AEW A l’attention de Mr Benoit DEGRAAF 31 Rue Mercatoris L – 7237 WALFERDANGE Pringy, 18th december 2012 Tel : 00 352 33 72 32 1 Fax : e-mail : [email protected] Expertise vibratoire ALTERNATEUR Site Rhodia (Chalampé-68) AEW Rapport n°: XXXX Date de mesure : 17, 19, 21, 23 Novembre 2012 Jérôme BADIEU Mesures et analyses effectuées par : Raphaël FERRARIS technivib – ZI de PRINGY – 531 Route des Vernes – 74370 PRINGY – France Tél : 0033 4 50 01 23 20.– Fax : 0033 4 50 01 57 81 – e.mail : [email protected] Website : www.technivib.com S.A.R.L. au capital de 15 000 Euros – SIRET 453 180 630 000 23 – RCS ANNECY 453 180 630 – Code APE 7112B. Ce document est la propriété de Technivib. Toute communication, reproduction, publication, même partielle, est interdite sauf autorisation écrite de la part de la société Technivib. TABLE DES MATIERES I - BILAN - PRECONISATIONS ............................................................................................................................................... 4 I.1. BILAN ................................................................................................................................................................................... 4 I.2. PRECONISATIONS.................................................................................................................................................................. 4 II - OBJET .................................................................................................................................................................................... 5 III - MATERIELS UTILISES .................................................................................................................................................... 5 IV - DESCRIPTION OF INSTALLATION – TURBINE – GEAR - GENERATOR ........................................................... 6 IV.1. INSTALLATION DIAGRAM ............................................................................................................................................... 6 IV.2. APPLICABLE STANDARD – ISO 7919-2 ................................................................................................................................ 6 V - INITIAL OBSERVATION ................................................................................................................................................... 7 V.1. GENERATOR MISALIGMENT VALUES ................................................................................................................................... 7 V.2. VIBRATION LEVEL EVOLUTION ............................................................................................................................................ 8 V.3. ORBIT ............................................................................................................................................................................. 10 V.4. GENERATOR SHAFT CENTER LINE.......................................................................................................................... 13 V.5. RELATION BETWEEN GAP AND VIBRATIONS .................................................................................................................... 16 V.6. GENERATOR VIBRATION DURING COUPLAGE AND EXCITATION .................................................................................... 17 V.7. SUMMARY ........................................................................................................................................................................ 17 VI - MISALIGNMENT EFFECT ............................................................................................................................................ 18 VI.1. 19/11/2012...................................................................................................................................................................... 18 VI.1.1. Misalignment value ................................................................................................................................................. 18 VI.1.2. Vibration levels ....................................................................................................................................................... 18 VI.1.3. Orbits....................................................................................................................................................................... 19 VI.1.4. GAP ......................................................................................................................................................................... 20 VI.2. 21/11/2012...................................................................................................................................................................... 21 VI.2.1. Misalignment value ................................................................................................................................................. 21 VI.2.2. Vibration levels ....................................................................................................................................................... 