vii.3. generator shaft center line

AEW
A l’attention de Mr Benoit DEGRAAF
31 Rue Mercatoris
L – 7237 WALFERDANGE
Pringy, 18th december 2012
Tel : 00 352 33 72 32 1
Fax :
e-mail : [email protected]
Expertise vibratoire
ALTERNATEUR
Site Rhodia (Chalampé-68)
AEW
Rapport n°: XXXX
Date de mesure : 17, 19, 21, 23 Novembre 2012
Jérôme BADIEU
Mesures et analyses effectuées par :
Raphaël FERRARIS
technivib – ZI de PRINGY – 531 Route des Vernes – 74370 PRINGY – France
Tél : 0033 4 50 01 23 20.– Fax : 0033 4 50 01 57 81 – e.mail : [email protected]
Website : www.technivib.com
S.A.R.L. au capital de 15 000 Euros – SIRET 453 180 630 000 23 – RCS ANNECY 453 180 630 – Code APE 7112B.
Ce document est la propriété de Technivib. Toute communication, reproduction, publication, même partielle, est interdite sauf autorisation écrite de la part de la société Technivib.
TABLE DES MATIERES
I - BILAN - PRECONISATIONS ............................................................................................................................................... 4
I.1. BILAN ................................................................................................................................................................................... 4
I.2. PRECONISATIONS.................................................................................................................................................................. 4
II - OBJET .................................................................................................................................................................................... 5
III - MATERIELS UTILISES .................................................................................................................................................... 5
IV - DESCRIPTION OF INSTALLATION – TURBINE – GEAR - GENERATOR ........................................................... 6
IV.1. INSTALLATION DIAGRAM ............................................................................................................................................... 6
IV.2. APPLICABLE STANDARD – ISO 7919-2 ................................................................................................................................ 6
V - INITIAL OBSERVATION ................................................................................................................................................... 7
V.1. GENERATOR MISALIGMENT VALUES ................................................................................................................................... 7
V.2. VIBRATION LEVEL EVOLUTION ............................................................................................................................................ 8
V.3. ORBIT ............................................................................................................................................................................. 10
V.4. GENERATOR SHAFT CENTER LINE.......................................................................................................................... 13
V.5. RELATION BETWEEN GAP AND VIBRATIONS .................................................................................................................... 16
V.6. GENERATOR VIBRATION DURING COUPLAGE AND EXCITATION .................................................................................... 17
V.7. SUMMARY ........................................................................................................................................................................ 17
VI - MISALIGNMENT EFFECT ............................................................................................................................................ 18
VI.1. 19/11/2012...................................................................................................................................................................... 18
VI.1.1. Misalignment value ................................................................................................................................................. 18
VI.1.2. Vibration levels ....................................................................................................................................................... 18
VI.1.3. Orbits....................................................................................................................................................................... 19
VI.1.4. GAP ......................................................................................................................................................................... 20
VI.2. 21/11/2012...................................................................................................................................................................... 21
VI.2.1. Misalignment value ................................................................................................................................................. 21
VI.2.2. Vibration levels ....................................................................................................................................................... 21
VI.2.3. Orbits....................................................................................................................................................................... 22
VI.2.4. GAP ......................................................................................................................................................................... 23
VI.3. 23/11/2012...................................................................................................................................................................... 24
VI.3.1. Misalignment value ................................................................................................................................................. 24
VI.3.2. Vibration levels ....................................................................................................................................................... 24
VI.3.3. Orbits....................................................................................................................................................................... 25
VI.3.4. GAP ......................................................................................................................................................................... 26
VI.4. SUMMARY ....................................................................................................................................................................... 26
VII - VIBRATION ARE NOT DUE TO ELECTRICAL PHENOMENON ON THE GENERATOR ............................. 27
VII.1. VIBRATION LEVEL EVOLUTION ....................................................................................................................................... 27
VII.2. ORBIT .......................................................................................................................................................................... 29
VII.3. GENERATOR SHAFT CENTER LINE ....................................................................................................................... 32
VII.4. RELATION BETWEEN GAP AND VIBRATIONS .................................................................................................................. 33
VII.5. SUMMARY ...................................................................................................................................................................... 34
VIII - MODIFICATION OF THE RESTRICTED ORIFICE............................................................................................... 35
VIII.1. B7 – RO = 17MM - B8 – RO = 17 MM ......................................................................................................................... 35
VIII.1.1. vibration level evolution ....................................................................................................................................... 36
VIII.1.2. ORBIT ................................................................................................................................................................... 38
VIII.1.3. GENERATOR SHAFT CENTER LINE ................................................................................................................. 41
VIII.2. B7 – RO = 12MM - B8 – RO = 17 MM ......................................................................................................................... 43
VIII.2.1. vibration level evolution ....................................................................................................................................... 44
VIII.2.2. ORBIT ................................................................................................................................................................... 45
IX - FLANGE VIBRATIONS ................................................................................................................................................... 46
IX.1. VIBRATORY LEVELS......................................................................................................................................................... 46
81901302
Technivib : Expertises Dynamiques Machines & Structures
2
IX.2. RESONANCE FREQUENCIES WITH CRANKING AT 171 RPM .............................................................................................. 47
IX.3. SUMMARY ....................................................................................................................................................................... 49
X - ANNEX 1 – RUN DOWN ANALYSIS .............................................................................................................................. 50
XI - ANNEX 2 – MVAR ET MW INFLUENCE ON VIBRATORY LEVELS (21/11/2012) .............................................. 51
XI.1. ANNEX 3: GEAR SHAFT CENTER LINE DURING POWER RISE ............................................................................................ 53
81901302
Technivib : Expertises Dynamiques Machines & Structures
3
I - BILAN - PRECONISATIONS
I.1. BILAN
I.2. PRÉCONISATIONS
81901302
Technivib : Expertises Dynamiques Machines & Structures
4
II - OBJET
Après une opération de maintenance sur l’alternateur, les niveaux vibratoires semblent avoir
augmentés.
L’objectif de notre expertise est de déterminer la cause de l’augmentation de ces
vibrations.
III - MATERIELS UTILISES
-
1 analyseur de vibrations 16 voies synchrones de marque OROS avec
l’ensemble des logiciels associés.
1 ordinateur portable.
Accéléromètres de marque DJB.
1 Top Tour laser
Utilisation du rack Bently Nevada
L’ensemble étant piloté par un PC portable il permet la sauvegarde des mesures sur le disque dur
afin de réaliser ultérieurement l’analyse approfondie et l’archivage.
81901302
Technivib : Expertises Dynamiques Machines & Structures
5
IV - DESCRIPTION OF INSTALLATION – TURBINE – GEAR - GENERATOR
F0 = 60 Hz (turbine rotation frequency)
F1 = 50Hz (generator rotation frequency)
Nominal Power = 65MW - 38MVar
IV.1. INSTALLATION DIAGRAM
B8
B7
TURBINE
GEAR BOX
GENRATOR
Bearing Clearance : cylindrical bearing
B7 : 310 µm  0µm
B8 : 360 µm  10µm
IV.2. APPLICABLE STANDARD – ISO 7919-2
Zone Boundary
Newly (zone A)
Pk-PK relative vibration displacement in µm at zone boundaries
At 3000RPM
Newly < 90 µm Pk-Pk
Boundary A/B
Acceptable (zone B)
90 µm Pk-Pk
90 µm Pk-Pk < Acceptable < 165 µm Pk-Pk
Boundary B/C
165 µm Pk-Pk
Unsatisfactory (zone C) 165 µm Pk-Pk < Unsatisfactory < 240 µm Pk-Pk
Boundary C/D
Damage (zone D)
240 µm Pk-Pk
240 µm Pk-Pk < Damage
Zone A: The vibration of newly commissioned machines would normally fall within this zone.
Zone B: Machine with vibration within this zone are normally considered acceptable for unrestricted longterm operation.
Zone C: Machine with vibration within this zone are normally considered unsatisfactory for long-term
continuous operation. Generally, the machine may be operated for a limited period in this condition until
a suitable opportunity arises for remedial action.
Zone D: Vibration values within this zone are normally considered to be of sufficient severity to cause
damage to the machine
81901302
Technivib : Expertises Dynamiques Machines & Structures
6
V - INITIAL OBSERVATION
V.1. GENERATOR MISALIGMENT VALUES
Alignment back to constructor specification
VERTICAL
<
0.04 mm
=
0.04 mm
HORIZONTAL
<
0.02 mm
=
0 mm
81901302
Technivib : Expertises Dynamiques Machines & Structures
7
V.2. VIBRATION LEVEL EVOLUTION
2100RPM-17/11/2012 – 10H55 - Cold
Overall
F1 = 35 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
23
20
7B
18
19
8A
23
20
8B
10
7
F1 – Synchronisation -17/11/2012 – 10H57 - Cold
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
48
45
7B
45
44
8A
48
46
8B
26
25
F1 – 10MW – 12MVar - cos=0.14 -17/11/2012 –
11H00 - Cold
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
49
47
7B
36
35
8A
41
40
8B
12
9
F1 – 20MW – 11MVar - cos=0.92 -17/11/2012 –
11H10 - Cold
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
62
60
7B
37
36
8A
57
54
8B
10
9
81901302
Technivib : Expertises Dynamiques Machines & Structures
8
F1 – 20MW – 9.9MVar - cos=0.89 -17/11/2012 –
12H15
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
74
71
7B
45
42
79
8A
77
8B
20
19
F1 – 40MW – 11.5MVar - cos=0.96 -17/11/2012
– 15H25
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
79
7A
76
7B
48
45
89
8A
87
8B
26
24

