PlantingScience PowerofSunlightToolkit BACKGROUND: ThePlantingSciencePowerofSunlightToolkitprovidesbackground,materialslists,detailed procedures,andsafetyconsiderationsforadditionalexperimentalmethodsrelatedtophotosynthesis andrespiration.Thesetoolscanprovidestudentstheopportunitytoaskawiderrangeofresearch questionsduringtheopeninquiryphaseofThePowerofSunlightthanwouldbepossibleusingonlythe leafdiskfloatationmethod.Alternatively,teachersmayselectoneormoreofthesemethodsas classroomdemonstrationsofphotosynthesisand/orrespirationinaction. CONTENTS: Page PreparationofCitrate-PhosphateBufferforMaintainingpH ......................................................................2 MonitoringpHtoAssessPhotosynthesis&RespirationofAquaticPlants ..................................................4 MeasuringCellularRespirationUsingaRespirometer .................................................................................7 MeasuringPhotosynthesis&RespirationUsingaComputer-BasedProbe ...............................................11 Visualizing&CountingStomataUsingtheLeafImpressionMethod .........................................................13 VisualizingPlantCells&ChloroplastsUsingaMicroscope.........................................................................15 IdentifyingStarchinPlantLeavesUsinganIodineStainingMethod .........................................................17 IdentifyingChlorophyll&OtherPlantPigments ........................................................................................19 QuantifyingFresh&DryMassofPlants .....................................................................................................22 . PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 1 of 31 Last Updated 7/2013 PREPARATIONOFCITRATE-PHOSPHATE BUFFERFORMAINTAININGPH Purpose:Theadditionofincreasingamountsofsodiumbicarbonateto watertendstoincreasetheacidityofthesolution,loweringitspH.Most cellsthrivebestinthepHrangeof6to8;therefore,leafdisksinfiltrated withhigh-concentrationsodiumbicarbonatesolutionsmayhavealtered levelsofphotosynthesisandcellularrespiration. AbufferresistspHchangeandthushelpsasolutionmaintainthesamepHunderawiderange ofconditions.Awiderangeofpossiblebuffersareavailable,butmanycommonbuffershave problemsinthepH6to8range.TohelpmaintainpHinleafdiskfloatationexperiments,we suggesttheuseofaphosphate-citratebuffer,asdescribedhere. TechnicalComplexity:Simple. TimeRequired:20minutesforfullprocedure;5min.topreparebufferfromstocksolutions. Materials: Perclass: Citricacid(anhydrous) Disodiumphosphate Water Balance,accuratetoatleast0.1g,Weighingpaper Scoopula Two1000mLgraduatedcylinders Two1000mLstockbottleswithcapsorstoppers Perteam: 100mLstockbottle 100mLgraduatedcylinder Water Procedure: 1. (Oneperclass)PrepareStockSolutionA: a. Wearsafetygogglesandlabglovesincaseofsplashesandtoavoidskinandeyeirritation. b. Weighout19.2gofanhydrouscitricacidontoweighingpaperonabalance,usinga scoopula. c. Transferthecrystalstoa1000mLstockbottle. d. Fillthestockbottletwo-thirdsofthewayfullwithwater. e. Stirorcap/stopperthebottleandgentlyshaketodissolvethecitricacid. f. Whenthesolidiscompletelydissolved,pourthesolutionintoa1000mLgraduatedcylinder andaddwatertoreach1000mL. g. Returnthefullliterofsolutiontothestockbottle. h. Labelthebottleas0.1Mcitricacid. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 2 of 31 Last Updated 7/2013 2. (Oneperclass)PrepareStockSolutionB: a. Wearsafetygogglesandlabglovesincaseofsplashesandtoavoidskinandeyeirritation. b. Usescoopulatoweighout28.4gofdisodiumphosphateontoweighingpaperonabalance. c. Transferthecrystalstoa1000mLstockbottle. d. Fillthestockbottletwo-thirdsofthewayfullwithwater. e. Stirorcap/stopperthebottleandshaketodissolvethedisodiumphosphate. f. Whenthesolidiscompletelydissolved,pourthesolutionintoa1000mLgraduatedcylinder andaddwatertoreach1000mL. g. Returnthefullliterofsolutiontothestockbottle. h. Labelthebottleas0.2Mdisodiumphosphate. 3. (Eachteam)Preparecitrate-phosphatebuffer: a. Wearsafetygogglesincaseofsplashes. b. SelectthedesiredpHforthefinalsolutiontobeusedforleafdiskinfiltration(seeTable). c. MeasurethecorrespondingamountofStockSolutionA(0.1Mcitricacid)intoa100mL graduatedcylinderandtransfertoa100mLstockbottle. d. MeasurethecorrespondingamountofStockSolutionB(0.2Mdisodiumphosphate)into thesame100mLgraduatedcylinderandtransfertothesamestockbottle. e. Labelthebottleascitrate-phosphatebuffer,makingsuretoincludethedesiredpH. f. Sodiumbicarbonatecanbedirectlydissolvedintothisbufferforuseinleafdiskinfiltration andfloatation. Amountof0.1Mcitricacid(SolutionA)and0.2Mdisodiumphosphate (SolutionB)toachievethedesiredbufferpH: mLofSolutionA mLofSolutionB DesiredpH 46.4 53.6 5.2 44.2 42.0 55.8 58.0 5.4 5.6 39.5 36.8 60.5 63.2 5.8 6.0 33.9 30.7 66.1 69.3 6.2 6.4 27.2 22.7 72.8 77.3 6.6 6.8 17.6 13.0 9.1 82.4 87.0 90.9 7.0 7.2 7.4 6.3 4.2 93.7 95.8 7.6 7.8 2.7 97.3 8.0 PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 3 of 31 Last Updated 7/2013 MONITORINGPHTOASSESSPHOTOSYNTHESIS& RESPIRATIONOFAQUATICPLANTS Purpose:UsepHasanindirectmeasureoftheamountofcarbon dioxideinanaquaticsystemcontainingalgaeoratleastone aquaticplant. HowtheMethodWorks:Carbondioxide(CO2)isoneofthe productsofcellularrespirationandacriticalreactantin photosynthesis.ThesimplestwaytomeasureCO2changesinanaqueoussolutionisto measurepHchange.Carbondioxidedissolvesinwatertoformcarbonicacid:CO2+H2O! H2CO3.Therefore,asCO2isreleasedbyaquaticorganismsduringrespiration,itformsaweak acidinthesurroundingwater,loweringthepH.AsCO2isconsumedbyaquaticplantsduring photosynthesis,thepHwilltendtoincrease.Similartotheleafdiskinfiltrationmethod,the dissolvedcarbondioxideinanaquaticplant’senvironmentcanbesupplementedbyadding sodiumbicarbonate. Technically,pHisthenegativelogarithmofasolution’shydrogenionconcentration.Free hydrogenionsareacidic,sothepHscaleisusedtoindicatehowacidicasolutionis,witha lowernumberindicatingamorestronglyacidicsolution.Eveninpurewater(H2O),afew moleculesarealwaysdissociatedintohydrogenions(H+)andhydroxideions(OH-)–aboutone intenmillion(1/10,000,000)moleculesinaliterofpurewater.Inotherwords,thereare10-7 hydrogenionsperwatermolecule.ThepHofpurewateristherefore–log(10-7)=7.Thisis consideredneutralpH,becauseeachacidicH+isaccompaniedbyonebasicOH-inpurewater. EveryunitchangeinpH,e.g.,frompH7topH8orfrompH6topH5,indicatesaten-fold