21 VI.2.3. Orbits....................................................................................................................................................................... 22 VI.2.4. GAP ......................................................................................................................................................................... 23 VI.3. 23/11/2012...................................................................................................................................................................... 24 VI.3.1. Misalignment value ................................................................................................................................................. 24 VI.3.2. Vibration levels ....................................................................................................................................................... 24 VI.3.3. Orbits....................................................................................................................................................................... 25 VI.3.4. GAP ......................................................................................................................................................................... 26 VI.4. SUMMARY ....................................................................................................................................................................... 26 VII - VIBRATION ARE NOT DUE TO ELECTRICAL PHENOMENON ON THE GENERATOR ............................. 27 VII.1. VIBRATION LEVEL EVOLUTION ....................................................................................................................................... 27 VII.2. ORBIT .......................................................................................................................................................................... 29 VII.3. GENERATOR SHAFT CENTER LINE ....................................................................................................................... 32 VII.4. RELATION BETWEEN GAP AND VIBRATIONS .................................................................................................................. 33 VII.5. SUMMARY ...................................................................................................................................................................... 34 VIII - MODIFICATION OF THE RESTRICTED ORIFICE............................................................................................... 35 VIII.1. B7 – RO = 17MM - B8 – RO = 17 MM ......................................................................................................................... 35 VIII.1.1. vibration level evolution ....................................................................................................................................... 36 VIII.1.2. ORBIT ................................................................................................................................................................... 38 VIII.1.3. GENERATOR SHAFT CENTER LINE ................................................................................................................. 41 VIII.2. B7 – RO = 12MM - B8 – RO = 17 MM ......................................................................................................................... 43 VIII.2.1. vibration level evolution ....................................................................................................................................... 44 VIII.2.2. ORBIT ................................................................................................................................................................... 45 IX - FLANGE VIBRATIONS ................................................................................................................................................... 46 IX.1. VIBRATORY LEVELS......................................................................................................................................................... 46 81901302 Technivib : Expertises Dynamiques Machines & Structures 2 IX.2. RESONANCE FREQUENCIES WITH CRANKING AT 171 RPM .............................................................................................. 47 IX.3. SUMMARY ....................................................................................................................................................................... 49 X - ANNEX 1 – RUN DOWN ANALYSIS .............................................................................................................................. 50 XI - ANNEX 2 – MVAR ET MW INFLUENCE ON VIBRATORY LEVELS (21/11/2012) .............................................. 51 XI.1. ANNEX 3: GEAR SHAFT CENTER LINE DURING POWER RISE ............................................................................................ 