We notice an evolution of the vibration levels when the machine temperature increases from the
stabilised temperature (x1.85).

The maximum vibration level on the generator shaft is 89µm Pk-PK. This overall value is
considered as good (or acceptable because very close to the boundary at 90µm Pk-Pk).
81901302
Technivib : Expertises Dynamiques Machines & Structures
9
V.3. ORBIT
2100RPM-17/11/2012 – 10H55 - Cold
B7
B8
F1 – Synchronisation -17/11/2012 – 10H57 - Cold
81901302
Technivib : Expertises Dynamiques Machines & Structures
10
F1 – 10MW – 12MVar - cos=0.14 -17/11/2012 – 11H00 - Cold
F1 – 20MW – 11MVar - cos=0.92 -17/11/2012 – 11H15 - Cold
81901302
Technivib : Expertises Dynamiques Machines & Structures
11
F1 – 20MW – 9.9MVar - cos=0.89 -17/11/2012 – 12H15
F1 – 40MW – 11.5MVar - cos=0.96 -17/11/2012 – 15H25





81901302
The orbit shapes are not characteristic of an unbalance.
The generator shaft vibrations are in opposite phase.
The orbit shapes show a stress on the generator shaft (on the vertical direction).
This stress already exists at 2100RPM even if the machine is cold and even if they are no current
in the generator shaft.
This stress increase when the rotation speed increase and when the temperature increase.
Technivib : Expertises Dynamiques Machines & Structures
12
V.4. GENERATOR SHAFT CENTER LINE
2100RPM-17/11/2012 – 10H55 - Cold
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
F1 – Synchronisation -17/11/2012 – 10H57 - Cold
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
81901302
Technivib : Expertises Dynamiques Machines & Structures
13
F1 – 10MW – 12MVar - cos=0.14 -17/11/2012 – 11H00 - Cold
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
F1 – 20MW – 11MVar - cos=0.92 -17/11/2012 – 11H15 - Cold
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
81901302
Technivib : Expertises Dynamiques Machines & Structures
14
F1 – 20MW – 9.9MVar - cos=0.89 -17/11/2012 – 12H15
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
F1 – 40MW – 11.5MVar - cos=0.96 -17/11/2012 – 15H25
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200