changeinacidity.Ifmoreacidisaddedtothewatersothatoneineverythousandmoleculesis ahydrogenion,theconcentrationis10-3andthepHis–log(10-3)=3.Thisconcentrationhas 10,000timesmorehydrogenionsthaninpurewater,sothesolutionis104timesmoreacidic anditspHis4unitslower. TechnicalComplexity:Simple. TimeRequired:5minutesperreading. Materials: Inawater-filledvessel,algaeoraquaticplantsuchasElodea (Optional)Oneortwosmallercontainersforeachtreatment Oneofthefollowingsets,dependingonthemethodyoupreferorthematerialsavailable: PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 4 of 31 Last Updated 7/2013 METHODA pHindicatorpaper Color/pHkeychart Scissors METHODB pHmeter pHbufferstock Smallcup Squirtbottleofdistilledwater METHODC PhenolRedorBromphenolBluedyepowder Scoopulaorspoon Long-termstoragecontainer Water Graduatedcylinder Electronicbalance GeneralInstructions: • • • • • Ifthecontainerfortheaquaticplantisverylarge,pHwilltakealongtimetochange.Youcan transfertheplantorapartofittoacontainerwithlessthan50mLofwatertomonitormore rapidchangesinpH. AlgalculturesarebettersuitedtoMethodAorMethodBthantoMethodC,becausetheirgreen colorwillalterhowtheliquidappears. Youmaywishtoremoveaquaticplantsfromtheircontainers,blottheexcesswater,andusean electronicbalancetofindtheirmassforexperiments. o Largerplantswillcarryoutmorephotosynthesisandrespiration,sotreatmentsare moreequivalentiftheycontainthesameamountsofplantmass. o Foralgalcultures,stirringwellandusingthesamevolumeofculturewillprovide equivalenttreatments. Forexperiments,repeatthepHmeasurementatregularintervals,e.g.,every5min,underthe testconditions. Youmayconcludetheexperimentafterapredeterminedtimeperiod(e.g.,30min,recording thefinalpH)orafterapredeterminedamountofpHchangeoccurs(e.g.,0.5units,recordingthe finaltime). o MethodCisbestsuitedtorecordingthefinaltime,sinceitcanbedifficulttoassess subtlechangesincolorofthesolutionandyoumightnothaveacolorkeyfor intermediatecolors. MethodA:MeasuringpHUsingIndicatorPaper ThisisthesimplestwaytomeasurepH.IndicatorpaperissimplypaperimpregnatedwithapHindicator dye.ThedyechangescolordependingonthepHofthesolution. 1. Tearoffabouta2cmstripofindicatorpaper(ifinrollform)orpullapiecefromitscontainer(if instripform). 2. Dipthetipofthepaperintothewatercontainingtheaquaticplant. 3. Comparethecolorofthewetpapertothecolor/pHkeychart,usuallyfoundontheindicator papercontainer.ThebestmatchindicatestheapproximatepH. 4. Useanewstripofindicatorpaperforeachmeasurement. MethodB:MeasuringpHUsingapHMeter ThisisthemostaccuratewaytomeasurepH.ThepHmeterhasanelectrodewhichmustalwaysbe keptmoist.Whenitisnotinuse,keeptheelectrodecoveredorimmersedinabuffersolution. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 5 of 31 Last Updated 7/2013 1. TurnonthepHmeterandallowitwarmupforatleastfiveminutes.Keepthecontrolknobin standbyposition. 2. Ifthereisone,adjustthetemperatureknobtomatchthesolutiontemperatureafterwarm-upis complete. 3. StandardizethemeteragainstabufferofknownpHclosetotherangeyouthinkyouwillneed. a. Ifyou'reunsureoftherange,useapH7buffer. b. Pourasmallamountofbufferintoavesseljustlargeenoughtoholdtheelectrode. c. Inserttheelectrodeintothebuffer. d. Allowthemetertoreachasteadyreading. e. IfitdoesnotreadthesameasthepHofthebufferyouused,adjustthemetertosetit totheproperpH.Ifneeded,followthemanufacturer’sinstructionstodothis. 4. Makeareadingonyourunknownsolution. a. Taketheelectrodeoutofthebufferandrinsethetipoftheelectrodewithdistilled water.Youcanusethebuffercontainertocollecttherinsewater. b. Holdthetipoftheelectrodeagainsttheoutsideofthecontainertoallowanylarge dropsofwatertoflowofftheelectrode. c. Inserttheelectrodeintotheunknownsolutionandmakeyourreading. d. Whenyoutaketheelectrodeoutofthesolution,rinseitagainwithdistilledwater beforerecoveringthetiporplacingtheelectrodebackintothestandingbuffer. MethodC:MeasuringpHUsinganIndicatorDye IndicatordyesarepowdersthatchangecolorbasedonpHandcanbedissolvedinwatertomakea concentratedsolution.BysomeofthedyesolutiontoaliquidofunknownpH,thecolorcanbe monitored.PhenolRediscoloredredinsolutionsofpH>8.4.AsthepHdecreasesandthesolution becomesmoreacidic,thecolorlightenstoorangeand,whenpH<6.8,toyellow.BromphenolBlueshifts fromblueatpH>7.6toyellowatpH<6.0. 1. Wearalabcoatandgloves.Indicatordyescanstainyourhandsandclothing. 2. ScoopaspoonfuloftheindicatordyePhenolRed(orBromphenolBlue)toacontaineroftap wateruntilthewaterisdistinctlyred(orblue).AstocksolutionofPhenolRedcanbestoredina darkcabinetforseveralyearsandusedslowlyovertime,socheckwithyourteachertofindout astockisalreadyavailable! 3. Measureanequalamountoftheindicatorsolutionintotwosmallercontainerspertreatment. a. Dilutethesolutionineachcontainerusingequalamountsofwater,startingbyadding thesameamountofwaterastheamountofindicatorsolutioninthecontainer. b. Ifyoucanseethroughtotheothersideofthecontainer,youhavedilutedthesolution enoughtoproceed.Otherwise,addmorewaterinequalamountstoallcontainers. 4. Blowbubblesintohalfofthecontainersthroughastraw.Theexhaledairwillcontainexcess CO2andthesolutionwillbegintoturnorange(orgreen),thenyellow. 5. Foreachtreatment,placeidenticalpiecesofaquaticplanttissueintoeachred(orblue)and yellowcoloredpairofcontainers.Labelthecontainerssoyouknowwhichpairsgotogether. 6. Observeandrecordthecolorofeachpairofsolutionsovertime. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 6 of 31 Last Updated 7/2013 a. Itmaybehelpfultodevelopa“colorscale”beforebeginningtheexperiment. b. Removingasmallvolumeofliquidfromeachcontainerandlookingatthemtogether againstawhitebackgroundcanhelpensureunbiasedcolorjudgmentoverall.Return thesolutiontothesamecontainerafterwards. c. Qualitatively,iftheyellowsolutionchangescolortored(orblue),CO2isbeing consumedmorequicklythanitisproduced.Ifthered(orblue)solutionchangesto yellow,CO2isbeingproducedmorequicklythanitisconsumed. d. Theamountoftimerequiredforthecolortoshiftprovidesaquantitativemeasureof howquicklythepHchangesoverasetnumberofunits.Therefore,itindirectly measuresphotosyntheticorrespirationrate. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 7 of 31 Last Updated 7/2013 MEASURINGCELLULARRESPIRATIONUSINGA RESPIROMETER Purpose:Quantifyhowmuchcellularrespirationisoccurringin mosttypesofplanttissueandsmallseedlings.Themaintypeof materialbeingconsumed–carbohydrates,fattyacids,orproteins andaminoacids–canalsobedetermined. HowtheMethodWorks:Thismethodusesaninstrumentcalleda respirometer.Therespirometerisassembledtocreateaclosed system,sothatoncetheexperimenthasbegun,nothinggoesinor out–notevenair.Aplantsampleorsmallseedlingisplacedintoa chamber.Astheplantsamplerespiresinsidetheclosedsystem,it usesoxygen(O2)andreleasescarbondioxide(CO2).Toquantifyrespiration,thesetwogases mustbeconsideredseparately.CO2canberemovedfromthegasmixtureinthechamberbya chemicalreactionbetweenitandsodiumorpotassiumhydroxide.Thereactionproduces waterandasolid,K2CO3orNa2CO3,sothatnofreeCO2gasispresent.TheO2usedfor respirationcanthenbedirectlymeasuredbythedecreasinggasvolumeintherespirometer. Carryingoutthesameexperimentinanotherrespirometerwithoutaddingsodiumor potassiumhydroxide,allowstheamountofCO2producedtobequantified.Athirdtube withoutanytissueactsasacontrolforanychangesintemperatureandairpressure. Thechemicalequationforrespirationassumesthattheorganicmoleculebeingbrokendownis carbohydrate.Ifthisisso,thevolumeofCO2producedwillbeequaltothevolumeofO2 consumed.TheratioofCO2producedtoO2consumediscalledtheRespiratoryQuotient(RQ). Ifonlycarbohydrateisbeingbrokendown,thevalueofRQ=1.However,thisneednotbethe case.Whenfattyacidsarebrokendownaloneorwithcarbohydrates,thevalueofRQisless than1.Metabolizingproteinsorotherorganicacids,aloneorwithcarbohydrates,resultsinan RQgreaterthan1. TechnicalComplexity:Medium,duetothecomplexityofsettingupthechambersforan experiment. TimeRequired:Allowatleast30minforbuildingtherespirometersandatleast45minforthe experimentitself. Materials: Toassembleonerespirometer: PlantingScience CC BY-NC-SA 3.0 • | www.plantingscience.org Hotgluegun,withgluestick | Power of Sunlight—Toolkit Page 8 of 31 Last Updated 7/2013 • • • • • • • • 1mLdisposabletuberculinsyringe 40µLplasticcapillarytube Absorbentandnon-absorbentcotton Clean,thinpipetteortoothpick Manometerscaleorlinedpieceofcard stock Tape Dranoor15%potassiumhydroxidesolution Water(optional) • • • • • • • • 1-2respirometerspertreatment,plusa control Waterbathsettoroomtemperature(20oC) Celsiusthermometer Plantmaterial Smallbeadsorbakedseeds 3-4washersperrespirometer Manometerfluid,orsoapywaterwithred foodcoloring Eyedropperorpipette Tocarryouttherespirometryexperiment: Part1.PrepareMaterialsforMakingRespirometersandtoCarryOuttheExperiment(s). • • • Allowtimetogrowyourplantmaterialorsubjectplants/seedstotheenvironmentalconditions youaretesting. o Forexample,ifyouplantomeasureseedrespiration,youwillwanttosoaktheseedsfor 24hoursjustbeforetheexperiment. Makearrangementswithyourteachertohavematerialsthatyouneedonhand. o Respirometerscanbemadeandusedforexperimentsduring separateclassperiods.Gatherthematerialsaccordingly. Setupadatatable. o Youwillberecordingtemperatureandrespirometerreading at2-5mintimepointsforeachrespirometer. o Afteryourexperimentisdoneorbetweendatareadings,you willalsobecalculatingthechangeinfluidlevelbetween timepoints. Part2.MakeRespirometerChambers. 1. Pluginthehotgluegun.Makesureagluestickisinthebarrel. 2. Selectasyringe,makingsuretheplungerisallthewayintothebarrel. 3. Fromthenarrowendofthesyringewheretheneedleusuallygoes,gentlyinsertacapillarytube untilittouchestheplungertipandcan’tgoanyfurther. 4. Sealthejointbetweenthecapillaryandthesyringetip: a. Holdthesyringesothatthecapillarytubeispointingupwards. b. Putadroportwoofhotglueatthejointbetweenthecapillaryandoutersyringetipso thatitsealsallthewayaround. c. Continuetoholdthesyringeinanuprightpositionuntilthegluecoolsandhardens, about1-2minutes. 5. Checktoensurethegluehasn’tcloggedthecapillary. a. Pullbackontheplungertoseeifaircanpassthroughfreely. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 9 of 31 Last Updated 7/2013 b. Ifitisplugged,youwillnotbeabletopulltheplungerback.Youcanunplugitby carefullypeelingofftheglue.Startfromstep4toresealthejoint. 6. Makeasmanyrespirometerchambersasyourexperimentrequires,plusoneasacontrol.Ifyou plantomeasurebothoxygenconsumedandcarbondioxideproduced,twoseparate respirometerswillbeneededforeachtreatment. 7. Ifneeded,youmaystopandstoretherespirometerchambershere,finishingthemduring anotherclassperiod. Part3.PrepareYourRespirometersforanExperiment. 1. Carefullyinsertasmall,absorbentcottonplugintothesyringeendoftherespirometer. a. Useaclean,thininstrument,suchasapipette,topackthecottontothe0mlor0cc mark. b. Takecarenottodislodgethecapillarytubeduringthisstep. 2. Tapeamanometerscaleontoeachcapillarytubeusingcleartape. a. Double-sticktapeisbest,butfoldedsingle-sidedtapealsoworks. b. Placethetapesothatyouareabletoreadthescalebylookingthroughthecapillary tube. c. Makesurethebottomofthescaleisalignedwiththesamepointonallrespirometers. 3. Ifneeded,youmaystophereandstoretherespirometersuntilanotherclassperiod.Ifyou continue,youwillneedtocompletetheexperimentduringthesameclassperiodsothatthe liquidaddeddoesnotdryout. 4. Putonyoursafetygogglesandlabgloves,becauseyouwillbeworkingwitheitheradilute solutionofpotassiumorsodiumhydroxide(Drano).Botharecaustic. 5. Foreachrespirometerthatwillbeusedtomeasureonlyoxygenconsumption,putasmalldrop ofpotassiumhydroxide(KOH)orsodiumhydroxide(NaOH)ontothecotton. a. Avoidgettinganyonthewallsofthesyringeabovethecotton. b. IfyouwillusesomerespirometerstocalculateCO2production,marktherespirometers toindicatetheirtype.DonotaddKOHorNaOHtotheCO2respirometers! 6. Addasmallplugofnon-absorbentcottonabovetheKOH/NaOH-treatedplug(oruntreated plug,forrespirometersthatwillbeusedtocalculateCO2production). a. Pushtheplugdownwithaclean,thininstrument,asyoudidwiththeabsorbentcotton. b. ThisnewplugwillnotabsorbtheKOH/NaOH,whichwill protectyourspecimenfromtouchingthecausticsubstance. 7. Keepyourgogglesandgloveson.Pointthetipofanoxygen respirometerintoasinkorcontainer.Gently,butfirmly,pushthe plungerintothesyringetosqueezeouttheexcessKOH/NaOH. a. Youmaywishtorinsejustthecapillarytubebydrawingin waterormanometerfluid,thenexpellingitagain. 8. Removetheplungerandrepeatwiththerestoftheoxygen respirometers. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 10 of 31 Last Updated 7/2013 Step3.Runtheexperiment. 1. Checkthetemperatureofyourwaterbathtoseethatit’satroomtemperature,about20°C. a. Ifit’snot,adjustthetemperaturewithwarmorcoldtapwater,makingsurethatthe bathiswell-mixedwhenyoumeasurethetemperature. b. Leavethethermometerinthewaterbath. 2. Put0.5mlgerminatingseedsorotherplantmaterialintotherespirometerbarrel(syringe). Pushintheplungertothe1mlmark.Thiscreatesasealedrespirometerchamberwitha1ml volume.Becarefulnottodamagetheplanttissues. 