b) concentrations in wheat Triticum aestivum varieties, Westonia and
Kauz under irrigated and drought conditions. The vertical bars
represent SE. Values with the same letter are statistically not different
at P = 0.05.
Kauz
7.5
a
5.0
ab
2.5
b
a
b
b
0.0
-10
0
10
20
30
Days after anthesis
40
50
Westonia
RIR2=0.801
RD2=0.807
1-FEH enzyme activity (nmol Fructose min-1g-1FW)
Kauz
RIR2=0.872
RD2=0.950
1-FEH enzyme activity (nmol Fructose min-1g-1FW)
6-Kestose concentration (% DW)
(b)
6-Kestose concentration (% DW)
Bifurcose concentration (% DW)
Bifurcose concentration (% DW)
(a)
Westonia
RIR2=0.975
RD2=0.988
6-FEH enzyme activity (nmol Fructose min-1g-1FW)
Kauz
RIR2=0.996
RD2=0.554
6-FEH enzyme activity (nmol Fructose min-1g-1FW)
Fig. S6 The correlation of stem (sheath included) bifurcose concentration and 1-FEH enzyme activities
between 0-35 DPA (a) and 6-kestose concentrations and 6-FEH activities between 15-45 DPA (b) in wheat
Triticum aestivum varieties, Westonia (circles) and Kauz (diamonds), respectively, under irrigated and
drought conditions.
M
Westonia
Kauz
Chinese Spring
ck
M
Westonia
Kauz
N6BT6A
Chinese Spring
Westonia
ck
(b)
(c)
M
Westonia
Kauz
N6AT6D
N6BT6A
N6DT6B
ck
(a)
2 kb
2 kb
1 kb
1 kb
1 kb
FEHw3F+FEH2151R500bp
FEH2F+FEHw3R
6B4690F+6BPR
91
9
857
91 91
106
382
159
242 94 207170
FEH4690F
FEH 2151R
6BPR
FEH 2F
218223
FEH w3F
FEH w3R
1480
1-FEH w3-6B
Fig. S7 The fragments of 1-FEH w3 were amplified from wheat Triticum aestivum varieties, Westonia and
Kauz with an upstream primer pair (FEH2F/FEHw3R, a), a downstream primer pair
(FEHw3F/FEH2151R, b), and a 3’terminal primer pair (FEH4690F/6BPR, c). Nulli-tetra lines (N6AT6D,
N6BT6A, N6DT6B) from wheat T. aestivum varieties, Chinese Spring were used for confirming the
fragment location. Chinese Spring was used as a positive control and ck as a negative control. M,
standard marker.
DNA length bp
0
(a)
500
1340 bp
1-FEH w1-6A
1000
1500
1666
9
91
9
106
857
91
9
91
242
382
159
1.5 kb
1 kb
FEH13200F+
6AFEH630R
106
857
91
94
91
242
217
91
159
M
Westonia
ck
Westonia
ck
Kauz
Kauz
ck
(c)
ck
N6DT6B
N6BT6A
210 223
N6AT6D
CS
286
159
4000
207 168
91
94 207 170
242
(d)
1 kb
1 kb
500 bp
500 bp
6APF1+6B60R
91
94 207 165
M
N6AT6D
N6BT6A
N6DT6B
ck
1607
M
106
857
3500
6BPF2
6B60R
6APF1
218 223
1-FEH w2-6D
(b)
3000
FEH 2151R
1480
1-FEH w3-6B
91
2500
6AFEH630R
FEH 2F
FEH13200F
214 226
2000
6APF1+6B60R
Fig. S8 The promoter region amplification of 1-FEH w3. (a) 1-FEH genes isolated from bread wheat chromosomes 6A, 6B
and 6D (Zhang et al., 2008). The primers used are indicated by arrows ( see also Table S1). (b) Amplification of the
promoter region of 1-FEH w1 (6A) from wheat Triticum aestivum variety, Chinese Spring (CS) and nulli (N)-tetra (T)
stocks of Chinese Spring (N6AT6D, N6BT6A, N6DT6B). Absence of amplification in N6AT6D indicates that the primer
pair was specific for 1-FEH w1 on the 6A chromosomes. (c) Amplification of the promoter region of 1-FEH w3 on 6B
using wheat Triticum aestivum L. varieties, Westonia and Kauz and (d) on the nulli-tetra lines of N6AT6D, N6BT6A and
N6DT6B. The results indicate that the amplified fragment originates from chromosome 6B. ck, negative control; M,
standard marker.