In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the
oil film stiffness is correct (the journal bearing can not be damage with this oil film condition)

But we can notice that the shaft center line go down to almost 70µm when the temperature
increase.
81901302
Technivib : Expertises Dynamiques Machines & Structures
15
V.5. RELATION BETWEEN GAP AND VIBRATIONS
180
oil film thickness (µm)
160
140
120
100
palier 7
80
palier 8
60
40
20
0
20
30
40
50
60
70
80
90
100
overall displacement (µm Pk-Pk)

81901302
Shaft vibrations increase when the oil thickness decrease.
Technivib : Expertises Dynamiques Machines & Structures
16
V.6. GENERATOR VIBRATION DURING COUPLAGE AND EXCITATION
3000 RPM
Synchronisation
Zoom:

In cold condition, the synchronisation and the excitation have no effect on generator shaft
vibration.

It seems to have no electrical problem on this generator.
V.7. SUMMARY
This orbit shape and the evolution of the oil film stiffness can be due to misalignment which change with
the evolution of temperature of the machine or can be due to a phenomenon in link with bearing or oil.
81901302
Technivib : Expertises Dynamiques Machines & Structures
17
VI - MISALIGNMENT EFFECT
This generator has strange misalignment value in the past. Then we try to change the
misalignment especially on vertical direction in order to have an effect on vibrations.
VI.1. 19/11/2012
VI.1.1. Misalignment value
Alignment back to constructor specification
VERTICAL
<
0.04 mm
=
0.04 mm
HORIZONTAL
<
0.02 mm
=
0 mm
VI.1.2. Vibration levels
F1 – 3000 RPM – No load -19/11/2012 – 11H54 Cold
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
49.6
47.3
7B
51.4
50.3
8A
47.7
47.6
8B
26.8
26.2
F1 – 45MW – 11.7MVar - cos=0.97 -19/11/2012
– 12h26 - Warm
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
92.3
91.4
7B
59.1
58
8A
54.8
54.4
8B
14.6
14
81901302
Technivib : Expertises Dynamiques Machines & Structures
18
VI.1.3. Orbits
F1 – 3000 RPM – No load -19/11/2012 – 11H54
60.0
X
20.0
Y
20.0
Y
10.0
Displacement (µm)
Displacement (µm)
X
30.0
40.0
Display
Mode: Multi-grap
Traces:
FFT1: R_Orb
FFT1: R_Orb
Cursor
Angle: 0 °
X:
2.5
Y:
1.2
X:
-2.0
Y:
3.6
0
0
-10.0
-20.0
-20.0
-40.0
-30.0
-60.0
-40.0
-20.0
0
Displacement (µm)
20.0
40.0
60.0
-30.0
-20.0
-10.0
0
Displacement (µm)
10.0
20.0
30.0
F1 – 40MW – 11.7MVar - cos=0.97 -19/11/2012 – 12h26
30.0
X
60.0
20.0
40.0
Y
Y
10.0
Displacement (µm)
Displacement (µm)
20.0
0
-20.0
-20.0
-60.0
-30.0
-60.0
81901302
0
-10.0
-40.0




Display
Mode: MultiTraces:
FFT1: R_
FFT1: R_
Cursor
Angle:
X:
Y:
X:
Y:
X
-40.0
-20.0
0
Displacement (µm)
20.0
40.0
60.0
-30.0
-20.0
-10.0
0
Displacement (µm)
10.0
20.0
30.0
The orbit shapes are not characteristic of an unbalance.
The generator shaft vibrations are in opposite phase.
The orbit shapes show a stress on the generator shaft (on the vertical direction).
This stress increase when the temperature increase.
Technivib : Expertises Dynamiques Machines & Structures
19
VI.1.4. GAP
F1 – 3000 RPM – No load -19/11/2012 – 11H54
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
F1 – 40MW – 11.7MVar - cos=0.97 -19/11/2012 – 12h26
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200

In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the
oil film stiffness is correct (the journal bearing can not be damage with this oil film condition)

But we can notice that the shaft center line go down to almost 70µm when the temperature
increase.
81901302
Technivib : Expertises Dynamiques Machines & Structures
20
VI.2. 21/11/2012
VI.2.1. Misalignment value
Alignment adjusted -0.1mm on 4 generator legs
VERTICAL
<
0.05 mm
=
-0.1 mm
HORIZONTAL
<
-0.01 mm
=
-0.02 mm
VI.2.2. Vibration levels
F1 – 3000 RPM – No load -23/11/2012 – 09h54Cold
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
47.6
45.4
7B
46
44.2
8A
48.5
48.4
8B
19.5
19
F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012
– 10h25 - Warm
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
84.2
83
7B
52.3
51
8A
74.4
74.1
8B
24.3
24
81901302
Technivib : Expertises Dynamiques Machines & Structures
21
VI.2.3. Orbits
F1 – 3000 RPM – No load -23/11/2012 – 09h54
X
Display
Mode: Multi-graph
Traces:
FFT1: R_Orbt [
FFT1: R_Orbt [
Cursor
Angle: 0 °
X:
9.707
Y:
3.523
X:
-1.71
Y:
-1.61
X
40.0
60.0
30.0
40.0 Y
Y
20.0
20.0
Displacement (µm)
Displacement (µm)
10.0
0
0
-10.0
-20.0
-20.0
-40.0
-30.0
-60.0
-40.0
-60.0
-40.0
-20.0
0
Displacement (µm)
20.0
40.0
60.0
-40.0
-30.0
-20.0
-10.0
0
10.0
Displacement (µm)
20.0
30.0
40.0
F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10H25
X
60.0
Display
Mode: Multi-graph
Traces:
FFT1: R_Orbt [2]-7
FFT1: R_Orbt [4]-8
Cursor
Angle: 0 °
X:
9.177853
Y:
1.939941
X:
-1.37561
Y:
-4.86802
X
40.0
30.0
40.0
Y
Y
20.0
Displacement (µm)
Displacement (µm)
20.0
0
10.0
0
-10.0
-20.0
-20.0
-40.0
-30.0
-40.0
-60.0
-60.0