53 81901302 Technivib : Expertises Dynamiques Machines & Structures 3 I - BILAN - PRECONISATIONS I.1. BILAN I.2. PRÉCONISATIONS 81901302 Technivib : Expertises Dynamiques Machines & Structures 4 II - OBJET Après une opération de maintenance sur l’alternateur, les niveaux vibratoires semblent avoir augmentés. L’objectif de notre expertise est de déterminer la cause de l’augmentation de ces vibrations. III - MATERIELS UTILISES - 1 analyseur de vibrations 16 voies synchrones de marque OROS avec l’ensemble des logiciels associés. 1 ordinateur portable. Accéléromètres de marque DJB. 1 Top Tour laser Utilisation du rack Bently Nevada L’ensemble étant piloté par un PC portable il permet la sauvegarde des mesures sur le disque dur afin de réaliser ultérieurement l’analyse approfondie et l’archivage. 81901302 Technivib : Expertises Dynamiques Machines & Structures 5 IV - DESCRIPTION OF INSTALLATION – TURBINE – GEAR - GENERATOR F0 = 60 Hz (turbine rotation frequency) F1 = 50Hz (generator rotation frequency) Nominal Power = 65MW - 38MVar IV.1. INSTALLATION DIAGRAM B8 B7 TURBINE GEAR BOX GENRATOR Bearing Clearance : cylindrical bearing B7 : 310 µm 0µm B8 : 360 µm 10µm IV.2. APPLICABLE STANDARD – ISO 7919-2 Zone Boundary Newly (zone A) Pk-PK relative vibration displacement in µm at zone boundaries At 3000RPM Newly < 90 µm Pk-Pk Boundary A/B Acceptable (zone B) 90 µm Pk-Pk 90 µm Pk-Pk < Acceptable < 165 µm Pk-Pk Boundary B/C 165 µm Pk-Pk Unsatisfactory (zone C) 165 µm Pk-Pk < Unsatisfactory < 240 µm Pk-Pk Boundary C/D Damage (zone D) 240 µm Pk-Pk 240 µm Pk-Pk < Damage Zone A: The vibration of newly commissioned machines would normally fall within this zone. Zone B: Machine with vibration within this zone are normally considered acceptable for unrestricted longterm operation. Zone C: Machine with vibration within this zone are normally considered unsatisfactory for long-term continuous operation. Generally, the machine may be operated for a limited period in this condition until a suitable opportunity arises for remedial action. Zone D: Vibration values within this zone are normally considered to be of sufficient severity to cause damage to the machine 81901302 Technivib : Expertises Dynamiques Machines & Structures 6 V - INITIAL OBSERVATION V.1. GENERATOR MISALIGMENT VALUES Alignment back to constructor specification VERTICAL < 0.04 mm = 0.04 mm HORIZONTAL < 0.02 mm = 0 mm 81901302 Technivib : Expertises Dynamiques Machines & Structures 7 V.2. VIBRATION LEVEL EVOLUTION 2100RPM-17/11/2012 – 10H55 - Cold Overall F1 = 35 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 23 20 7B 18 19 8A 23 20 8B 10 7 F1 – Synchronisation -17/11/2012 – 10H57 - Cold Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 48 45 7B 45 44 8A 48 46 8B 26 25 F1 – 10MW – 12MVar - cos=0.14 -17/11/2012 – 11H00 - Cold Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 49 47 7B 36 35 8A 41 40 8B 12 9 F1 – 20MW – 11MVar - cos=0.92 -17/11/2012 – 11H10 - Cold Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 62 60 7B 37 36 8A 57 54 8B 10 9 81901302 Technivib : Expertises Dynamiques Machines & Structures 8 F1 – 20MW – 9.9MVar - cos=0.89 -17/11/2012 – 12H15 Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 74 71 7B 45 42 79 8A 77 8B 20 19 F1 – 40MW – 11.5MVar - cos=0.96 -17/11/2012 – 15H25 Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 79 7A 76 7B 48 45 89 8A 87 8B 26 24 We notice an evolution of the vibration levels when the machine temperature increases from the stabilised temperature (x1.85). The maximum vibration level on the generator shaft is 89µm Pk-PK. This overall value is considered as good (or acceptable because very close to the boundary at 90µm Pk-Pk). 81901302 Technivib : Expertises Dynamiques Machines & Structures 9 V.3. ORBIT 2100RPM-17/11/2012 – 10H55 - Cold B7 B8 F1 – Synchronisation -17/11/2012 – 10H57 - Cold 81901302 Technivib : Expertises Dynamiques Machines & Structures 10 F1 – 10MW – 12MVar - cos=0.14 -17/11/2012 – 11H00 - Cold F1 – 20MW – 11MVar - cos=0.92 -17/11/2012 – 11H15 - Cold 81901302 Technivib : Expertises Dynamiques Machines & Structures 11 F1 – 20MW – 9.9MVar - cos=0.89 -17/11/2012 – 12H15 F1 – 40MW – 11.5MVar - cos=0.96 -17/11/2012 – 15H25 81901302 The orbit shapes are not characteristic of an unbalance. The generator shaft vibrations are in opposite phase. The orbit shapes show a stress on the generator shaft (on the vertical direction). This stress already exists at 2100RPM even if the machine is cold and even if they are no current in the generator shaft. This stress increase when the rotation speed increase and when the temperature increase. Technivib : Expertises Dynamiques Machines & Structures 12 V.4. GENERATOR SHAFT CENTER LINE 2100RPM-17/11/2012 – 10H55 - Cold 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 F1 – Synchronisation -17/11/2012 – 10H57 - Cold 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 81901302 Technivib : Expertises Dynamiques Machines & Structures 13 F1 – 10MW – 12MVar - cos=0.14 -17/11/2012 – 11H00 - Cold 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 F1 – 20MW – 11MVar - cos=0.92 -17/11/2012 – 11H15 - Cold 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 81901302 Technivib : Expertises Dynamiques Machines & Structures 14 F1 – 20MW – 9.9MVar - cos=0.89 -17/11/2012 – 12H15 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 F1 – 40MW – 11.5MVar - cos=0.96 -17/11/2012 – 15H25 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the oil film stiffness is correct (the journal bearing can not be damage with this oil film condition) But we can notice that the shaft center line go down to almost 70µm when the temperature increase. 