3. Repeatwithallrespirometersexceptthecontrol. a. Forthecontrol,useeitherglassbeadsorseedsthathavebeenbakedinsteadofliving plantmaterial. b. Foreachoxygen-only/oxygenandcarbondioxiderespirometerpair,trytouseassimilar amassofplanttissueineachaspossible. 4. Drop3-4washersaroundeachrespirometertoactasweightsinthewaterbath. 5. Putyourrespirometersintothewaterbathwiththecapillariespointingupward. a. Keepthecapillariesabovewaterlevel,opentotheair. b. Makesurethesyringebarrelsarecompletelysubmerged. 6. Checkthewaterbathtemperatureagain. 7. Usingadroppingpipet,putadropofredmanometerfluidtothetipofeachcapillary.Thedrop shouldgetsuckedintothecapillary,ifeverythingisworking.Themanometerfluidwillforma sealonthechambertocreateaclosedsystem. a. Youmayhavetousetheplungertopulltheredmanometerfluidintothecapillary, especiallyforthecontrol.Pullthefluidabouthalfwaydownthecapillary. 8. Usingathinpermanentmarker,makeamarkoneachcapillarytubewherethebottomofthe redmanometerfluidispositioned.Thisisyourzero-timeorstartingdatapoint.Recordthe temperatureinyourdatatable. 9. Atregularintervals(every2or5minutesshouldwork),markthebottomofthepositionofthe manometerfluid. a. Recordthetimeandtemperaturewhenyoumakethemarks. b. Ifthemeniscusismovingoffthescale,quicklyrepositionitbygentlypushingordrawing onthesyringeplungertomovethedropintheappropriatedirection.Besuretonote thedrop’spositionbothbeforeandafterreadjusting,sothatyoucanlatercalculatethe amountofadjustmentmade. 10. Continuetakingdatauntileitherthemanometerfluidhasreachedthesyringetipor25minutes haspassed. Step4.Recordthemanometerreadingsandcalculatethechangesingasvolume. 1. Removetherespirometersfromthewaterbath. 2. Inyourdatatable,recordthemanometerreadingsforeachmark.Dothisforeachmanometer. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 11 of 31 Last Updated 7/2013 3. Calculatehowmuchthegasvolumechangedduringeachtimeinterval. a. Ifthecontrolrespirometershowedanychange,adjustthevolumechangeforallofthe otherrespirometersbythatamount. b. Intheoxygenrespirometers,thevolumeshouldhavedecreased.Markthevolume changeasnegative. c. Intherespirometersthatdidnotremovecarbondioxidegas,thegasvolumemayhave increasedordecreased.Markthevolumeaspositiveornegative,accordingly. d. Tocalculatetheamountofcarbondioxidegasconsumedinsuchsamples,subtractthe amountofoxygenproducedintheoxygen-onlyrespirometerfromtheamountof changeobservedinthecorrespondingoxygen-carbondioxiderespirometer. e. Graphtheresultingdataaschangeingasvolume(y-axis)overtime(x-axis). Step5.(Optional)CalculateRespiratoryQuotient(RQ). 1. Theamountofvolumechangeintheoxygenrespirometersdescribestheamountofoxygen produced. 2. Theamountofvolumechangeinaoxygen-carbondioxiderespirometerminustheamountof volumechangeinitscorrespondingoxygen-onlyrespirometerdescribestheamountofcarbon dioxideconsumed. 3. RQmaybecalculatedforeachpairas:RQ=volumeofCO2produced/volumeofO2consumed. 4. DeterminethetypeofmaterialbeingconsumedinrespirationbasedonRQ: a. Iftherewasnonetchangeinthecarbondioxide/oxygentube,itmusthaveproduced exactlyasmuchCO2asitusedO2,andyouknowthisamountfromtheKOHtube:RQ= 1. b. Ifthecarbondioxide/oxygentubeshowedadecreaseinvolume,theamountofCO2 producedwaslessthanO2consumed.TheamountofO2consumedwasequaltowhat youmeasuredinyourKOHtube,butenoughCO2wasproducedtomovethedrop partwaybacktowardsitsoriginalposition:RQ<1. c. Ifthecarbondioxide/oxygentubeshowedanincreaseinvolume,theCO2producedis equaltotheO2consumedintheKOHtubeplusanadditionalamounttogetittothe finalposition:RQ>1. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 12 of 31 Last Updated 7/2013 MEASURINGPHOTOSYNTHESIS&RESPIRATION USINGACOMPUTER-BASEDPROBE Purpose:Quantifyhowmuchphotosynthesisandrespiration isoccurringinanytypeoftissue,stem,orwholeplant.This methodcanoftenbeusedinfieldstudies,ifdesired. HowtheMethodWorks:Themethodusesacarbondioxide sensortomeasureCO2levelsinaclosedsystem.Aplantor planttissuesareplacedintoasealedchamber.Thesensoris placedintothecontainerthroughaholeinastopperorisbuiltintothechamberitself,then sendsdatatoacomputerasitmonitorsthelevelsofCO2overtime.Thecontainercanbe coveredtocreatedarknessorsubjectedtovariedlightintensities. TechnicalComplexity:Medium. TimeRequired:About15-20minutespertreatment. Materials: • • • • • • • • Plantsorplantpartsgrownunderexperimentalconditions,orfoundindifferentfieldconditions Carbondioxidesensor,functionaloveratleasttherange0–5,000ppm o Ideally,resolutionandaccuracyshouldbeassmallaspossible o OnepossibleexampleistheVernierCO2gassensor(CO2-BTA) Cabletoconnectsensortocomputerorinterface,ifnotbuiltintothesensor Computerorotherappropriateinterface,suchasahandhelddatalogger Datacollectionsoftware Clear,sealablechamber,ifnotbuiltaspartofthesensor (Optional)Aluminumfoil,darkcloth,orothermeansofcreatingadarkenvironment (Forlab-basedstudies)Lightsourcethatcanbemovedorwithadjustableintensity GeneralInstructions:SettingUptheSensorforDataCollection Sensorpartsandset-upoftendependonthemanufacturer.Therefore,onlygeneralguidelinescanbe providedhere: 1. Readandcarefullyfollowthemanufacturer’sinstructionsonappropriateset-upanduseof theCO2sensor. 2. Makesuretheappropriatesoftwareisavailableonthecomputerordataloggersothatdata canbesaved. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 13 of 31 Last Updated 7/2013 Alternatively,ifusinganinstrumentthatgivesdatareadingsbutcannotsavethem, setupadatatabletorecordthisinformationinyourlabnotebookatregulartime points. Linkthesensortothecomputerordataloggerwithanappropriatedatacable. Turnonthecomputer,sensor,andsoftwareintheorderrecommendedbythe manufacturer. Letthesensorwarmupforthelengthoftimethemanufacturersuggests. Ifnecessary,calibratetheinstrumentaccordingtothemanufacturer’sinstructionsbefore collectingdata. " 3. 4. 5. 6. MethodA:SamplingPlantsorPlantPartsintheLab 1. Afterthesensorhaswarmedup,recordtheCO2concentrationintheemptychamberasa baseline. 2. Selectaplantorplantparttotest,andplaceitinthechamber. 3. CloseofforsealthechambersothatthesensorisabletomonitorCO2inside. " Themanufacturer’sinstructionsmayexplainhowtouseabuilt-inchamber. 4. Placethechambernearalightsourceassimilaraspossibletothegrowthconditionsforthe plant. 5. RecordCO2concentrationdata,eitherusingsoftwareorbyhand. " Thesensormayneedtimetoadjust,butitwillnotsettleonasinglevalueifthe plantmaterialsbeingsampledarealive. " Checkthemanufacturer’sinstructionstodeterminehowlongtowaitbeforetaking adatapoint,ifyouarecollectingdatabyhand. " Aftersubtractingthebaseline,thesereadingswillgivethenetCO2consumptionor productionovertime. 