6B
1D
2A
barc279
barc279gdm033b
M8126
0.0
wsnp_Ex_rep_c67296_65839761
M5381 M1878
barc124
6.9
wsnp_Ex_c4185_7559420
M3798 M2226
gwm636
8.4
wsnp_Ex_c2218_4157473
M2692
M4015
wmc147
12.4
wsnp_CAP11_c8597_3709328
M817 wmc222
M7137
12.9
wsnp_Ex_c10257_16825240
M1307
M1895
M130
14.2
wsnp_Ex_c18616_27481826
M2328 M8181
wsnp_Ex_c15188_23387754
M1575
17.8
wsnp_Ex_c1894_3575749
M1991 cfd083
wmc407
22.5
wsnp_Ex_c14361_22341570
M2362 wmc429
M1668
38.8
wsnp_Ex_c3258_6004611
wsnp_Ex_c17990_26770800
M1888 cfd065
M2046
40.1
wsnp_Ex_c750_1474184
M2279 M3405
cfd036c
M1800
42.5
gwm046
M4692 cfd019b
gdm005-Jb
46.9
wsnp_Ex_c11866_19039540
gwm046
gwm357a
M1321
wsnp_Ex_c17990_2677014653.9
M1544 M23
gwm359
63.9
wsnp_Ex_c5047_8963671
M2278
M4422
M5816
wsnp_Ex_c53364_56625806
72.7
wsnp_Ex_c5929_10402147
M4075 M210
wmc177
78.1
wsnp_Ex_rep_c104884_89459472
M4172 M5250
M4060
102.8
wsnp_JD_rep_c64325_41024646
M4381 cfd048
M6909
105.5
barc176
M5124 gwm642
M3682
107.3
wsnp_JD_c11273_11770307
M6306
M2320
gwm292a
110.5
wsnp_JD_c14691_14352459
barc176barc062
M472
122.5
wsnp_JD_c9434_10274598
M5782
M1845
M4622
wsnp_Ex_c4728_8444212 123.4
M5849 M2934
M1387
wsnp_JD_c23373_19987039
142.4
wsnp_Ex_rep_c67391_65971023
M6229 M4346
M1755
143.3
wsnp_RFL_Contig2744_2471775
M3991 M2453
M1594
145.6
barc278
M5943 M166
M459
146.4
wsnp_Ex_c1815_3420846
M5392 M301
M6979
165.6
wsnp_Ku_c13905_22034406
M8381 gdm111
M7165
171.2
wsnp_Ex_c46217_51790399
barc278
M8143
gdm033-J
172.6
wsnp_JD_c4343_5462565
M2283
M8101
173.0
wsnp_Ex_c3838_6981043
M6509
M6641
182.0
wsnp_Ex_c14010_21901313
wsnp_Ex_c10094_16590615
M3964
M8394
182.5
wsnp_Ex_c33246_41764093
M6050
M8473
183.9
wsnp_Ex_c31017_39858962
M3647
M2332
199.8
wsnp_Ex_c32825_41419391
M1843
M5206
200.2
wsnp_BE443745A_Ta_2_1 wsnp_Ku_rep_c104021_90610162
M1277
M5286
202.0
wsnp_JD_rep_c63957_40798083
M3428
M7727
202.5
gwm108a
M3313
M1722
203.0
barc258
M7190
M3413
204.8
wsnp_Ku_c23012_32893918
M4366
M138 M7408
wsnp_Ex_c61603_61581245
205.2
wsnp_JD_c7522_8606553
M7003
M6301
205.7
wsnp_Ra_rep_c108284_91604017
M2023
gwm108a
206.1
wsnp_Ku_c10362_17156084
M5005
barc258
206.6
wsnp_Ex_c4876_8692783
M2095
M6729
207.1
gwm577
M1355
M4438
209.5
barc1073
M2944
M6172
215.8
wsnp_Ra_c34203_42948357
M4912
M8135
219.0
wsnp_Ex_c5323_9408829
gwm311-J
M6387
wsnp_Ex_c1597_3045682
wsnp_Ra_c32175_41221223
222.0
wsnp_Ex_rep_c66846_65240088
M4033
wsnp_Ex_c22202_31392780
wsnp_Ex_c2441_4568016
gwm577
wsnp_Ex_c48087_53105842
barc1073
wsnp_Ra_c41581_48764320
M7879
wsnp_Ex_c15475_23757972
M4163
wsnp_Ex_c12341_19693090
M7862 M2077
gwm146
QTspikeletGH_7B
0.0
6.0
10.5
12.9
45.5
54.8
73.7
76.0
81.2
91.0
97.0
99.9