81901302 Technivib : Expertises Dynamiques Machines & Structures 15 V.5. RELATION BETWEEN GAP AND VIBRATIONS 180 oil film thickness (µm) 160 140 120 100 palier 7 80 palier 8 60 40 20 0 20 30 40 50 60 70 80 90 100 overall displacement (µm Pk-Pk) 81901302 Shaft vibrations increase when the oil thickness decrease. Technivib : Expertises Dynamiques Machines & Structures 16 V.6. GENERATOR VIBRATION DURING COUPLAGE AND EXCITATION 3000 RPM Synchronisation Zoom: In cold condition, the synchronisation and the excitation have no effect on generator shaft vibration. It seems to have no electrical problem on this generator. V.7. SUMMARY This orbit shape and the evolution of the oil film stiffness can be due to misalignment which change with the evolution of temperature of the machine or can be due to a phenomenon in link with bearing or oil. 81901302 Technivib : Expertises Dynamiques Machines & Structures 17 VI - MISALIGNMENT EFFECT This generator has strange misalignment value in the past. Then we try to change the misalignment especially on vertical direction in order to have an effect on vibrations. VI.1. 19/11/2012 VI.1.1. Misalignment value Alignment back to constructor specification VERTICAL < 0.04 mm = 0.04 mm HORIZONTAL < 0.02 mm = 0 mm VI.1.2. Vibration levels F1 – 3000 RPM – No load -19/11/2012 – 11H54 Cold Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 49.6 47.3 7B 51.4 50.3 8A 47.7 47.6 8B 26.8 26.2 F1 – 45MW – 11.7MVar - cos=0.97 -19/11/2012 – 12h26 - Warm Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 92.3 91.4 7B 59.1 58 8A 54.8 54.4 8B 14.6 14 81901302 Technivib : Expertises Dynamiques Machines & Structures 18 VI.1.3. Orbits F1 – 3000 RPM – No load -19/11/2012 – 11H54 60.0 X 20.0 Y 20.0 Y 10.0 Displacement (µm) Displacement (µm) X 30.0 40.0 Display Mode: Multi-grap Traces: FFT1: R_Orb FFT1: R_Orb Cursor Angle: 0 ° X: 2.5 Y: 1.2 X: -2.0 Y: 3.6 0 0 -10.0 -20.0 -20.0 -40.0 -30.0 -60.0 -40.0 -20.0 0 Displacement (µm) 20.0 40.0 60.0 -30.0 -20.0 -10.0 0 Displacement (µm) 10.0 20.0 30.0 F1 – 40MW – 11.7MVar - cos=0.97 -19/11/2012 – 12h26 30.0 X 60.0 20.0 40.0 Y Y 10.0 Displacement (µm) Displacement (µm) 20.0 0 -20.0 -20.0 -60.0 -30.0 -60.0 81901302 0 -10.0 -40.0 Display Mode: MultiTraces: FFT1: R_ FFT1: R_ Cursor Angle: X: Y: X: Y: X -40.0 -20.0 0 Displacement (µm) 20.0 40.0 60.0 -30.0 -20.0 -10.0 0 Displacement (µm) 10.0 20.0 30.0 The orbit shapes are not characteristic of an unbalance. The generator shaft vibrations are in opposite phase. The orbit shapes show a stress on the generator shaft (on the vertical direction). This stress increase when the temperature increase. Technivib : Expertises Dynamiques Machines & Structures 19 VI.1.4. GAP F1 – 3000 RPM – No load -19/11/2012 – 11H54 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 F1 – 40MW – 11.7MVar - cos=0.97 -19/11/2012 – 12h26 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the oil film stiffness is correct (the journal bearing can not be damage with this oil film condition) But we can notice that the shaft center line go down to almost 70µm when the temperature increase. 81901302 Technivib : Expertises Dynamiques Machines & Structures 20 VI.2. 21/11/2012 VI.2.1. Misalignment value Alignment adjusted -0.1mm on 4 generator legs VERTICAL < 0.05 mm = -0.1 mm HORIZONTAL < -0.01 mm = -0.02 mm VI.2.2. Vibration levels F1 – 3000 RPM – No load -23/11/2012 – 09h54Cold Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 47.6 45.4 7B 46 44.2 8A 48.5 48.4 8B 19.5 19 F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10h25 - Warm Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 84.2 83 7B 52.3 51 8A 74.4 74.1 8B 24.3 24 81901302 Technivib : Expertises Dynamiques Machines & Structures 21 VI.2.3. Orbits F1 – 3000 RPM – No load -23/11/2012 – 09h54 X Display Mode: Multi-graph Traces: FFT1: R_Orbt [ FFT1: R_Orbt [ Cursor Angle: 0 ° X: 9.707 Y: 3.523 X: -1.71 Y: -1.61 X 40.0 60.0 30.0 40.0 Y Y 20.0 20.0 Displacement (µm) Displacement (µm) 10.0 0 0 -10.0 -20.0 -20.0 -40.0 -30.0 -60.0 -40.0 -60.0 -40.0 -20.0 0 Displacement (µm) 20.0 40.0 60.0 -40.0 -30.0 -20.0 -10.0 0 10.0 Displacement (µm) 20.0 30.0 40.0 F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10H25 X 60.0 Display Mode: Multi-graph Traces: FFT1: R_Orbt [2]-7 FFT1: R_Orbt [4]-8 Cursor Angle: 0 ° X: 9.177853 Y: 1.939941 X: -1.37561 Y: -4.86802 X 40.0 30.0 40.0 Y Y 20.0 Displacement (µm) Displacement (µm) 20.0 0 10.0 0 -10.0 -20.0 -20.0 -40.0 -30.0 -40.0 -60.0 -60.0 81901302 -40.0 -20.0 0 20.0 Displacement (µm) 40.0 60.0 -40.0 -30.0 -20.0 -10.0 0 10.0 Displacement (µm) 20.0 30.0 40.0 The orbit shapes are not characteristic of an unbalance. The generator shaft vibrations are in opposite phase. The orbit shapes show a stress on the generator shaft (on the vertical direction). This stress increase when the rotation speed increase and when the temperature increase. Technivib : Expertises Dynamiques Machines & Structures 22 VI.2.4. GAP F1 – 3000 RPM – No load -23/11/2012 – 09h54 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10H25 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the oil film stiffness is correct (the journal bearing can not be damage with this oil film condition) But we can notice that the shaft center line go down to almost 70µm when the temperature increase. 