6. Coverthechamberwithfoil,cloth,orothermaterialsothatitisentirelydarkened. 7. RecordCO2concentrationdataasinstep5. " Aftersubtractingthebaseline,thesereadingswillgivetheCO2productiondueto respirationovertime. 8. TheCO2consumptionduetophotosynthesiscanbedeterminedbysubtractingthe respiratoryCO2productionfromthenetCO2consumption/production.Thisvalueshouldbe negative. 9. (Optional)YoumaywishtotestthenetCO2consumptionorproductionatseverallight intensitiestounderstandwhetherthenetCO2consumption/productionchangesbasedon thisvariable. 10. Testtheotherplantsamplesusingthesameprocedure. MethodB:SamplingPlantsintheField Forfieldstudies,ahandhelddataloggerorlaptopwillbetheeasiesttouse. 1. Setupandtesttheequipmentinthelabtobesureitworksbeforegoingintothefield. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 14 of 31 Last Updated 7/2013 2. Bringthesensor,datainterface,chamber,andmeanstodarkenthechambertothefield withyou. 3. SetuptheequipmentasdescribedintheGeneralInstructions. 4. Afterthesensorhaswarmedup,recordtheCO2concentrationintheemptychamberasa baseline. 5. Selectaplantorplantparttotest,andplaceitinthechamber. " Certainchambersmaynotneedtheplantpartremovedtotestit.Ifpossible,leave theplantintact. 6. CloseoffthechambersothatthesensorisabletomonitorCO2inside. " Themanufacturer’sinstructionsmayexplainhowtouseanybuilt-inchamber. 7. Placethechambersothattheplantorplantpartreceivesasclosetoitsnaturallightingas possible.Besuretostandsothatyoudonotcastanyshadowsoverthechamber! 8. RecordCO2concentrationdata,eitherusingsoftwareorbyhand. " Thesensormayneedtimetoadjust,butitwillnotsettleonasinglevalueifthe plantmaterialinthechamberisalive. " Checkthemanufacturer’sinstructionstodeterminehowlongtowaitbeforetaking adatapoint,ifyouarecollectingdatabyhand. " ThesereadingswillgivethenetCO2consumptionorproductionovertime,after subtractingthebaseline. 9. Coverthechamberwithfoil,cloth,orothermaterialsothatitisentirelydarkened. 10. RecordCO2concentrationdataagain,asinstep8. " ThesereadingswillgivetheCO2productionduetorespirationovertime,relativeto thebaseline. 11. TheCO2consumptionduetophotosynthesiscanbedeterminedbysubtractingthe respiratoryCO2productionfromthenetCO2consumption/production.Thisvalueshouldbe negative. 12. Testotherplantsamplesusingthesameprocedure. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 15 of 31 Last Updated 7/2013 VISUALIZING&COUNTINGSTOMATAUSINGTHELEAFIMPRESSIONMETHOD Purpose:Todeterminestomataldensityandexaminethestate ofstomatainleaves. HowtheMethodWorks:Paintingnailpolishontothesurfaceof aleafcreatesanimpressionofitsoutercellularstructure.The impressionispeeledfromtheleaf,thenexaminedundera microscopetoviewhowwidethestomataareopenedandhow manyarepresentperunitarea(stomataldensity). TechnicalComplexity:Moderate.Itcantakesomepracticeto learnhowtobringspecimensintofocuswithoutdamagingthe lenses. TimeRequired:60minutesfromset-uptocompletion. Materials: • • • • • • • • • • Leaves(1-2pertreatment) Clearnailpolish Compoundmicroscopewith40Xobjective Preparedleafanatomyslides,ifavailable Blankmicroscopeslides Dissectingprobeorotherpointedinstrument Forceps Distilledwater Permanentmarker Metricruler Thelargedonutshapeaboveismadeupof thetwocellsthatformastomate.Stomata areopeningsthroughwhichgasesenter andleavetheleaf.Thecellsaroundthe pore,calledguardcells,openandcloseto maketheporebiggerorsmaller. Procedure: 1. Inyournotebook,describetheleavesyouwillsample. a. Indicatewhereandwheneachleafwasgathered(e.g.,sunorshade,timeofday,season). b. Describethespeciesortypeofplant,ifyouknow. c. Makeaphotographorsketchoftheleaves,usinglabelsorfilenamestohelpyoukeeptrack forlater. 2. Preparetwoepidermalimpressionsfromeachleaf–onefromtheundersideandonefromthetop. a. Painta1-cmx1-cmsquareofclearnailpolishontothesurfaceoftheleaf. " Makesuretherearenogapsinthelayerofnailpolish. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 16 of 31 Last Updated 7/2013 Severalcoatsareokay,sinceyoudon’twantthenailpolishtotearasyoupeelitoff theleaf. b. Allowthenailpolishtodrythoroughly. " 3. Setupandpracticeusingthemicroscopewhilewaitingforthenailpolishtodry.Askyourteacher forassistance. a. Turnthemicroscopelighton. b. Movethestagefarfromtheobjective,usingtheappropriateknob. c. Pushthelowestpowerobjectiveintoplace(usually4Xor10X). d. Placeapreparedslideofaleafonthestage. e. Lookingatthestagefromtheside,movethestageclosetotheslidewithouttouchingthe slideitself. " Knowwhichwaytoturntheknobtomovethestageawayfromthesample. " Becareful.Ifyoucrunchtheslideagainsttheobjective,theobjectivewillbe permanentlydamagedandexpensivetoreplace. f. Lookintotheocular. " Onlymovethestageawayfromthesampleforroughfocus. " Usetheotherknobformoresensitivefocus. g. Onceyoucanseethestructuresunderlowpower,youcanswitchtothe40Xobjective. " Onlyusethesensitive-focusknobatthispower.Theobjectiveislonger,soit’s easiertoaccidentallydamageitbybumpingintotheslide. 4. Prepareyourmicroscopeslidesoftheleafimpressions. a. Gathertwomicroscopeslidesforeachleaf–oneeachfortheimpressionfromtheupper andlowersurface. b. Youwillbeliftingoffeachnailpolishsquare(leafimpression)asonepiece. " UseadissectingprobeorotherpointedinstrumenttoGENTLYteasetheedgeofthe nailpolishup,liftingorpeelingthenailpolishawayfromtheleafuntilabout halfwaylifted. " Useforcepstofinishpeelingawaythesquare. " Rememberwhichsideofthepeelwasfacingtheleaf. c. Placeadropofdistilledwaterontoamicroscopeslide. d. Puttheimpressionontothesurfaceofthewaterwiththesidethatwastouchingtheleaf facingup,awayfromthewater. e. Gentlysmoothouttheimpressionusingthedissectingprobe,sothatit’sflatagainstthe slide. f. Withapermanentmarker,labeltheslidetoindicatetheleafsampledandwhichsideofthe leaftheimpressioncamefrom. g. Repeatstepsb-fwiththeremainingleafimpressions. 1. Examinetheimpressionsunderthemicroscope. a. ReviewStep3forsafeuseofthemicroscope. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 17 of 31 Last Updated 7/2013 b. Focusontheimpression,butrememberthatyouarelookingataclearimpressionofthe leafsurface,notagreenleaf! c. Takenotesandmakesketchesofwhatyousee. 