100.8
101.7
109.7
113.3
115.1
121.0
127.1
158.8
205.4
213.3
214.7
216.6
217.1
218.4
219.3
223.7
232.6
QTspikelet3_7B
0.0
wmc158
16.1
M429
24.3
M8195
28.4
M2131
28.9
M535
32.5
M905
35.2
M4956
35.7
M2237
36.6
37.5
M2950
39.8
M5397
41.6
M833
49.4
M1114
51.3
M4323
51.7
barc070
54.9
M2130
59.4
M809
61.2
61.7
M518
WMC168 62.2
64.0
M7482
68.0
cfa2049
68.5
M2832
68.9
M6613
78.1
M1877
80.0
M630
81.8
82.7
M6564
84.1
cfd035a
96.2
M1136
96.7
M7344
97.6
barc174
98.1
M5885
103.0
M8395 M1477
104.8
M5860
106.6
122.8
M6764
138.9
M486
139.3
M265 M5841
139.8
M7769
143.4
gwm631 147.8
M6159
150.8
M3232
161.4
M1761
164.9
166.7
M127
168.1
M7002
169.0
M7202
181.9
M2497
187.0
M7660
198.0
M1502 M4211
203.7
M4735 M7910
205.5
M3639 M8375
207.7
208.2
M448
208.7
M7942
210.1
M7620
210.5
M6427
215.0
M1665
221.9
M5185
228.1
M2459
M7485
M607
M1437
M3848
M5143
M2962
M4472
M6737
M6802
M2670
M3573
cfa2240
M4610
M4605
M5147
M3861
M3656
M2766
QTtgw3_1B
350
QTgwSh_1B
QTppSh_6B
300
wsnp_Ex_c1962_3697351
barc054
M2442M209
wmc257c
0.0
wsnp_Ku_c5033_8989455
cfd019a
M7126cnl076
WMC085
36.2
wsnp_Ku_c3056_5734773
M3857
M6878cfd061
M6551
54.5
wsnp_Ra_c9233_15459255
M6553
M8102M5709
wmc406
wsnp_Ex_c24963_34217997 56.8
cfd095
M2937M7319
M1822
wsnp_Ex_c16864_25440739 59.9
cfd076
M2174M4522
M328
wsnp_Ku_c14409_22721765 60.8
barc273
M6528M4888
wsnp_BG607523B_Ta_2_4 61.3
M1534
wsnp_Ex_c25505_34771897 62.6
M1990
M585 wmc024
M2873
wsnp_Ex_c18669_27544717 64.0
barc096
M2975M5755
M8221
wsnp_Ex_rep_c67635_66292111
M1608
M2342M7114
M3564
65.7
wsnp_JD_c5170_6293946
M724
M5428M2019
M4456
68.0
wsnp_Ex_c52615_56152839
M6092M1542
M2874
wsnp_JD_c9805_10591233 69.8
M4148M7159
M5024
70.7
wsnp_Ex_c4069_7355357
M6238wmc278
M2215
71.2
wsnp_Ex_rep_c66900_65314206
M3731gwm164
barc065
stm007tcac
71.6
wmc494
M5329gwm357c
BARC187
72.1
1FEHW3
stm007tcac
gwm374
M6783
73.0
wsnp_Ex_c6514_11307200 74.0
wmc494
M2092
M7011
wsnp_Ex_c10959_17801482
M4527M4244
M2872
M1315
74.5
wsnp_BE424100D_Ta_1_1
M1412M3815
M8362
75.4
wsnp_Ku_c8391_14261321
M80 M1308
M2179
wsnp_Ku_c53270_57959459 76.3
M7322M2958
gwm582
79.0
wsnp_CAP11_rep_c4122_1949294
M7154M720
M2502
wsnp_Ku_c4427_8029592
81.7
wsnp_Ex_c7911_13433794 82.2
M842 M1999
M2401
wsnp_Ku_c8394_14267750 83.1
M7066M4042
M4095
wsnp_Ku_c927_1905095
M4748M3836
M6121
84.0
wsnp_Ex_rep_c67783_66469848
M7323M8385
M8420
86.4
wsnp_Ex_c34842_43092205
M7349M1085
M7567
89.8
wsnp_Ex_c2936_5416717
M5454M1462
M8367
94.0
wsnp_Ra_c25691_35261662
M3500M236
M2557
95.8
wsnp_Ex_rep_c68915_67808523
M3229M8558
M295
98.1
wsnp_Ex_c3804_6917368
wsnp_Ra_c2694_5122122 101.3
M7791M462
M8534
cfd027-J
M5572M8580
gwm131c
106.2