81901302 Technivib : Expertises Dynamiques Machines & Structures 23 VI.3. 23/11/2012 VI.3.1. Misalignment value Alignment adjusted -0.3 mm on 2 NDE legs VERTICAL < 0 mm = -0.12 mm HORIZONTAL < 0 mm = 0.02 mm VI.3.2. Vibration levels F1 – 3000 RPM – No load -23/11/2012 – 10h07Cold Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 52.5 50.8 7B 44.6 43.1 8A 59.6 52.4 8B 19.2 18.8 F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10h30 - Warm Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 7A 78.5 77.8 7B 48.6 47.4 8A 70.1 69.8 8B 24.2 29.8 81901302 Technivib : Expertises Dynamiques Machines & Structures 24 VI.3.3. Orbits F1 – 3000 RPM – No load -23/11/2012 – 10h07 X Display Mode: Mult Traces: FFT1: R FFT1: R Cursor Angle: X: Y: X: Y: X 40.0 40.0 30.0 Y Y 20.0 10.0 Displacement (µm) Displacement (µm) 20.0 0 0 -10.0 -20.0 -20.0 -30.0 -40.0 -40.0 20.0 40.0 -40.0 -30.0 -20.0 -10.0 0 10.0 Displacement (µm) 20.0 30.0 40.0 ) 0 Displacement (µm) 13 -20.0 D M isp Tr od lay ac e: es M ul Cu : ti rs FFT tra or 1 :L ce Ti sjs m X: e: [2 ]-7 Y: 12 A [3 -1 98. ]-7 -1 241 279 B 12 .3 m (0 8. 25 s RP 22 µ M 9 m ,1 µm 4 :4 2 :5 2 D M isp Tr od lay ac e: es M ul Cu : tirs FFT tra or 1 :L ce Ti sjs X: me [ 4] : Y: 8A 0 m [ -1 s 5] -8 -9 164 B 22 .4 (0 .2 29 RP 63 M 7 µm ,1 µm 4 :4 02 2: /0 1 52 /2 02 01 /0 3) 1/ 20 -40.0 12 -1 .0 0. 0 14 ) -9 40 ce 116 m 0. en 0 t( µm 18 0. Di 0 sp l Di sp la -9 60 .0 ) m (µ t en em ac 20 -1 .0 -1 32 0. -1 16 0. 0 0 -1 00 0 -1 14 0. 0 -1 30 0 0. .0 0 -9 80 . 0 -1 0 -1 28 0. 0 -1 12 0. Di sp m ce la -1 10 0. 0 µm t( en ) Di sp 12 la 60 ce .0 m en t( µm ) -1 -1 08 0. 0 24 0. 0 .0 -1 -1 -1 06 0 .0 22 0. 0 -9 20 -1 04 0 .0 -1 20 0. 0 0. 0 F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10H30 81901302 The orbit shapes are not characteristic of an unbalance. The generator shaft vibrations are in opposite phase. The orbit shapes show a stress on the generator shaft (on the vertical direction). This stress increase when the rotation speed increase and when the temperature increase. Technivib : Expertises Dynamiques Machines & Structures 25 VI.3.4. GAP F1 – 3000 RPM – No load -23/11/2012 – 10h07 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 F1 – 40MW – 11.3MVar - cos=0.96 -23/11/2012 – 10H25 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the oil film stiffness is correct (the journal bearing can not be damage with this oil film condition) But we can notice that the shaft center line go down to almost 70µm when the temperature increase. VI.4. SUMMARY Misalignment value doesn’t influence the displacement levels on the shaft. 81901302 Technivib : Expertises Dynamiques Machines & Structures 26 VII - VIBRATION ARE NOT DUE TO ELECTRICAL PHENOMENON ON THE GENERATOR The 17th December 2012, we made a test with no excitation on the generator shaft. On these conditions there are no current, no power, no temperature on the rotor and on the stator of the generator. The generator shaft is just supported by its sleeve bearings and subjected to mass unbalance. VII.1. VIBRATION LEVEL EVOLUTION 2100RPM-17/12/2012 – 14H15 - Cold Overall F1 = 35 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 5A 12 9 5B 15 12 6A 3 2 6B 4 2 7A 25 24 7B 23 22 8A 21 20 8B 6 4 3000RPM-No Excitation - 17/12/2012 – 14H20 Cold Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 5A 15 12 5B 16 13 6A 3 1 6B 4 1 7A 50 48 7B 41 40 8A 46 45 8B 16 16 81901302 3000RPM-No Excitation - 17/12/2012 – 14H20 Cold Overall F1 = 50 Hz Measurement displacement mm/s RMS point 10 – 1000 Hz mm/s RMS 7RH 3.2 2.7 7RV 2.2 1.8 7AX 1.2 1.03 8RH 1.98 1.96 8RV 0.9 0.75 8AX 2.3 2.2 Technivib : Expertises Dynamiques Machines & Structures 27 3000RPM-No Excitation - 17/12/2012 – 15H30 hot Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 5A 20 18 5B 22 14 6A 4 2 6B 5 3 7A 81 78 7B 43 41 8A 87 87 8B 11 10 3000RPM-No Excitation - 17/12/2012 – 15H30 hot Overall F1 = 50 Hz Measurement displacement mm/s RMS point 10 – 1000 Hz mm/s RMS 7RH 3.5 2.8 7RV 2.4 1.9 7AX 1.3 1.05 8RH 2.75 2.7 8RV 0.8 0.7 8AX 2.2 2.05 We notice an evolution of the vibration levels when the oil temperature increases from the stabilised temperature (x1.85). The maximum vibration level on the generator shaft is 87µm Pk-PK. This overall value is considered as good (or acceptable because very close to the boundary at 90µm Pk-Pk). 