81901302
-40.0
-20.0
0
20.0
Displacement (µm)
40.0
60.0
-40.0
-30.0
-20.0
-10.0
0
10.0
Displacement (µm)
20.0
30.0
40.0
The orbit shapes are not characteristic of an unbalance.
The generator shaft vibrations are in opposite phase.
The orbit shapes show a stress on the generator shaft (on the vertical direction).
This stress increase when the rotation speed increase and when the temperature increase.
Technivib : Expertises Dynamiques Machines & Structures
22
VI.2.4. GAP
F1 – 3000 RPM – No load -23/11/2012 – 09h54
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10H25
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200

In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the
oil film stiffness is correct (the journal bearing can not be damage with this oil film condition)

But we can notice that the shaft center line go down to almost 70µm when the temperature
increase.
81901302
Technivib : Expertises Dynamiques Machines & Structures
23
VI.3. 23/11/2012
VI.3.1. Misalignment value
Alignment adjusted -0.3 mm on 2 NDE legs
VERTICAL
<
0 mm
=
-0.12 mm
HORIZONTAL
<
0 mm
=
0.02 mm
VI.3.2. Vibration levels
F1 – 3000 RPM – No load -23/11/2012 – 10h07Cold
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
52.5
50.8
7B
44.6
43.1
8A
59.6
52.4
8B
19.2
18.8
F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012
– 10h30 - Warm
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
7A
78.5
77.8
7B
48.6
47.4
8A
70.1
69.8
8B
24.2
29.8
81901302
Technivib : Expertises Dynamiques Machines & Structures
24
VI.3.3. Orbits
F1 – 3000 RPM – No load -23/11/2012 – 10h07
X
Display
Mode: Mult
Traces:
FFT1: R
FFT1: R
Cursor
Angle:
X:
Y:
X:
Y:
X
40.0
40.0
30.0
Y
Y
20.0
10.0
Displacement (µm)
Displacement (µm)
20.0
0
0
-10.0
-20.0
-20.0
-30.0
-40.0
-40.0
20.0
40.0
-40.0
-30.0
-20.0
-10.0
0
10.0
Displacement (µm)
20.0
30.0
40.0
)
0
Displacement (µm)
13
-20.0
D
M isp
Tr od lay
ac e:
es M
ul
Cu
:
ti rs FFT
tra
or 1
:L
ce
Ti
sjs
m
X:
e:
[2
]-7
Y:
12
A
[3
-1 98.
]-7
-1 241 279
B
12 .3 m
(0
8. 25 s
RP
22
µ
M
9
m
,1
µm
4
:4
2
:5
2
D
M isp
Tr od lay
ac e:
es M
ul
Cu
:
tirs FFT
tra
or 1
:L
ce
Ti
sjs
X: me
[
4]
:
Y:
8A
0
m
[
-1 s
5]
-8
-9 164
B
22 .4
(0
.2 29
RP
63
M
7 µm
,1
µm
4
:4
02
2:
/0
1
52
/2
02
01
/0
3)
1/
20
-40.0
12
-1
.0
0.
0
14
)
-9
40
ce 116
m 0.
en 0
t(
µm
18
0.
Di
0
sp
l
Di
sp
la
-9
60
.0
)
m
(µ
t
en
em
ac
20
-1
.0
-1
32
0.
-1
16
0.
0
0
-1
00
0
-1
14
0.
0
-1
30
0
0.
.0
0
-9
80
.
0
-1
0
-1
28
0.
0
-1
12
0.
Di
sp
m
ce
la
-1
10
0.
0
µm
t(
en
)
Di sp 12
la 60
ce .0
m
en
t(
µm
)
-1
-1
08
0.
0
24
0.
0
.0
-1
-1
-1
06
0
.0
22
0.
0
-9
20
-1
04
0
.0
-1
20
0.
0
0.
0
F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10H30




81901302
The orbit shapes are not characteristic of an unbalance.
The generator shaft vibrations are in opposite phase.
The orbit shapes show a stress on the generator shaft (on the vertical direction).
This stress increase when the rotation speed increase and when the temperature increase.
Technivib : Expertises Dynamiques Machines & Structures
25
VI.3.4. GAP
F1 – 3000 RPM – No load -23/11/2012 – 10h07
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10H25
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200

In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the
oil film stiffness is correct (the journal bearing can not be damage with this oil film condition)

