Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals Wolfgang S. M. Wernera… Institut für Allgemeine Physik, Vienna University of Technology, Wiedner Hauptstraße 8–10, A 1040 Vienna, Austria Kathrin Glantschnig Chair of Atomistic Modelling and Design of Materials, University of Leoben, Franz-Josefstraße 18, A 8700 Austria and Institut für Physik, Fachbereich Theoretische Physik, University of Graz, Universitätsplatz 5, A 8010 Graz, Austria Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials, University of Leoben, Franz-Josefstraße 18, A 8700 Austria 共Received 27 January 2009; accepted 16 September 2009; published online 10 December 2009兲 Two new sets of optical data, i.e., values for the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant as well as the energy loss function 共ELF兲 共Im兵−1 / 其兲, are presented for 16 elemental metals 共Ti, V, Fe, Co, Ni, Cu, Zn, Mo, Pd, Ag, Ta, W, Pt, Au, Pb, and Bi兲 and 1 semimetal 共Te兲 and are compared to available data in the literature. One data set is obtained from density functional theory 共DFT兲 calculations and gives from the infrared to the soft x-ray range of wavelengths. The other set of optical constants, derived from experimental reflection electron energy-loss spectroscopy 共REELS兲 spectra, provides reliable optical data from the near-ultraviolet to the soft x-ray regime. The two data sets exhibit very good mutual consistency and also, overall, compare well with optical data found in the literature, most of which were determined several decades ago. However, exceptions to this rule are also found in some instances, some of them systematic, where the DFT and REELS mutually agree significantly better than with literature data. The accuracy of the experimental data is estimated to be better than 10% for the ELF and 2 as well as for 1 for energies above 10 eV. For energies below 10 eV, the uncertainty in 1 in the experimental data may exceed 100%, which is a consequence of the fact that energy-loss measurements mainly sample the absorptive part of the dielectric constant. Electron inelastic-scattering data, i.e., the differential inverse inelastic mean free path 共IMFP兲 as well the differential and total surface excitation probabilities are derived from the experimental data. Furthermore, the total electron IMFP is calculated from the determined optical constants by employing linear response theory for energies between 200 and 3000 eV. In the latter case, the consistency between the DFT and the REELS data is excellent 共better than 5% for all considered elements over the entire energy range considered兲 and a very good agreement with earlier results is also obtained, except for a few cases for which the earlier optical data deviate significantly from those obtained here. © 2009 American Institute of Physics. 关doi:10.1063/1.3243762兴 Key words: dielectric function; density functional theory; electron scattering. CONTENTS 1. 2. 3. 4. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density Functional Theory Calculations. . . . . . . Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extracting Optical Constants From REELS. . . . . 4.1. Electron-solid interaction parameters. . . . . . 4.2. Multiple scattering. . . . . . . . . . . . . . . . . . . . 1016 1017 1020 1021 1021 1022 a兲 Electronic mail: [email protected]. © 2009 American Institute of Physics. 0047-2689/2009/38„4…/1013/80/$45.00 1013 5. 6. 7. 8. 4.3. Deconvolution of multiple scattering from loss spectra. . . . . . . . . . . . . . . . . . . . . . . . . . 4.4. Retrieval of optical data from the single-scattering distributions. . . . . . . . . . . . 4.5. Consistency test and error analysis. . . . . . . Results and Discussion. . . . . . . . . . . . . . . . . . . . . 5.1. Optical constants. . . . . . . . . . . . . . . . . . . . . . 5.2. Inelastic electron-scattering data. . . . . . . . . Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . Appendix A: Deconvolution Algorithm For 1023 1024 1024 1029 1029 1035 1038 1041 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1014 9. 10. 11. WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL REELS Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix B: Values of the Drude-Lorentz Parameters for the Dielectric Function. . . . . . . . Appendix C: Values of Optical Constants Derived from DFT and REELS. . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041 1042 13. 1092 1092 List of Tables 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Structural and convergence parameters: For each element, crystal structure and lattice parameters are given. The angles between the basis vectors different from 90° are ␥ = 120° for the trigonal Te lattice and ␥ = 110.33° for the monoclinic Bi case. In addition, the k meshes used in the calculation of the electronic structure and the optical spectra, the radius of the muffin-tin spheres RMT, and the RKmax value, i.e., the product of the smallest muffin-tin radius and the plane wave cutoff, are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results of sum-rule checks on the three sets of optical data discussed in the present work. . . . . Fit parameters in Eq. 