81901302 Technivib : Expertises Dynamiques Machines & Structures 28 VII.2. ORBIT 2100RPM-17/12/2012 – 14H15 - Cold 81901302 B5 B6 B7 B8 Technivib : Expertises Dynamiques Machines & Structures 29 3000RPM-No Excitation - 17/12/2012 – 14H20 - Cold 81901302 Technivib : Expertises Dynamiques Machines & Structures 30 3000RPM-No Excitation - 17/12/2012 – 15H30 - hot The orbit shapes are not characteristic of a balance. The generator shaft vibrations are in opposite phase. The orbit shapes show a stress on the generator shaft (on the vertical direction). This stress already exists at 2100RPM even if the machine is cold and even if they are no current in the generator shaft. This stress increase when the rotation speed increase and when the oil of the temperature increase. 81901302 Technivib : Expertises Dynamiques Machines & Structures 31 VII.3. GENERATOR SHAFT CENTER LINE 2100RPM-17/12/2012 – 14H15 - Cold 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 3000RPM-No Excitation - 17/12/2012 – 14H20 - Cold 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 81901302 Technivib : Expertises Dynamiques Machines & Structures 32 3000RPM-No Excitation - 17/12/2012 – 15H30 - hot 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the oil film stiffness is correct (the journal bearing can not be damage with this oil film condition) But we can notice that the shaft center line go down to almost 70µm when the oil temperature increase. VII.4. RELATION BETWEEN GAP AND VIBRATIONS 180 oil film thickness (µm) 160 140 120 100 palier 7 80 palier 8 60 40 20 0 20 30 40 50 60 70 80 90 100 overall displacement (µm Pk-Pk) 81901302 Shaft vibrations increase when the oil thickness decrease. Technivib : Expertises Dynamiques Machines & Structures 33 VII.5. SUMMARY With or without current on the generator shaft (and so without voltage and current on the stator), we have the same phenomena (much more vibration than before the maintenance, vibration increase with oil temperature, stressed orbit, oil film stiffness lose almost 70µm when the oil temperature increase). There are no electrical problems on the generator. There are no abnormal thermal deflexions on the winding of the generator shaft. The thermal influence on vibration is not due to thermal effect on the generator. 81901302 Technivib : Expertises Dynamiques Machines & Structures 34 VIII - MODIFICATION OF THE RESTRICTED ORIFICE We have a direct link between the vibrations on the generator and the bearing lubrification ( oil flow – oil temperature). It seems no easy to increase the oil flow or to decrease the oil temperature of the MLO skid to make a test. VIII.1. B7 – RO = 17MM - B8 – RO = 17 MM Then we have decided to increase the Restricted Orifice of the inlet oil of bearing 8 (12 before - 17 for this test). POWER During this day at 10 MW we notice than with big restricted orifice on bearing 8, vibrations was 10 µm less. The RO modification have an effect on vibration but not enough to have around 70µm Pk-Pk at 40 MW. 81901302 Technivib : Expertises Dynamiques Machines & Structures 35 VIII.1.1. vibration level evolution F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 18H30 Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 5A 15 12 5B 17 14 6A 4 2 6B 5 3 7A 63 60 7B 35 32 8A 70 69 8B 14 12 F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 18H30 Overall F1 = 50 Hz Measurement displacement mm/s RMS point 10 – 1000 Hz mm/s RMS 7RH 2.66 2.41 7RV 1.43 0.64 7AX 3.03 1.48 8RH 2.49 2.29 8RV 1.03 0.54 8AX 2.44 2.22 F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 19H30 Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 5A 14 10 5B 14 10 6A 4 2 6B 5 3 7A 66 64 7B 35 33 8A 80 79 8B 10 7 F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 19H30 Overall F1 = 50 Hz Measurement displacement mm/s RMS point 10 – 1000 Hz mm/s RMS 7RH 2.39 2.08 7RV 2.03 1.3 7AX 4.78 2.69 8RH 2.58 2.52 8RV 1.41 0.93 8AX 4.42 4.35 81901302 Technivib : Expertises Dynamiques Machines & Structures 36 F1 – 40MW – 9MVar - cos=0.73 -18/12/2012 – 20H30 Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 5A 10 5 5B 12 5 6A 2 1 6B 3 1 7A 68 66 7B 38 36 8A 94 93 8B 17 15 F1 – 40MW – 9MVar - cos=0.73 -18/12/2012 – 20H30 Overall F1 = 50 Hz Measurement displacement mm/s RMS point 10 – 1000 Hz mm/s RMS 7RH 2.27 1.88 7RV 2.93 2.37 7AX 5.07 4.83 8RH 2.39 2.28 8RV 2.13 1.92 8AX 7.04 6.99 We notice an evolution of the vibration levels when the oil temperature increases from the stabilised temperature (x1.3). The maximum vibration level on the generator shaft is 94µm Pk-PK at 40MW. This overall value is considered as acceptable. 81901302 Technivib : Expertises Dynamiques Machines & Structures 37 VIII.1.2. ORBIT F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 18H30 81901302 B5 B6 B7 B8 Technivib : Expertises Dynamiques Machines & Structures 38 F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 19H30 81901302 Technivib : Expertises Dynamiques Machines & Structures 39 F1 – 40MW – 9MVar - cos=0.73 -18/12/2012 – 20H30 The orbit shapes are not characteristic of a balance. The generator shaft vibrations are in opposite phase. The orbit shapes show a stress on the generator shaft (on the vertical direction). This stress increase when the rotation speed increase and when the oil temperature increase. 