2. Collectdataonthestomata. a. Findtheimpressionsofstomata. " Aretheyopen,closed,inbetween,oramix?Takenotes. " Makeaquicksketchofthestateofanaveragestomateintheimpressionforeach sample. b. Countthenumberofstomatainthe1cmx1cmimpressionandrecordthenumber. " Countityourselftwice. " Haveoneotherteammatedothecounttwiceforthesameslidetodoublecheck. " Ifmanystomataarepresent,considerdoingacountusingthelowest-power objectiveinsteadoftheentireimpression.Calculatetheareaofthefieldofview(p. 16)tofindthesamplingarea’ssize. " Stomataldensitycanbecalculatedasthenumberofstomatespercm2. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 18 of 31 Last Updated 7/2013 VISUALIZINGPLANTCELLS&CHLOROPLASTSUSINGA MICROSCOPE Purpose:Tovisualizechloroplastsandplantcells. HowtheMethodWorks:Photosynthesisoccursinplantorganelles calledchloroplasts.Becauseoftheirgreencolor,chloroplastscan beseeneasilyusingalightmicroscope.Awetmountslideofacell layerteasedfromaleafispreparedandviewedat400Xmagnification. TechnicalComplexity:Moderate.Youmayneedtomakeseveralsamplestogetathinenough layertoseetheindividualcellsclearly.Itcantakesomepracticetolearnhowtobring specimensintofocuswithoutdamagingthelenses. TimeRequired:30minutes. Materials: • • • • • • • • • Compoundlightmicroscopewith40Xobjectiveandatleastonelowerpoweredobjective Lenspaper Leavesorotherorgansfromplants,oralgaecultures Scalpel Microscopeslidesandcoverslips Eyedropperorsmallpipette Water (Optional)dissectingneedles Forceps LabSafety: Scalpels,brokencoverslips,andbrokenslidesareverysharp.Disposeofthesematerialsinthe“sharps” containerorintheglassdisposal,NOTtheregulartrashcan.Wearingwell-fittinglabglovesis recommendedtohelppreventaccidentalcuts. Procedure: 1. Beforeyoubegin,carefullycleantheobjectivesandeyepiecesofyourmicroscopewithlenspaper. 2. Prepareaslideofyourspecimen(s): a. Selectaleaforotherpartoftheplant.Useascalpeltosliceaverythinfragmentfromthe leaf. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 19 of 31 Last Updated 7/2013 Alternatively,placeadropofalgalcultureontoaslideusinganeyedropperor pipette. Placeadropofwaterintothecenterofamicroscopeslideusinganeyedropperor pipette,thentransfertheleaffragmenttothewaterontheslide. " Ifusinganalgalculture,thereisnoneedtoaddadditionalwater. Gentlyteaseapartthetissueinthewaterdropletusingthescalpelortwodissecting needles. Placeoneendofaglasscoversliptotherightorleftofthespecimensothattherest oftheslipisheldata45oangleoverthespecimen. Slowlylowerthecoverslipwithadissectingneedleorforcepssoasnottotrapair bubbles.Thecoverslipflattensthepreparation,keepsitfromdryingout,and protectstheobjectivelenses. Pressdownonthecoverslipvery,verylightlywiththeendofthedissectingprobe orforceps.Thisspreadsandflattensthetissue,soitiseasiertoseeonecelllayer. " b. c. d. e. f. 3. Observeyourspecimen(s)underthemicroscope: a. Ifyouhavenotusedamicroscope(recently),askateacherforassistanceandseepp.13-14 forpracticeinstructions. b. Beginbyusingthelowest-powerobjective. c. Locateapartoftheslidethathasseemstohavethefewestlayersofcells. d. Usethefocustohelpdistinguishindividualcells. " Abouthowlargearethecells? " Wherearethecellwalls? " Canyouseeanychloroplastsatthisscale? " Makeasketchofyourobservations,notingthetotalmagnificationinoralongside eachdrawing. " Providesomebriefnotesaboutthesample.Wasitpartofanexperiment?Ifso,to whattreatmentwasitsubjected? " Alternatively,ifyouhaveadigitalcameratotakemicroscopephotos,include informationaboutthetotalmagnificationandthesampleinthefilename.Write thefilenameinyourlabnotebook. e. Nowusethe40Xobjectivetolookatthesample.Again,makeasketchordigitalphotoof yourobservations.Trytoanswerthefollowingquestionsinyourlabnotebook: " Wherearethecellwalls? " Wherearethechloroplasts,andhowarethepositionedrelativetothecell walls? " Abouthowmanychloroplastsareineachcell? " Doyounoticeanymovementwithinthecell?Ifso,whatisthis? f. Repeatwithanyothersamplesyouwanttoexamine. 4. Cleanupwhenyouarefinished: PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 20 of 31 Last Updated 7/2013 a. Washanddryallslidesandplacetheminaglasscontainernearthesink. b. Slipcoversmaybedisposedofintheglassdisposal. c. Turnoffthemicroscope,coverit,andputitintothestoragecabinet. Whatisthetotalmagnificationofmyspecimen? Multiplythemagnificationoftheocularlens(usually 10X)bythatoftheobjectivelens. Example: Supposeyouhavethe40Xobjectiveinplace.Then thetotalmagnificationwouldbe: 10x40=400 thatis,400X. Howbigismyspecimen? Thefieldofviewisthefullareayoucanseeonthe slidewithoutmovingit.Athighmagnification,your fieldofviewissmall.Atlowmagnification,itislarger. Ifyouhaveaflat,clearruler,placeitonthestage. Measurethediameteracrossthemiddleofthefield whenlookingintothemicroscopewitheachofthe objectivelenses.Usingtheformulafortheareaofa circle,calculatetheareaofeachfieldofview. Byestimatinghowmanycellsareinthefieldorhow muchofthefieldistakenupbyonecell,youcangeta roughestimateofacell’ssize.Thestandardunitof measureinlightmicroscopyisthemicrometer(µm),so it’sbesttodescribethefieldofviewandspecimen sizesonthisbasis:1mm=0.001µm. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 21 of 31 Last Updated 7/2013 IDENTIFYINGSTARCHINPLANTLEAVESUSINGAN IODINESTAININGMETHOD Purpose:Toexaminestarchgrainsasameasureof photosyntheticand/orrespiratoryactivity. HowtheMethodWorks:Themethodallowsyoutoseestarchin leafdisks.Starchisapolysaccharidemadeupofglucose molecules.Plantscommonlyuseitasastoragecarbohydrate. Here,leafdisksarepreparedfromplantsgrownunderlightand darkconditionsbeforebeingtreatedfor24hourswith environmentalconditionsofyourchoosing–differentlight intensities,wavelengthsoflight,light-darkcycles,temperatures, CO2levels,orglucosesolutionsarejustafewpossibilities.Afterplacingleafdisksinan experimentaltreatment,theyarestainedwithLugol’sSolution.Starchgranuleswillappear purplish-blackunderamicroscope.Theirrelativedensityunderdifferenttreatmentscanbe assessed. TechnicalComplexity:Moderate. TimeRequired:Twoclassperiods. Materials: PreparationPhase: • PotassiumIodide • Iodine • Water • Containerofabout75mL • Plantsgrowninthelightandplantsgrown inthedarkforatleast4days. • Paperholepunch,plasticstraw,orNo.3 corkborer • Lightsourceforlight-grownleafdisks • Aluminumfoilorotherlight-blocking materialfordark-grownleafdisks • (Optional)Materialstoprovidean environmentaltreatment PlantingScience CC BY-NC-SA 3.0 | StainingPhase: • Hotplateorsomeothermeanstocreate heatedliquidbath • Beakerofwaterwithboilingchips • Beakerofethanol • Forceps • Timerorclock/watchwithasecondhand • Papertowels • Aluminumfoil,Petridish,orshallow container • Water • Compoundmicroscopewith40Xobjective www.plantingscience.org | Power of Sunlight—Toolkit Page 22 of 31 Last Updated 7/2013 Procedure: Part1.PrepareLugol’sSolution(ifnecessary,5minutes): 3. 