Stéphan Astier, 11/2008 Fuel Cells Energy Modelling Bond Graph Stéphan Astier, 11/2008 Fuel cells Bipolar plate membrane SOFC Stack SOFC Stack Stack PEMFC(1) at high température > 700 °C Works at 80°C 1 cell delivers very low voltage (0.7V) serie connexion of mise en série de Ns cells (Ns 100) STACK 1 Stéphan Astier, 11/2008 Different types of fuel cells Electrolyte FC name Charges nature Température eO2, N2, H 2O, CO2 H2, H2O, CO 2 AFC PEMFC PAFC MCFC SOFC alcalin OH- H2 H2O H2 H2 H2O CO2 H2 H2O H+ O2 70-100°C polymère O2 70-100°C acide phosphorique H2O 150-210°C carbonate fondu CO32- O2 CO2 oxyde solide O22- O2 basses T° < 200°C hautes T° > 550°C 600-800°C 850-1100°C + Cogeneration Fuel : H 2, (+C02 si MCFC) OXYDANT: O2, (+N 2 si air) (+C02 si MCFC) Stéphan Astier, 11/2008 PEM Fuel CELL Show video water H2 + 1/2 02 H20 + inverse electrolysis Electricity heat Efficiency > 50 % 2 Stéphan Astier, 11/2008 Energy modelling of electrochemical device External environment = chemical and thermal energy stored Air, oxygen Internal storings Electrochemical component 2 internal storage Electric double layer Internal thermal storage Entropy fluxes Chemical energy Electric energy Electrochemical conversion Diffusion losses Conduction losses Activation losses External storings Electric generator or receptor Thermal use Flux of matter (oxider, reductor, electrolyte) Thermal flux flux electric charges Stéphan Astier, 11/2008 Energy approach Bond Graph principles p=e.f power Energy exchanges within a system are described by bonds which represent represent power exchanges. energy object 1 e f energy object 2 Effort e and flow f have different interpretations in the different fields of physics. physics. System Electrical Mechanical Chemical Hydraulic Thermal e: Effort (unit) v: Voltage (V) F: Force (N) : Chemical potential (J.mol-1) f: flow (unit) i: Current (A) V: Velocity (m.s-1) dn/dt: Molar flow (mol.s-1) P: Pressure (Pa) dq/dt: Volume flow (m3.s-1) T: Temperature (K) ds/dt: Entropy flow (J.K-1.s-1) The causal bar indicates the effort direction. 3 Stéphan Astier, 11/2008 Energy approach Bond Graph elements Only a limited number of elements are necessary to describe the majority of systems: Element Represents R: r Dissipation Friction Resistance Equation without causality e rf 0 df 0 dt de c 0 dt I: i Inertial storage Inductance C: c Potential storage Capacitance Se Environment Effort source e cst Sf Environment Flow source f cst e i f An element RS (entropy production) can be used for coupling to a thermal part of the model. Stéphan Astier, 11/2008 Energy approach Bond Graph junctions The exchanges between several elements or different fields of physics physics are implemented through junctions: Junction Represents 1 Equality of flows Equation ei 0 fi 0 i 0 Equality of efforts i TF Transformer e1 re2 , f 2 rf1 GY Gyrator e1 rf 2 , e2 rf1 Causal rules: • only one element can fix the flow through a 11-junction ; • only one element can fix the effort through a 00-junction. 4 Stéphan Astier, 11/2008 Electrochemical conversion and energy storage Electrochemical conversion E G nF I nF J E: battery openopen-circuit voltage G: free enthalpy variation I: current in the battery J: molar flow of lithium ions n: number of lithium ions moles exchanged for one mole of electrons electrons (n=1) F: Faraday constant nF - G (J.mol-1) J (mol.s-1) E (V) TF Chemical field I (A) Electrical field Stéphan Astier, 11/2008 Reversible eco-fuel / electricity storage systems Principle of a H2/O2 Regenerative Fuel Cell RFC or URFC (Unitized …) H2 Fuel Cell O2 H2O H2O H2 Electicale O2 Power H2 O2 Electrolyser Electricity O2 H2 Heat HEAT System equivalent to a battery but decoupling ENERGY and POWER H2 / O2 but also many other redox couples (redox flow batteries, metal air fuel cells) 5 Stéphan Astier, 11/2008 LithiumLithium-ion battery operation principle Electrochemical process I Load e- Li ions LiH' Insertion Li Insertion material H' conductor material material H' zLi H H ze zLi ze LiH Stéphan Astier, 11/2008 LithiumLithium-ion battery model Electrochemical conversion and energy storage Energy storage G: free enthalpy variation G G 0 G storage G0: reference free enthalpy variation Gstorage: available amount of chemical stored energy - G0 (J.mol-1) J (mol.s-1) 1 - G (J.mol-1) J (mol.s-1) nF TF E (V) I (A) - Gstorage (J.mol-1) J (mol.s-1) - G0 Cstorage 6 Stéphan Astier, 11/2008 LithiumLithium-ion battery model Activation and doubledouble-layer phenomena Activation phenomenon DoubleDouble-layer phenomenon Electrode Ract If Ract: linear activation resistance act: voltage drop due to activation phenomenon If: faradic current If act I I dl Electrolyte e Li e Li e Li e Li Electrochemical double-layer Reactive process Double layer capacitor Propriétés comparées des moyens de stockage Cdl Stéphan Astier, 11/2008 7 Propriétés comparées des moyens de stockage Stéphan Astier, 11/2008 Stéphan Astier, 11/2008 Electricity - hydrogen reversible transformation, two energy carriers with complementary properties Fuel Cell WATER + ELECTRICITY + HEAT HYDROGEN + OXYGEN Electrolyser I (A) Electrolyser Electricity (Solare, …) Hydrogen energy 0,5 1 Flux carrier 1,5 2 V (volt) Stock carrier Fuel cell I (A) 8 Stéphan Astier, 11/2008 Thierry ALLEAU Stéphan Astier, 11/2008 9 Stéphan Astier, 11/2008 Thierry ALLEAU Stéphan Astier, 11/2008 Thierry ALLEAU 10 Stéphan Astier, 11/2008 Centrale 250 kW PEM Ballard Power Systems Electricity and Heat Cogeneration Stationary Centrale domestique 7 kW PEM Plug Power Stéphan Astier, 11/2008 11 Stéphan Astier, 11/2008 THE HYDROGENE FUEL A stock energy carrier stored in a tank as gazoline Energies spécifiques des combustibles Meilleurs accumulateurs actuels ( Li-ion) Essence Uranium Hydrogène 10 000 Wh/kg 30 000 Wh/kg 116 106 Wh/kg 150 Wh/kg What sources of hydrogen ? What storage devices and tanks ? What specifical energies ? Stéphan Astier, 11/2008 Specific energies of hydrogen storage devices Energy by mass Energby volume 35 30 25 20 15 10 5 S1 Essence Méthanol Gaz nat liqu bars Gaz nat 200 H2 liquide bars H2 gaz 700 bars H2 gaz 300 0 12 Stéphan Astier, 11/2008 Thierry ALLEAU Stéphan Astier, 11/2008 Thierry ALLEAU 13 Stéphan Astier, 11/2008 Photographie NASA – Aerovironment 2002 A training device for a future power chain « Solar energy, Hydrogen, Electricity » 14
© Copyright 2026 Paperzz