81901302 Technivib : Expertises Dynamiques Machines & Structures 40 VIII.1.3. GENERATOR SHAFT CENTER LINE F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 18H30 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 19H30 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 81901302 Technivib : Expertises Dynamiques Machines & Structures 41 F1 – 40MW – 9MVar - cos=0.73 -18/12/2012 – 20H30 200 150 100 50 Cercle de jeu 0 -200 -100 Palier 7 0 100 200 Palier 8 -50 -100 -150 -200 In cold or hot condition the generator shaft have a correct position on the sleeve bearing and the oil film stiffness is correct. But we can notice that the shaft center line go down to almost 70µm when the temperature increase. The RO modification have an effect on vibration but not enough to have around 70µm Pk-Pk at 40 MW. 81901302 Technivib : Expertises Dynamiques Machines & Structures 42 VIII.2. B7 – RO = 12MM - B8 – RO = 17 MM Then we have decided to increase the Restricted Orifice of the inlet oil of bearing 8 (12 before - 17 for this test). POWER During this day at 40 MW we notice than with big restricted orifice on bearing 8 and small restricted orifice on bearing 7, vibrations was 10 µm less. The RO modification have an effect on vibration but not enough to have around 70µm Pk-Pk at 40 MW. 81901302 Technivib : Expertises Dynamiques Machines & Structures 43 VIII.2.1. vibration level evolution F1 – 40MW – 10MVar - cos=0.97 -19/12/2012 – 14h40 Overall F1 = 50 Hz Measurement displacement µm Pk-Pk point 10 – 1000 Hz µm Pk-Pk 5A 2.2 1.7 5B 1.1 0.4 6A 1.2 0.9 6B 1.4 0.3 7A 82.2 80.6 7B 46.2 44.4 8A 93.2 93.1 8B 13.9 12.4 The maximum vibration level on the generator shaft is 93µm Pk-PK at 40MW. This overall value is considered as acceptable. 81901302 Technivib : Expertises Dynamiques Machines & Structures 44 -1 22 0.0 81901302 18 -1 0 0. l 40 -9 .0 en -1 t ( 14 µm 0. ) 0 Di 0.0 sp la ce m 16 -1 .0 60 -9 ) m (µ -1 (µ 14 m 0.0 ) 0.0 04 0 0. 12 -1 .0 0.0 20 -9 12 0.0 -1 02 -1 0. 0 10 00 -9 .0 0.0 10 -1 D M isp Tr od lay ac e: es M ul Cu : tirs FFT tra or 1 :L ce Ti sjs X: me [5 : ]-7 Y: 0 A m [6 -1 s ]-7 -1 168 B 01 .4 (0 6. 33 RP 67 M 1 µm ,1 µm 4: 4 18 6: 02 /0 6: 18 .5 -1 0 .5 -1 .8 -1 2 0. .0 sp Di 4 0. -1 .6 .0 -1 -1 l l .4 Di sp ) ) t( µm la -0.5 ce m en m (µ (µ 0. m 8 ) .2 -1 -0 .5 en t ) m (µ Di 0.6 sp la ce m -1 t en em ac sp Di t en em ac 0 .0 -1 0 1. 0 .8 1. 2 5 0. 5 0. .6 D M isp Tr od lay ac e: es M ul Cu : t irs FFT tra or 1 :L ce Ti sjs X: me [ 1] : Y: 5 0 A m [ 7. s 2] -5 -1 208 B .1 19 (0 17 6 RP 96 EM 8E 01 ,1 +0 µ m 4: 0 46 µm :1 8 B6 D M isp Tr od lay ac e: es M ul Cu : tirs FFT tra or 1 :L ce Ti sjs X: me [3 : ]-6 Y: 0 A m [4 -4 s ]-6 -7 .81 B .5 17 (0 09 3 RP 11 1E M 9E -01 ,1 -0 µ 4: 1 m 46 µm :1 8 02 /0 1/ 20 13 ) 02 /0 1/ 20 13 ) F1 – 10MW – 9MVar - cos=0.73 -18/12/2012 – 18H30 Technivib : Expertises Dynamiques Machines & Structures 01 3) 02 /0 1/ 2 01 3) 1/ 2 D M isp Tr od lay ac e: es M ul Cu : t irs FFT tra or 1 :L ce Ti sjs X: me [ 7] : Y: -8 0 A m [ -1 s 8] -8 -9 143 B 93 .7 (0 .7 4 RP 21 µm M 3 ,1 µm 4: 4 B8 0. 0 .0 80 -9 sp Di en t -1 1 Di 60 sp .0 la ce m t en em ac 0.0 18 -1 0.0 -1 B7 20 0 0. 0.0 20 0.0 -1 10 ) m (µ 0.0 06 -1 t en m ce 0.0 00 -0 -0 B5 -1 00 -1 -1 08 -1 s Di a pl -1 -1 .0 80 -9 VIII.2.2. ORBIT The orbit shapes are not characteristic of a balance. The generator shaft vibrations are in opposite phase. The orbit shapes show a stress on the generator shaft (on the vertical direction). This stress increase when the rotation speed increase and when the oil temperature increase. 45 IX - FLANGE VIBRATIONS IX.1. VIBRATORY LEVELS acceleromete rs Proximity probes Measurement points 5A 5B 6A 6B 7A 7B 8A 8B 7RH 7RV 7AX 8RH 8RV 8AX Overall levels (10 – 1000 Hz) 3000 RPM 10 MW 40 MW No-load 9 MVAr 9 MVAr Cos φ = 0.73 Cos φ = 0.73 15 14 10 17 14 12 4 4 2 5 5 3 63 66 68 35 35 38 70 80 94 14 10 17 2.66 2.39 2.27 1.43 2.03 2.93 3.03 4.78 5.07 2.49 2.58 2.39 1.03 1.41 2.13 2.44 4.42 7.04 Flange vibratory levels (mainly axially) increase with the power of the generator. 81901302 Technivib : Expertises Dynamiques Machines & Structures 46 IX.2. RESONANCE FREQUENCIES WITH CRANKING AT 171 RPM Resonance frequencies point 8RH 1 2 (Acceleration)/(Force) ((g)/(N)) Display Mode: Magnitude/Phase Traces: 14-12-15H00-171RPM-8RH: AE2: H1 8RH MAR Free marker 131 Hz 99.99999 u 67 Hz 69.99999 u 49.99999 u 30 u Id Label Label Trace Trace X Y X 20 u Y 1 67 67Hz Hz H1 27.35553 H1 [5/1] 68.75 [5/1]u(g)/(N) Hz68.75 Hz 27.35553 u(g)/(N 2 131 131Hz Hz H1 H1[5/1] [5/1] 131.25 131.25 47.97833 Hz Hz 47.97833 u(g)/(N) u(g)/(N Cursor X: 0 Hz H1 [5/1] Y: 6.398012 m(g)/(N) H1 [5/1] Y: 0 ° 10 u 7u 5u 3u 2u 50 100 150 200 Frequency (Hz) 250 300 350 400 50 100 150 200 Frequency (Hz) 250 300 350 400 150 100 Phase (°) 50 0 -50 -100 -150 Resonance frequencies point 8RV 1 (Acceleration)/(Force) ((g)/(N)) 200 u 2 71 Hz Display Mode: Magnitude/Phase Traces: 14-12-15H00-171RPM-8RV: AE2: H1 8RV MART Free marker 132 Hz 99.99999 u 49.99999 u Id Label Label Trace