But we can notice that the shaft center line go down to almost 70µm when the temperature
increase.
VI.4. SUMMARY
Misalignment value doesn’t influence the displacement levels on the shaft.
81901302
Technivib : Expertises Dynamiques Machines & Structures
26
VII - VIBRATION ARE NOT DUE TO ELECTRICAL PHENOMENON ON THE GENERATOR
The 17th December 2012, we made a test with no excitation on the generator shaft. On these
conditions there are no current, no power, no temperature on the rotor and on the stator of the
generator.
The generator shaft is just supported by its sleeve bearings and subjected to mass unbalance.
VII.1. VIBRATION LEVEL EVOLUTION
2100RPM-17/12/2012 – 14H15 - Cold
Overall
F1 = 35 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
5A
12
9
5B
15
12
6A
3
2
6B
4
2
7A
25
24
7B
23
22
8A
21
20
8B
6
4
3000RPM-No Excitation - 17/12/2012 – 14H20 Cold
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
5A
15
12
5B
16
13
6A
3
1
6B
4
1
7A
50
48
7B
41
40
8A
46
45
8B
16
16
81901302
3000RPM-No Excitation - 17/12/2012 – 14H20 Cold
Overall
F1 = 50 Hz
Measurement
displacement
mm/s RMS
point
10 – 1000 Hz
mm/s RMS
7RH
3.2
2.7
7RV
2.2
1.8
7AX
1.2
1.03
8RH
1.98
1.96
8RV
0.9
0.75
8AX
2.3
2.2
Technivib : Expertises Dynamiques Machines & Structures
27
3000RPM-No Excitation - 17/12/2012 – 15H30 hot
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
5A
20
18
5B
22
14
6A
4
2
6B
5
3
7A
81
78
7B
43
41
8A
87
87
8B
11
10
3000RPM-No Excitation - 17/12/2012 – 15H30 hot
Overall
F1 = 50 Hz
Measurement
displacement
mm/s RMS
point
10 – 1000 Hz
mm/s RMS
7RH
3.5
2.8
7RV
2.4
1.9
7AX
1.3
1.05
8RH
2.75
2.7
8RV
0.8
0.7
8AX
2.2
2.05
We notice an evolution of the vibration levels when the oil temperature increases from the
stabilised temperature (x1.85).
The maximum vibration level on the generator shaft is 87µm Pk-PK. This overall value is considered
as good (or acceptable because very close to the boundary at 90µm Pk-Pk).
81901302
Technivib : Expertises Dynamiques Machines & Structures
28
VII.2. ORBIT
2100RPM-17/12/2012 – 14H15 - Cold
81901302
B5
B6
B7
B8
Technivib : Expertises Dynamiques Machines & Structures
29
3000RPM-No Excitation - 17/12/2012 – 14H20 - Cold
81901302
Technivib : Expertises Dynamiques Machines & Structures
30
3000RPM-No Excitation - 17/12/2012 – 15H30 - hot
The orbit shapes are not characteristic of a balance.
The generator shaft vibrations are in opposite phase.
The orbit shapes show a stress on the generator shaft (on the vertical direction).
This stress already exists at 2100RPM even if the machine is cold and even if they are no current in the
generator shaft.
This stress increase when the rotation speed increase and when the oil of the temperature increase.
81901302
Technivib : Expertises Dynamiques Machines & Structures
31
VII.3. GENERATOR SHAFT CENTER LINE
2100RPM-17/12/2012 – 14H15 - Cold
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
3000RPM-No Excitation - 17/12/2012 – 14H20 - Cold
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
81901302
Technivib : Expertises Dynamiques Machines & Structures
32
3000RPM-No Excitation - 17/12/2012 – 15H30 - hot
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the oil film
stiffness is correct (the journal bearing can not be damage with this oil film condition)
But we can notice that the shaft center line go down to almost 70µm when the oil temperature
increase.
VII.4. RELATION BETWEEN GAP AND VIBRATIONS
180
oil film thickness (µm)
160
140
120
100
palier 7
80
palier 8
60
40
20
0
20
30
40
50
60
70
80
90
100
overall displacement (µm Pk-Pk)