wsnp_Ex_c20019_29052512 107.1
M3627M234
M6476
wsnp_Ex_c13352_21044607
M7802M143
M8261
107.6
wsnp_Ex_c10120_16626785
cfd027-J
M7845 M5830
M463
108.1
wsnp_BE490384D_Ta_1_2
M2500M5856
M7520
wsnp_Ex_c9779_16145653 110.3
M1764M1614
M50
111.2
wsnp_BE426620D_Ta_2_2
M8244
M1285M6055
wsnp_Ex_c11127_18033163 112.6
M6075
M230 cfa2129a
wsnp_BE445431D_Ta_2_1 113.5
wsnp_RFL_Contig1168_230552
M5240
M4962M8072
117.1
wsnp_CAP11_rep_c4170_1971400
M5811
M7062
M96
118.5
wsnp_Ku_c16572_25480808118.9
M5948
M1440M6625
wsnp_Ex_c5172_9167324
M10
M176 M7418
wsnp_Ex_c2598_4832869 121.2
M897
M8228M6755
122.6
wsnp_Ku_c7002_12116034
M6918
M853 M7273
wsnp_CD453605B_Ta_2_1 123.5
M6830
M6601M689
wsnp_Ku_c5160_9203385 125.7
M8344
M4108M8073
wsnp_Ex_c19525_28494827 126.6
wsnp_BE490763B_Ta_2_1 128.4
barc061
M3015M363
wsnp_JD_c6872_7985864 129.4
cfa2129b
M7257M7096
wsnp_Ex_rep_c102281_87481676
wsnp_BE490604A_Ta_2_1
M439
M7303
M1254
131.4
wsnp_Ex_c19476_28434084
M6664
M7140M8504
132.8
wsnp_BE496826A_Ta_2_2
M1204
M2431M1098
wsnp_Ku_c39334_47795350148.6
M4619
M242 M6182
169.3
wsnp_Ex_c2100_3937914
M4602
M6155M4118
169.7
wsnp_CAP11_c2142_1128735
M6117
M5060
M233 M6656
174.2
wsnp_JD_c1119_1642176
wsnp_CAP7_c1339_673581 174.6
M4478
M2421M3773
wsnp_Ex_c45713_51429315 178.4
M5991
M272 M5442
wmc105
M2551
M7006M3982
185.6
gwm311b
M226
M2779
M2566
187.0
cnl064
M3278
M705 M7478
188.8
wsnp_Ku_c34036_43438136
M5868
M5781M8262
wsnp_BE403421A_Ta_2_1 225.4
M5129
M1033M3252
wsnp_Ex_c7193_12354542 227.2
M5110
M3947M7668
wsnp_Ex_c2936_5415651 233.1
wsnp_CAP7_c399_215824 240.4
M2191
M7963
wmc105
wsnp_Ex_c29008_38081173 242.2
M3965
M7872
gwm311b
wsnp_Ex_c17435_26144201 243.1
M8177
cnl064M1590
wsnp_Ex_c39304_46635517 244.0
M4864
M6937M4162
wsnp_BF483640B_Ta_2_2
M6901
barc213
M28 wsnp_Ex_c17561_26284693 244.9
M3572
245.8
M4634M2659
wsnp_Ex_c5334_9427824
M5564
M3228M530
wsnp_Ex_c10630_17338703 246.3
barc080 gwm140
M1086M8096
wsnp_Ex_c9948_16379630 248.6
M3206M1081
M2219cfd027
M3677M6624
M506 M7570
M2228M7144
M4170M5534
M1366
QTtgw3_6B
QTgw3_1B
250
QTheightSh_6B
200
QTtgw3_6D
150
QTppSh_6B
100
7B
7B
7A
6D 1B
6B
1A
QTknGH_1A
QTtgw3_6B
50
0.0
0.0
14.1
1.8
15.9
58.8
19.5
89.6
64.7
95.1
68.3
111.7
73.7
74.6
112.6
80.0
115.4
82.7
119.6
86.7
120.5
87.6
127.8
90.8
128.7
99.4
130.5
111.8
132.7
124.8
133.7
134.5
190.3
137.5
191.7
140.8
198.2
141.3
199.5
143.1
200.0
145.8
200.4
149.0
209.6
149.5
211.9
150.4
227.2
229.0
150.8
231.2
151.3
233.5
152.6
234.8
154.0
235.3
154.9
236.6
157.6
237.0
158.1
237.5
158.5
237.9
238.4
159.4
241.1
159.9
246.4
164.4
246.9
165.3
247.3
165.8
248.7
168.4
251.4
169.3
252.3
172.5
253.2
255.4
180.5
259.4
186.8
261.7