Trace X Y X 20 u Y 1 71 71Hz Hz H1 23.9081 H1 [6/1] 73.75 [6/1]u(g)/(N) Hz 73.75 Hz 10 u 23.9081 u(g)/(N) 2 132 132Hz Hz H1 H1[6/1] [6/1] 130 90.47844 Hz 90.47844 u(g)/(N) u(g)/(N) Cursor X: 0 Hz H1 [6/1] Y: 3.868522 m(g)/(N) H1 [6/1] Y: 0 ° 5u 2u 1u 500 n 300 n 50 100 150 200 Frequency (Hz) 250 300 350 400 50 100 150 200 Frequency (Hz) 250 300 350 400 150 Phase (°) 100 50 0 -50 -100 -150 Resonance frequencies point 8Ax 2m 1 Display Mode: Magnitude/Phase Traces: 14-12-15H00-171RPM-8AX: AE2: H1 8AX MARTEAU Free marker (Acceleration)/(Force) ((g)/(N)) 1m 45 Hz 500 u 200 u Id Label Trace Trace X YX 49.99999 u 20 u 10 u 5u 2u 0 50 100 150 200 Frequency (Hz) 250 300 350 400 50 100 150 200 Frequency (Hz) 250 300 350 400 150 100 Phase (°) 50 0 -50 -100 -150 0 81901302 Y 1 45 Hz104.2426 H1H1 [7/1] [7/1] 45u(g)/(N) Hz 45 Hz 104.2426 u(g)/(N) Cursor X: 0 Hz H1 [7/1] Y: 989.7946 u(g)/(N) H1 [7/1] Y: 0 ° 99.99999 u Technivib : Expertises Dynamiques Machines & Structures 47 Resonance frequencies point 7RH 1 (Acceleration)/(Force) ((g)/(N)) Display Mode: Magnitude/Phase Traces: 14-12-15H00-171RPM-7RH: AE2: H1 7RH Free marker 158.7 Hz 200 u 99.99999 u 49.99999 u Id Label Label Trace TraceX Y X Y 1 58.7 158.7 HzH1 Hz257.3624 [2/1] H1158.75 [2/1]u(g)/(N) Hz 158.75 Hz 257.3624 Cursor X: 0 Hz H1 [2/1] Y: 1.195488 m(g)/(N) H1 [2/1] Y: 0 ° 20 u 10 u 5u 2u 1u 50 100 150 200 Frequency (Hz) 250 300 350 400 50 100 150 200 Frequency (Hz) 250 300 350 400 150 100 Phase (°) 50 0 -50 -100 -150 Resonance frequencies point 7RV 1 Display Mode: Magnitude/Phase Traces: 14-12-15H00-171RPM-7RV: AE2: H1 7R Free marker 1m (Acceleration)/(Force) ((g)/(N)) 500 u 200 u 105 Hz 99.99999 u Id Label Label Trace Trace X Y X 49.99999 u Y 1 105 105Hz Hz H1 37.15738 H1 [3/1] [3/1] 105u(g)/(N) Hz 105 Hz 37.15738 u Cursor X: 0 Hz H1 [3/1] Y: 2.272716 m(g)/(N) H1 [3/1] Y: 0 ° 20 u 10 u 5u 2u 1u 50 100 150 200 Frequency (Hz) 250 300 350 400 50 100 150 200 Frequency (Hz) 250 300 350 400 150 100 Phase (°) 50 0 -50 -100 -150 Resonance frequencies point 7Ax 1 Display Mode: Magnitude/Phase Traces: 14-12-15H00-171RPM-7AX: AE2: H Free marker 1m (Acceleration)/(Force) ((g)/(N)) 500 u 72 Hz 200 u Id Label 99.99999 u 20 u 10 u 5u 50 100 150 200 Frequency (Hz) 250 300 350 400 50 100 150 200 Frequency (Hz) 250 300 350 400 150 100 Phase (°) 50 0 -50 -100 -150 81901302 Trace Trace X YX Y 1 72 Hz226.2273 H1H1 [4/1] [4/1] 75u(g)/(N) Hz 75 Hz 226.2273 Cursor X: 0 Hz H1 [4/1] Y: 42.22261 m(g)/(N) H1 [4/1] Y: 0 ° 49.99999 u Technivib : Expertises Dynamiques Machines & Structures 48 IX.3. SUMMARY Summary table of first resonance frequency Measurement points 7RH 7RV 7AX 8RH 8RV 8AX 1st resonance frequency 158.7 Hz 105 Hz 72 Hz 67 Hz 71 Hz 45 Hz Resonance frequency at 45 Hz on 8Ax is close to the rotation speed (F1 = 50 Hz) It seems that this resonance is responsible for the important axial vibrations on flange 8 but not for the displacement of the shaft because at 10 MW, vibration of the shaft are already important (80 µm Pk-Pk) when axial vibration on flange 8 are correct (4.42 mm/s). 81901302 Technivib : Expertises Dynamiques Machines & Structures 49 X - ANNEX 1 – RUN DOWN ANALYSIS Run down – 19/11/2012 – 14h00 7A 7B 8A 8B 81901302 Run down analysis show no trace of critical frequency on the generator shaft. Technivib : Expertises Dynamiques Machines & Structures 50 XI - ANNEX 2 – MVAR ET MW INFLUENCE ON VIBRATORY LEVELS (21/11/2012) Shaft displacement during power rise at 11 MVAr 60 Shaft displacement (µm Pk-Pk) 50 40 7A 7B 30 8A 8B 20 10 0 0 5 10 15 20 25 30 35 40 45 Puissance (MW) 81901302 Power increase is not making an important change in shaft displacement. Technivib : Expertises Dynamiques Machines & Structures 51 Shaft displacement during reactive intensity rise at 40 MW 100 Shaft displacement (µm Pk-Pk) 90 80 70 60 7A 7B 50 8A 8B 40 30 20 10 0 0 2 4 6 8 10 12 Reactive intensity (MVAr) 81901302 Reactive intensity increase is not making an important change in shaft displacement. Technivib : Expertises Dynamiques Machines & Structures 52 XI.1. ANNEX 3: GEAR SHAFT CENTER LINE DURING POWER RISE 2100RPM-17/12/2012 – 14H15 - Cold 200 200 150 150 100 100 50 50 Cercle de jeu 0 -200 -100 Cercle de jeu Palier 7 0 100 200 Palier 8 0 -200 -100 -50 Palier 5 0 100 200 Palier 6 -50 -100 -100 -150 -150 -200 -200 3000RPM-No Excitation - 17/12/2012 – 14H20 - Cold 200 200 150 150 100 100 50 50 Cercle de jeu 0 -200 -100 81901302 Cercle de jeu Palier 7 0 100 200 Palier 8 0 -200 -100 Palier 5 0 -50 -50 -100 -100 -150 -150 -200 -200 Technivib : Expertises Dynamiques Machines & Structures 100 200 Palier 6 53 3000RPM-No Excitation - 17/12/2012 – 15H30 - hot 200 200 150 150 100 100 50 50 Cercle de jeu 0 -200 -100 Cercle de jeu Palier 7 0 100 200 Palier 8 0 -200 -100 Palier 5 0 -50 -50 -100 -100 -150 -150 -200 -200 100 200 Palier 6 We can notice that the shaft center line of the generator go down to almost 70µm when the oil temperature increase. During the same time, the shaft center line of the gear go down of about 30 µm. 81901302 Technivib : Expertises Dynamiques Machines & Structures 54
© Copyright 2026 Paperzz