81901302
Shaft vibrations increase when the oil thickness decrease.
Technivib : Expertises Dynamiques Machines & Structures
33
VII.5. SUMMARY
With or without current on the generator shaft (and so without voltage and current on the stator), we
have the same phenomena (much more vibration than before the maintenance, vibration increase with
oil temperature, stressed orbit, oil film stiffness lose almost 70µm when the oil temperature increase).
 There are no electrical problems on the generator.
 There are no abnormal thermal deflexions on the winding of the generator shaft.
 The thermal influence on vibration is not due to thermal effect on the generator.
81901302
Technivib : Expertises Dynamiques Machines & Structures
34
VIII - MODIFICATION OF THE RESTRICTED ORIFICE
We have a direct link between the vibrations on the generator and the bearing lubrification ( oil flow – oil
temperature).
It seems no easy to increase the oil flow or to decrease the oil temperature of the MLO skid to make a
test.
VIII.1. B7 – RO = 17MM - B8 – RO = 17 MM
Then we have decided to increase the Restricted Orifice of the inlet oil of bearing 8 (12 before - 17
for this test).
POWER
During this day at 10 MW we notice than with big restricted orifice on bearing 8, vibrations was 10
µm less.
The RO modification have an effect on vibration but not enough to have around 70µm Pk-Pk at
40 MW.
81901302
Technivib : Expertises Dynamiques Machines & Structures
35
VIII.1.1. vibration level evolution
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 –
18H30
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
5A
15
12
5B
17
14
6A
4
2
6B
5
3
7A
63
60
7B
35
32
8A
70
69
8B
14
12
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 –
18H30
Overall
F1 = 50 Hz
Measurement
displacement
mm/s RMS
point
10 – 1000 Hz
mm/s RMS
7RH
2.66
2.41
7RV
1.43
0.64
7AX
3.03
1.48
8RH
2.49
2.29
8RV
1.03
0.54
8AX
2.44
2.22
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 –
19H30
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
5A
14
10
5B
14
10
6A
4
2
6B
5
3
7A
66
64
7B
35
33
8A
80
79
8B
10
7
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 –
19H30
Overall
F1 = 50 Hz
Measurement
displacement
mm/s RMS
point
10 – 1000 Hz
mm/s RMS
7RH
2.39
2.08
7RV
2.03
1.3
7AX
4.78
2.69
8RH
2.58
2.52
8RV
1.41
0.93
8AX
4.42
4.35
81901302
Technivib : Expertises Dynamiques Machines & Structures
36
F1 – 40MW – 9MVar - cos=0.73 -18/12/2012 –
20H30
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
5A
10
5
5B
12
5
6A
2
1
6B
3
1
7A
68
66
7B
38
36
8A
94
93
8B
17
15
F1 – 40MW – 9MVar - cos=0.73 -18/12/2012 –
20H30
Overall
F1 = 50 Hz
Measurement
displacement
mm/s RMS
point
10 – 1000 Hz
mm/s RMS
7RH
2.27
1.88
7RV
2.93
2.37
7AX
5.07
4.83
8RH
2.39
2.28
8RV
2.13
1.92
8AX
7.04
6.99
We notice an evolution of the vibration levels when the oil temperature increases from the
stabilised temperature (x1.3).
The maximum vibration level on the generator shaft is 94µm Pk-PK at 40MW. This overall value is
considered as acceptable.
81901302
Technivib : Expertises Dynamiques Machines & Structures
37
VIII.1.2. ORBIT
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 18H30
81901302
B5
B6
B7
B8
Technivib : Expertises Dynamiques Machines & Structures
38
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 19H30
81901302
Technivib : Expertises Dynamiques Machines & Structures
39
F1 – 40MW – 9MVar - cos=0.73 -18/12/2012 – 20H30
The orbit shapes are not characteristic of a balance.
The generator shaft vibrations are in opposite phase.
The orbit shapes show a stress on the generator shaft (on the vertical direction).
This stress increase when the rotation speed increase and when the oil temperature increase.
81901302
Technivib : Expertises Dynamiques Machines & Structures
40
VIII.1.3. GENERATOR SHAFT CENTER LINE
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 18H30
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 19H30
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
81901302
Technivib : Expertises Dynamiques Machines & Structures
41
F1 – 40MW – 9MVar - cos=0.73 -18/12/2012 – 20H30
200
150
100
50
Cercle de jeu
0
-200
-100
Palier 7
0
100
200
Palier 8
-50
-100
-150
-200
In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the oil film
stiffness is correct.
But we can notice that the shaft center line go down to almost 70µm when the temperature
increase.
The RO modification have an effect on vibration but not enough to have around 70µm Pk-Pk at
40 MW.
81901302
Technivib : Expertises Dynamiques Machines & Structures
42
VIII.2. B7 – RO = 12MM - B8 – RO = 17 MM
Then we have decided to increase the Restricted Orifice of the inlet oil of bearing 8 (12 before - 17
for this test).
POWER
During this day at 40 MW we notice than with big restricted orifice on bearing 8 and small
restricted orifice on bearing 7, vibrations was 10 µm less.
The RO modification have an effect on vibration but not enough to have around 70µm Pk-Pk at
40 MW.
81901302
Technivib : Expertises Dynamiques Machines & Structures
43
VIII.2.1. vibration level evolution
F1 – 40MW – 10MVar - cos=0.97 -19/12/2012 –
14h40
Overall
F1 = 50 Hz
Measurement
displacement
µm Pk-Pk
point
10 – 1000 Hz
µm Pk-Pk
5A
2.2
1.7
5B
1.1
0.4
6A
1.2
0.9
6B
1.4
0.3
7A
82.2
80.6
7B
46.2
44.4
8A
93.2
93.1
8B
13.9
12.4
The maximum vibration level on the generator shaft is 93µm Pk-PK at 40MW. This overall value is
considered as acceptable.
81901302
Technivib : Expertises Dynamiques Machines & Structures
44
-1
22
0.0
81901302
18
-1
0
0.
l
40
-9
.0
en -1
t ( 14
µm 0.
) 0
Di 0.0
sp
la
ce
m
16
-1
.0
60
-9
)
m
(µ
-1
(µ 14
m 0.0
)
0.0
04
0
0.
12
-1
.0
0.0
20
-9
12
0.0
-1
02
-1
0.
0
10
00
-9
.0
0.0
10
-1
D
M isp
Tr od lay
ac e:
es M
ul
Cu
:
tirs FFT
tra
or 1
:L
ce
Ti
sjs
X: me
[5
:
]-7
Y:
0
A
m
[6
-1 s
]-7
-1 168
B
01 .4
(0
6. 33
RP
67
M
1 µm
,1
µm
4:
4
18
6:
02
/0
6:
18
.5
-1
0
.5
-1
.8
-1
2
0.
.0
sp
Di
4
0.
-1
.6
.0
-1
-1
l
l
.4
Di
sp
)
)
t(
µm
la -0.5
ce
m
en
m
(µ
(µ 0.
m 8
)
.2
-1
-0
.5
en
t
)
m
(µ
Di 0.6
sp
la
ce
m
-1
t
en
em
ac
sp
Di
t
en
em
ac
0
.0
-1
0
1.
0
.8
1.
2
5
0.
5
0.
.6
D
M isp
Tr od lay
ac e:
es M
ul
Cu
:
t irs FFT
tra
or 1
:L
ce
Ti
sjs
X: me
[
1]
:
Y:
5
0
A
m
[
7. s
2]
-5
-1 208
B
.1 19
(0
17 6
RP
96 EM
8E 01
,1
+0 µ m
4:
0
46
µm
:1
8
B6
D
M isp
Tr od lay
ac e:
es M
ul
Cu
:
tirs FFT
tra
or 1
:L
ce
Ti
sjs
X: me
[3
:
]-6
Y:
0
A
m
[4
-4 s
]-6
-7 .81
B
.5 17
(0
09 3
RP
11 1E
M
9E -01
,1
-0
µ
4:
1
m
46
µm
:1
8
02
/0
1/
20
13
)
02
/0
1/
20
13
)
F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 18H30
Technivib : Expertises Dynamiques Machines & Structures
01
3)
02
/0
1/
2
01
3)
1/
2
D
M isp
Tr od lay
ac e:
es M
ul
Cu
:
t irs FFT
tra
or 1
:L
ce
Ti
sjs
X: me
[
7]
:
Y:
-8
0
A
m
[
-1 s
8]
-8
-9 143
B
93 .7
(0
.7 4
RP
21 µm
M
3
,1
µm
4:
4
B8
0.
0
.0
80
-9
sp
Di
en
t
-1
1
Di 60
sp .0
la
ce
m
t
en
em
ac
0.0
18
-1
0.0
-1
B7
20
0
0.
0.0
20
0.0
-1
10
)
m
(µ
0.0
06
-1
t
en
m
ce
0.0
00
-0
-0
B5
-1
00
-1
-1
08
-1
s
Di
a
pl
-1
-1
.0
80
-9
VIII.2.2. ORBIT
The orbit shapes are not characteristic of a balance.
The generator shaft vibrations are in opposite phase.
The orbit shapes show a stress on the generator shaft (on the vertical direction).
This stress increase when the rotation speed increase and when the oil temperature increase.
45
IX - FLANGE VIBRATIONS
IX.1. VIBRATORY LEVELS
acceleromete
rs
Proximity probes
Measurement
points
5A
5B
6A
6B
7A
7B
8A
8B
7RH
7RV
7AX
8RH
8RV
8AX
Overall levels (10 – 1000 Hz)
3000 RPM
10 MW
40 MW
No-load
9 MVAr
9 MVAr
Cos φ = 0.73
Cos φ = 0.73
15
14
10
17
14
12
4
4
2
5
5
3
63
66
68
35
35
38
70
80
94
14
10
17
2.66
2.39
2.27
1.43
2.03
2.93
3.03
4.78
5.07
2.49
2.58
2.39
1.03
1.41
2.13
2.44
4.42
7.04
 Flange vibratory levels (mainly axially) increase with the power of the generator.
81901302
Technivib : Expertises Dynamiques Machines & Structures
46
IX.2. RESONANCE FREQUENCIES WITH CRANKING AT 171 RPM
Resonance frequencies point 8RH
1
2
(Acceleration)/(Force) ((g)/(N))
Display
Mode: Magnitude/Phase
Traces:
14-12-15H00-171RPM-8RH: AE2: H1 8RH MAR
Free marker
131 Hz
99.99999 u
67 Hz
69.99999 u
49.99999 u
30 u
Id Label
Label Trace
Trace X Y X
20 u
Y
1 67
67Hz
Hz
H1
27.35553
H1
[5/1]
68.75
[5/1]u(g)/(N)
Hz68.75 Hz 27.35553 u(g)/(N
2 131
131Hz
Hz H1
H1[5/1]
[5/1] 131.25
131.25
47.97833
Hz
Hz 47.97833
u(g)/(N) u(g)/(N
Cursor
X: 0 Hz
H1 [5/1] Y: 6.398012 m(g)/(N)
H1 [5/1] Y: 0 °
10 u
7u
5u
3u
2u
50
100
150
200
Frequency (Hz)
250
300
350
400
50
100
150
200
Frequency (Hz)
250
300
350
400
150
100
Phase (°)
50
0
-50
-100
-150
Resonance frequencies point 8RV
1
(Acceleration)/(Force) ((g)/(N))
200 u
2
71 Hz
Display
Mode: Magnitude/Phase
Traces:
14-12-15H00-171RPM-8RV: AE2: H1 8RV MART
Free marker
132 Hz
99.99999 u
49.99999 u
Id Label
Label Trace
Trace X Y X
20 u
Y
1 71
71Hz
Hz
H1
23.9081
H1
[6/1]
73.75
[6/1]u(g)/(N)
Hz
73.75 Hz
10 u
23.9081 u(g)/(N)
2 132
132Hz
Hz H1
H1[6/1]
[6/1]
130
90.47844
Hz 90.47844
u(g)/(N) u(g)/(N)
Cursor
X: 0 Hz
H1 [6/1] Y: 3.868522 m(g)/(N)
H1 [6/1] Y: 0 °
5u
2u
1u
500 n
300 n
50
100
150
200
Frequency (Hz)
250
300
350
400
50
100
150
200
Frequency (Hz)
250
300
350
400
150
Phase (°)
100
50
0
-50
-100
-150
Resonance frequencies point 8Ax
2m
1
Display
Mode: Magnitude/Phase
Traces:
14-12-15H00-171RPM-8AX: AE2: H1 8AX MARTEAU
Free marker
(Acceleration)/(Force) ((g)/(N))
1m
45 Hz
500 u
200 u
Id Label Trace
Trace X YX
49.99999 u
20 u
10 u
5u
2u
0
50
100
150
200
Frequency (Hz)
250
300
350
400
50
100
150
200
Frequency (Hz)
250
300
350
400
150
100
Phase (°)
50
0
-50
-100
-150
0
81901302
Y
1 45 Hz104.2426
H1H1
[7/1]
[7/1]
45u(g)/(N)
Hz
45 Hz 104.2426 u(g)/(N)
Cursor
X: 0 Hz
H1 [7/1] Y: 989.7946 u(g)/(N)
H1 [7/1] Y: 0 °
99.99999 u
Technivib : Expertises Dynamiques Machines & Structures
47
Resonance frequencies point 7RH
1
(Acceleration)/(Force) ((g)/(N))
Display
Mode: Magnitude/Phase
Traces:
14-12-15H00-171RPM-7RH: AE2: H1 7RH
Free marker
158.7 Hz
200 u
99.99999 u
49.99999 u
Id Label
Label Trace
TraceX Y
X
Y
1 58.7
158.7
HzH1
Hz257.3624
[2/1]
H1158.75
[2/1]u(g)/(N)
Hz
158.75 Hz 257.3624
Cursor
X: 0 Hz
H1 [2/1] Y: 1.195488 m(g)/(N)
H1 [2/1] Y: 0 °
20 u
10 u
5u
2u
1u
50
100
150
200
Frequency (Hz)
250
300
350
400
50
100
150
200
Frequency (Hz)
250
300
350
400
150
100
Phase (°)
50
0
-50
-100
-150
Resonance frequencies point 7RV
1
Display
Mode: Magnitude/Phase
Traces:
14-12-15H00-171RPM-7RV: AE2: H1 7R
Free marker
1m
(Acceleration)/(Force) ((g)/(N))
500 u
200 u
105 Hz
99.99999 u
Id Label
Label Trace
Trace X Y X
49.99999 u
Y
1 105
105Hz
Hz
H1
37.15738
H1
[3/1]
[3/1]
105u(g)/(N)
Hz
105 Hz 37.15738 u
Cursor
X: 0 Hz
H1 [3/1] Y: 2.272716 m(g)/(N)
H1 [3/1] Y: 0 °
20 u
10 u
5u
2u
1u
50
100
150
200
Frequency (Hz)
250
300
350
400
50
100
150
200
Frequency (Hz)
250
300
350
400
150
100
Phase (°)
50
0
-50
-100
-150
Resonance frequencies point 7Ax
1
Display
Mode: Magnitude/Phase
Traces:
14-12-15H00-171RPM-7AX: AE2: H
Free marker
1m
(Acceleration)/(Force) ((g)/(N))
500 u
72 Hz
200 u
Id Label
99.99999 u
20 u
10 u
5u
50
100
150
200
Frequency (Hz)
250
300
350
400
50
100
150
200
Frequency (Hz)
250
300
350
400
150
100
Phase (°)
50
0
-50
-100
-150
81901302
Trace
Trace X YX
Y
1 72 Hz226.2273
H1H1
[4/1]
[4/1]
75u(g)/(N)
Hz
75 Hz 226.2273
Cursor
X: 0 Hz
H1 [4/1] Y: 42.22261 m(g)/(N)
H1 [4/1] Y: 0 °
49.99999 u
Technivib : Expertises Dynamiques Machines & Structures
48
IX.3. SUMMARY
Summary table of first resonance frequency
Measurement
points
7RH
7RV
7AX
8RH
8RV
8AX
1st resonance frequency
158.7 Hz
105 Hz
72 Hz
67 Hz
71 Hz
45 Hz