193.6
262.1
198.1
266.6
198.6
268.4
199.0
269.3
202.6
270.7
203.5
271.6
208.0
272.0
273.8
208.4
275.2
208.9
275.7
209.8
277.1
221.8
278.0
226.3
279.4
228.1
280.3
232.6
281.2
233.0
282.5
282.9
233.5
283.4
234.4
285.7
234.8
291.0
237.1
297.9
238.0
299.7
239.3
301.0
239.8
306.4
240.3
312.3
336.4
241.2
349.2
241.6
352.4
243.0
356.4
243.9
378.5
246.2
381.3
249.4
382.7
257.1
383.2
261.2
384.5
272.8
274.6
280.5
283.6
288.7
289.1
QTheightSh_6B
0
Fig. S9 The QTL location of height, thousand grain weight (TGW) and peduncle
proportion detected on 6B in the genetic linkage map of the 225 DH population of
wheat Triticum aestivum varieties, Westonia/Kauz. Mapped markers are indicated on
the right and their corresponding genetic distances (cM) are indicated on the left.
Quantitative trait loci (QTL) confidence interval with an F-value over the threshold is
by vertical bar.
M5310
M2897 M2696
M4008
M7922
M2029
M1611
gwm146
(a)
(b)
Westonia
Irrigated
Drought
4
120
Westonia
Irrigated
Drought
ab
a
90
a
ab
60
ab
2
b
30
b
c
0
a
Kauz
0
Kauz
90
4
a
a
a
60
b
b
2
30
b
bc
0
6-FEH activity (nmol Fructose min-1g-1FW)
6-Kestose concentration (% DW)
6
0
-10
0
10
20
30
Days after anthesis
40
50 -10
0
10
20
30
40
50
Days after anthesis
Fig. S10 Evolution of stem (sheath included) 6-kestose concentrations (a) and 6-FEH activities (b) in wheat
Triticum aestivum varieties, Westonia and Kauz under irrigated and drought conditions. The vertical bars
represent SE. Values with the same letter are statistically not different at P = 0.05.
Table S1 Primers used for the amplification of wheat genomic DNA sequences and for qRTPCR
Forward primer
sequences
Reverse
primer
FEH13200F
ATAGATACATCCATACTCGCG
FEH6A630R GAAACAGTAACCAATCTGATCGC
6APF1
CGAAACAAGCATGCGCCAAT
6B60R
TTGGCTCATGGAGTCATGGGTC
6BPF2
CTCCGCATCTCACCACAGATC
2Fa
CGGATCTACAGTCTCCAGA
FEHw3Rb
GCCTGATTTTGATCTATGTCAC
FEHw3Fb
CCGCGTTAGTGCGGGACA
FEH2151Ra
CAAGTAACTGAGATGGGAAG
FEHw1Fb
CCGCGTTAGTGCGGGATA
FEHw1Rb
CACCAGTGTATATGATGAC
FEHw2Fb
CCGCGTTAGTACGGGATA
FEHw2Rb
GCCTGATGTTGATCTATGTCG
6B4690F
GGACATTCAGCAGGAAAG
6BPR
GTACCCTAGTCACCCTCGAATCA
GAPDHLb
CGAAGCCAGCAACCTATGAT
GAPDHRb
CAAAGTGGTCGTTCAGAGCA
sequences
a
FEH2F and FEH2151R are 5’upstream of the initiating methionine and downstream of the transcription stop
site, respectively. bPrimers that were used for qRT-PCR.
References
Zhang J, Huang S, Fosu-Nyarko J, Dell B, McNeil M, Waters I, Moolhuijzen P, Conocono E, Appels R. 2008. The
genome structure of the 1-FEH genes in wheat (Triticum aestivum L.): new markers to track stem carbohydrates
and grain filling QTLs in breeding. Molecular Breeding 22(3): 339-351.