4. 5. 6. Measure60mLofdistilledwaterintoacontainer. Weighout0.4gofpotassiumiodide. Transferthesolidintothecontaineranddissolve. Add0.2giodinetothesolutionandstirorswirltomix. Part2.PrepareLeafDisks(10minutes): 1. Useapaperholepunch,plasticstraw,orNo.3corkborertopunchoutyourleafdisks. o Avoidtheheavyveins. o Cutoutequalnumbersofleafdisksfromthelight-grownanddark-grownplants,using1-2 leavesforeachenvironmentaltreatmentyouplantocarryout. o Includeatleastonehealthygreenleafandonedark-growninadditiontoyourtestsamples. Theseareyourcontrols,andtheywon’tbetreatedduringthe24hourperiod. o Alternatively,youcancutsquaresfromtheleavesusingscissors. 2. Dividetheleafdisksintoequivalently-sizedtreatmentgroups. o Ifyouhaveindexcardsorsmallpiecesofpaper,puttheleafdisksforeachtreatmentonto theirowncard.Thiswillmakeiteasiertokeeptrackofthedisksforonetreatment. 3. Placethecontrolsintothesameconditionsthatwereusedduringpre-treatmentoftheleaves,light anddark. 4. Place the treatment groups into their respective treatment conditions. Treat the leaf disks for 24 hours. Part3.StaintheLeafDisksforStarch(30minutes): 1. Wearsafetygoggles,alabcoat,andgloves.Youwillbeworkingwithboilingwaterandhotethanol thatcancauseburns,andadyethatcanstainyourskinandclothing. 2. Prepareaboilingwaterbath.Askyourteachertoprepareahotethanolbath. 3. Usingtheforceps,dropaleafdiskintotheboilingwaterbath.Leavefor30seconds.Thiswillkill thecells. 4. Carefullyremovetheleaffromtheboilingwaterwithyourforcepsandplaceontoapapertowel. 5. Repeatwiththeotherleafdisks,makingsuretokeeptrackofwhichtreatmenteachdiskwasgiven. 6. Usingyourforceps,transferaleafdiskintothehotethanolbathandleaveittherefor2minutes. Thiswillremovemostofthechlorophyllfromtheleaf. 7. Withyourforceps,transfertheleaffromthehotethanolbathtoaroomtemperatureethanolbath (inaglassbeaker,flask,oropenjar).Leavetheleafintheroomtemperatureethanolforone minute.Theleafshouldbenearlywhite. 8. Removetheleaffromtheroomtemperatureethanolandblotitonapapertowel. 9. RepeatSteps6-8withtheotherleafdisks,makingsuretokeeptrackofthetreatmentforeachdisk. 10. Usingasquareofaluminumfoil,makeasmall“bowl,”oruseaPetridishorshallowcontainer. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 23 of 31 Last Updated 7/2013 11. PlaceenoughLugol’sSolutionintothebowltocoverthebottom. 12. Usingtheforceps,putyourblottedleafdisksintothebowlofLugol’ssolution,eachforabout1 minute. 13. Removetheleafdisksandrinsethemoffwithwater. 14. Blottheleafdisksonpapertowels. Part4.RecordData(15minutes): 1. Recordthecolorintensityofyoursamplesandvariationswitheachsample. o Starchwillbestainedadarkreddish-brown. o Itmaybehelpfultocreateacolorguideorrankingsystemtojudgecolorintensity. o Inwhatwayarelight-grownanddark-grownsamplesdistinctfromeachother? o Aresamplesfromdifferentenvironmentalsamplesdistinctfromeachother? 2. Makeasketchofrepresentativesamplesofleafdisksfromeachtreatmentleafdisk,includingcolor variations. 3. Visualizerepresentativesamplesfromeachtreatmentunderamicroscopeusinga40Xobjective, andsketchwhatyousee. o Ifyouhavenotusedamicroscope(recently),askateacherforassistanceandseepp.13-14 forpracticeinstructions. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 24 of 31 Last Updated 7/2013 IDENTIFYINGCHLOROPHYLL&OTHERPLANTPIGMENTS Purpose:Identifyingthepresenceorabsenceofchlorophylland otherplantpigmentsinleaves. HowtheMethodWorks:Allplantpigmentshaveunique chemicalproperties,allowingustotellthemapart.Here,paper chromatographywillbeusedtoseparateplantpigments.First, fluidissqueezedoutofplantleavesontofilterpaper.Thepaperis putintoachambersothatitstiptouchesachromatography solvent--inthiscase,acetoneorisopropylalcohol.Asthesolventisabsorbedandtravelsup thefilterpaper,theplantpigmentsarecarriedwithit.Eachpigmentwillmoveupthepaperat acharacteristicratedependingonitschemicalproperties,includingsolubilityinthesolvent, molecularmass,andamountofhydrogenbondingwiththefilterpaper.Sincethepigmentsare colored,thesinglesamplewillseparateintopigmentbandsofdifferentcolors. TechnicalComplexity:Simple. TimeRequired:60minutesfromset-uptocompletion. Materials: • • • • • • • • • • 1-2plantleavespertestsample Jars,wide-mouthedtesttubes,400-600mLbeakers,10mLgraduatedcylinders,orothervesselof similardepth,Coverssuitableforthevessels 3mmlaboratoryfilterpaper(orbleachedcoffeefilters,butthesedon’tworkaswell) Metricruler Pencils Scissors Coin Acetone(fingernailpolishremover)orisopropylalcohol(rubbingalcohol) Thindowel,straws,orpaperclips Tape Procedure: 1. Selectoneormoreidentically-sizedvesselstouseaschromatographychambers. o Measuretheirheight,sothatyouwillknowhowlongtocutyourpaperstrips. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 25 of 31 Last Updated 7/2013 o Ifyouhavemanysamplestotest,makesurethechamber(s)arelargeenoughforone vertically-placedchromatographystripperplantsamplewithoutanyofthestripstouching anyothersorthechamber’ssides. 2. Preparethechromatographypaperstrips: a. Handlethesheet(s)offilterpaperfromtheedges,andaslittleaspossible.Thenaturaloils fromyourhandscaninterferewithmovementofsolventupthestrip. b. Usingaruler,measureoutthesizeofthestripsontothefilterpaper. " Allstripsshouldbeaslongasthedepthofthechromatographychamber. " Theyshouldbeabout1.5cmwide. " Measureonestripforeachsample. c. Cutthestripswithscissors. d. 1cmfromthebottomofeachstrip,lightlydrawapencillineasshownatright. " DoNOTuseapenormarker.Pigmentsfromtheinkwillinterferewiththetest! e. Cutthebottomintoan“arrowpoint”uptothe1cmmarkasshownatright. 3. Preparetheextractfromaleafsampledirectlyonastrip: a. Placethepaperstriponthetable. b. Positionyourleafoverthepencilmark,rememberingnottoplaceyour fingersontothemiddleofthestrip. c. Traceoverthepencilmark,nowunderneaththeleaf,byrollingtheedgeof acoinovertheleafabout15times. d. Repeatthisprocesstwomoretimeswithanunusedportionofthesameleaf (oranotherfromthesameexperimentaltreatment)inthesameplaceon thestrip.Thiscompletesonestrip. e. Repeatthisentireprocessforeachleafsampleandstrip. f. Allowtheleafextractsonthestripstodryforabout10minutes. 