Resonance frequency at 45 Hz on 8Ax is close to the rotation speed (F1 = 50 Hz)

It seems that this resonance is responsible for the important axial vibrations on flange 8 but not
for the displacement of the shaft because at 10 MW, vibration of the shaft are already important
(80 µm Pk-Pk) when axial vibration on flange 8 are correct (4.42 mm/s).
81901302
Technivib : Expertises Dynamiques Machines & Structures
49
X - ANNEX 1 – RUN DOWN ANALYSIS
Run down – 19/11/2012 – 14h00
7A
7B
8A
8B

81901302
Run down analysis show no trace of critical frequency on the generator shaft.
Technivib : Expertises Dynamiques Machines & Structures
50
XI - ANNEX 2 – MVAR ET MW INFLUENCE ON VIBRATORY LEVELS (21/11/2012)
Shaft displacement during power rise at 11 MVAr
60
Shaft displacement (µm Pk-Pk)
50
40
7A
7B
30
8A
8B
20
10
0
0
5
10
15
20
25
30
35
40
45
Puissance (MW)

81901302
Power increase is not making an important change in shaft displacement.
Technivib : Expertises Dynamiques Machines & Structures
51
Shaft displacement during reactive intensity rise at 40 MW
100
Shaft displacement (µm Pk-Pk)
90
80
70
60
7A
7B
50
8A
8B
40
30
20
10
0
0
2
4
6
8
10
12
Reactive intensity (MVAr)

81901302
Reactive intensity increase is not making an important change in shaft displacement.
Technivib : Expertises Dynamiques Machines & Structures
52
XI.1. ANNEX 3: GEAR SHAFT CENTER LINE DURING POWER RISE
2100RPM-17/12/2012 – 14H15 - Cold
200
200
150
150
100
100
50
50
Cercle de jeu
0
-200
-100
Cercle de jeu
Palier 7
0
100
200
Palier 8
0
-200
-100
-50
Palier 5
0
100
200
Palier 6
-50
-100
-100
-150
-150
-200
-200
3000RPM-No Excitation - 17/12/2012 – 14H20 - Cold
200
200
150
150
100
100
50
50
Cercle de jeu
0
-200
-100
81901302
Cercle de jeu
Palier 7
0
100
200
Palier 8
0
-200
-100
Palier 5
0
-50
-50
-100
-100
-150
-150
-200
-200
Technivib : Expertises Dynamiques Machines & Structures
100
200
Palier 6
53
3000RPM-No Excitation - 17/12/2012 – 15H30 - hot
200
200
150
150
100
100
50
50
Cercle de jeu
0
-200
-100
Cercle de jeu
Palier 7
0
100
200
Palier 8
0
-200
-100
Palier 5
0
-50
-50
-100
-100
-150
-150
-200
-200
100
200
Palier 6
We can notice that the shaft center line of the generator go down to almost 70µm when the oil
temperature increase. During the same time, the shaft center line of the gear go down of about 30
µm.
81901302
Technivib : Expertises Dynamiques Machines & Structures
54