4. Preparethechromatographychamber(s): a. Isopropylalcoholandacetonearevolatileandflammable.Wearsafetygoggles,avoid inhalingthefumes,anddonotusenearflames. b. Fillthechamber(s)witheitherisopropylalcoholoracetoneto1cmindepth. c. Coverthechamber.Allowthechambertofillwithfumeswhileyourstripsaredrying. d. Howyoucreatethesetuptorunsampleswilldependonthechambersizeandshape. Forexample,youcouldattach thedriedstripstoapencil(left). Oryoucouldhookapaperclip throughtheflatendofastrip andthenthrougharubber stopper(right). PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 26 of 31 Last Updated 7/2013 5. Runthechromatographysamples: a. Openthechamberandloweryourstrip(s)intoitsothetipsaretouchingthesolventandthe plantextractlineiswellabovethesolvent. " Iftheplantextracttouchesthesolvent,itwilldissolveintotheliquid! " Makesurethesidesofthestripdonottouchthewallsofthechamber. " Makesurethestripsarelevel. b. Coverthechamberandletthesolventwickupthestrips.Donotdisturbthechamberwhile itiswicking. " Theleafextractwillbegintoseparateintobandsofcolorasittravelsupwards. c. Stopthechromatographywhenthesolventreaches2cmfromthetopofthestrips,orwhen youseeatleastfourcolorbandsclearlyseparatedonthestrips. d. Removethestripsfromthechromatographychamber(s). 6. Markandidentifythedistinctplantpigmentsforanalysis: a. Inpencil,drawahorizontallinewherethesolventstoppedmovingupeachstrip. b. Drawsimilarpencillinestomarkthecolorbandsoneachstrip. c. Measurethedistancefromthelinewhereyouoriginallyputyourleafextractwiththecoin (theorigin)toeachofthelinesyouhavemarked. " Thedistancebetweentheoriginandthefinalsolventlineisconsideredtobethe distancethesolventtraveled. " Thedistancebetweentheoriginandtheindividualpigmentlinesarethedistances thepigmentstraveled. d. Identifythepigmentsoneachstrip.Theorder,fromtoptobottom,shouldbe: " carotenes(yellow-orange) " xanthophylls(yellow) " chlorophylla(brightgreentoblue-green) " chlorophyllb(yellow-greentoolivegreen) " anthocyanin(red) " Youmaynotseeallofthesecolors.Whatyouseedependsonwhatpigmentsare presentineachleaf. e. Foreachpigment,calculatetheRfvalueas: Rf=Distancepigmenttraveled Distancesolventtraveled 7. Cleanupwhenyouarefinished: a. Youmightnotbeallowedtopourthesolventdownthesink,soaskyourteacherhowyou shoulddiscardit. b. Afterdiscardingthesolvent,rinseoutthechamberswithwater.Leavenearthesinktodry. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 27 of 31 Last Updated 7/2013 c. Donotthrowyourstripsawayuntilyouhaverecordedallthemeasurementsandcarried outallthecalculations. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 28 of 31 Last Updated 7/2013 QUANTIFYINGFRESH&DRYMASSOFPLANTS Purpose:Determinechangesinplantmassovertime. HowtheMethodWorks:Therearetwowaystomeasureplant mass:freshorwetmassanddrymass.Inthefreshmassmethod, thewholeplantisweighedoncethesoilisremoved.Forthedrymassmethod,plantsaredried atlowheatbeforeweighing.Theplantsthatareweighedcannotbeusedforfurtherstudies, butyoucandeterminethefreshmassofaplantandthendryittoalsodetermineitsdrymass. Thisallowsyoutocalculatethewatercontentofthatplant.Youshouldusethemethod(s)best suitedtoyourresearchquestion.Forexample,aquestionabouttheamountofcarbonfixed duringgrowthisbettersuitedtomeasurementsofdrymass,sincethewatercontentofaplant canvary. TechnicalComplexity:Simple. TimeRequired:About5minperplant.Fordryweightmeasurements,anovernightdrying timeisrequired. Materials: • • • • • • Sinkwithrunningwater Papertowels Ascalewithmilligram(0.001g)accuracy Adryingoven (Optional)Paperlunchbags (Optional)Ziplocsandwichorgallon-sizedbags GeneralInstructions: • • Removingaplantfromitsgrowingmediumwillusuallyaffectitsgrowthrate,possiblydamaging itintheprocess.Dryingovernightwillkillnearlyallplants.So,bothfreshanddrymass measurementsaretypesofdestructivesampling. Tomeasurechangesinplantmassovertime,thetotalnumberofplantsneededforthe experimentwillbethenumberofplantssampledateachtimepoint(typicallythreeormore) multipliedbythetotaltimepointsatwhichmeasurementsaretaken. MethodA:MeasuringFreshMass Thismethodisthefastestwaytomeasureplantmass.Becauseaplantcanbecomposedofvarying amountsofwaterunderdifferentenvironmentalconditionsordevelopmentalstages,itislessaccurate thanmeasuringdrymass. PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 29 of 31 Last Updated 7/2013 1. Removeplantsfromsoilandwashoffanyloosesoil. 2. Blotplantsgentlywithsoftpapertoweltoremoveanyfreesurfacemoisture. 3. Weighimmediately. o Plantshaveahighwatercomposition,sowaitingtoweighthemmayleadtosome dryingandproduceinaccuratedata. 4. (AlternativeOption)Freshmassforrootandshootdatamaybetakenseparatelybycuttingthe shootsatthe“crown”oftheplant,thenweighingeachpartseparately.Thecrown,orplace whereaplant’srootsandstemmeet,isusuallyfoundatsoillevel. MethodB:MeasuringDryMass Thismethodremoveswaterfromtheplantsbyfirstdryingtheminanoven.Sinceplantscontainlotof water,usingdryweightisamorereliablemeasurethanfreshweight. 1. CompletethefirsttwostepsdescribedinMethodA. 2. Ifdesired,completeStep3orStep4fromMethodAaswell.Youwillendupwithbothfresh anddrymassdata. 3. Drytheplantsinanovensettolowheat(60oC)overnight. o Ifyouhavemanyplantstodry,itmaybehelpfultoplacethemindividuallyinpaper lunchbags. o Uselabelsormakeachartofthedryingpositionstokeeptrackoftheirrespective treatments. 4. Lettheplantscoolinadryenvironment. o Inahumidenvironmenttheplanttissuemaytakeupwater. o Aplasticsandwichbagwillkeepmoistureoutifyouliveinahumidclimate. 5. Oncetheplantshavecooled,weighthemonascale. o Plantscontainmostlywater,sothedriedplantswillnotweighverymuch. o Makesureyouhaveascalethatmeasuresmilligramstoensureaccuracy. MethodC:CalculatingWaterContent Watercontentcanpotentiallybeusefultoidentifyplantsthathaveadifferentresponsetotheir environment.Forexample,plantslivingunderhightemperatureorlowwaterconditionsmayhavea lowerwatercontentthanwell-wateredplantsatamoremoderatetemperature. 1. CompletethefirsttwostepsinMethodA. 2. Weighthewholeplantortherootsandshootsseparatelyasdesired. 3. Placeeachplant,shoot,orrootsysteminitsownpaperlunchbag,andmarkthemtokeeptrack ofwhichplantiswhich. 4. Drytheplantsinanovensettolowheat(60oC)overnight. 5. CompletethelasttwostepsofMethodB,makingsuretorecordthedataalongsidethe correspondingfreshmassdataforeachplantorplantpart. 6. Thewatercontentofaplantsample(%water)canbecalculatedasfollows: a. Watermass(g)=Freshmass(g)–Drymass(g) b. %water=100%xWatermass(g) PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 30 of 31 Last Updated 7/2013 Freshmass(g) PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 31 of 31 Last Updated 7/2013
© Copyright 2026 Paperzz