共33兲 describing the IMFP values derived from the REELS measurements.. Values for the surface excitation parameter as in units of aNFE = 2.896 eV−1/2 derived from the REELS measurements, compared with the theoretical values of Chen 共Ref. 79兲. . . . . . . . . . Drude-Lorentz parameters for Ti 共E3p1/2 = 32.6 eV兲, V 共E3p3/2 = 37.3 eV兲, and Fe 共E3p1/2 = 52.7 eV兲. . . . . . . . . . . . . . . . . . . . . . . . . . Drude-Lorentz parameters for Co 共E3p1/2 = 58.9 eV兲, Ni 共E3p3/2 = 66.2 eV兲, and Cu 共E3p3/2 = 75.1 eV兲. . . . . . . . . . . . . . . . . . . . . . . Drude-Lorentz parameters for Zn 共E3d5/2 = 10.1 eV兲, Mo 共E4p3/2 = 35.5 eV兲, and Pd 共E4p3/2 = 50.9 eV兲. . . . . . . . . . . . . . . . . . . . . . . Drude-Lorentz parameters for Ag 共E4p3/2 = 58.3 eV兲, Te 共E4d5/2 = 40.4 eV兲, and Ta 共E4f7/2 = 21.6 eV兲. . . . . . . . . . . . . . . . . . . . . . . . . . Drude-Lorentz parameters for W 共E4f7/2 = 31.4 eV兲, Pt 共E5p3/2 = 51.7 eV兲, and Au 共E5p3/2 = 57.2 eV兲. . . . . . . . . . . . . . . . . . . . . . . . . . Drude-Lorentz parameters for Pb 共E5d5/2 = 18.1 eV兲 and Bi 共E5d5/2 = 23.8 eV兲. . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ti calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of V calculated with DFT and derived from REELS data. The last 14. 15. 1019 1039 1040 16. 1041 1043 17. 1043 1043 18. 1043 1043 1043 19. 1044 20. two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Fe calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Co calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ni calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Cu calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Zn calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Mo calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pd calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ag calculated with DFT and derived from REELS data. The last two columns contain values for the volume J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1047 1050 1053 1056 1059 1062 1065 1068 OPTICAL CONSTANTS FOR 17 METALS 21. 22. 23. 24. 25. 26. and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ta calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of W calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pt calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Au calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pb calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Bi calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲. . . . . . . . . . 1071 3. 1074 1077 4. 1080 5. 1083 6. 1086 1089 List of Figures 1. 2. Imaginary part of the complex dielectric function and reflectivity of silver in the energy range of 0 – 25 eV for two different broadenings ⌫dr = 0.10 eV 共black line兲 and ⌫dr = 0.02 eV 共red line兲 of the intraband contributions. For the interband part of the spectrum a Lorentzian broadening of 0.10 eV was adopted.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 Oscillator strengths for optical transitions of silver visualized for three planes in the BZ. 7. From top to bottom: Position of the plane in the BZ; oscillator strength for transitions in the energy ranges of 3.5–5 and 19.5– 21.5 eV, respectively. From left to right: z = 共1 / 34兲共 / a兲, z = 0.5共 / a兲, and z = 共33/ 34兲 ⫻共 / a兲 planes. Dark areas correspond to regions with high oscillator strengths.. . . . . . . . . 共a兲 Comparison of raw REELS data for 1500 eV electrons backscattered from a Au sample 共red curve兲 with the corresponding data after a Richardson-Lucy deconvolution 共blue curve兲. 共b兲 Illustration of the elastic peak removal procedure for the data shown in 共a兲. Blue curves: spectrum before elimination of the elastic peak; red curves: elastic peak; black curves: loss spectrum after removal of the elastic peak.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DIIMFP and DSEP for medium energy electrons in Al and Pt. The DIIMFP is presented for 1000 eV 共solid curves兲 and 3000 eV 共dashed curves兲 while the DSEP is shown for 1000 eV for two different angles of surface crossing 共0°, solid curves; 70°, dashed curves兲. 共a兲 Al; 共b兲 Pt.. . . . . . . . . . . . . . . . . . . . . . 共a兲 Elastic scattering cross section of Au for several energies in the range of scattering angles between 100° and 140°. 共b兲 PLD Q共s兲 calculated by means of a MC simulation for Au for 700 and 3400 eV for the geometrical configuration used in the present work and for 5 and 40 keV for the experimental setup of Ref. 58. 共c兲 Reduced partial intensities for volume scattering calculated by means of Eq. 共17兲 for the PLDs shown in 共b兲.. . . . . . . . . . . . . . 共a兲 Results of the deconvolution procedure equation 共23兲 applied to all possible energy combinations between 300 and 3400 eV. Note that the scattering geometry employed in the present work corresponds to a deep minimum in the elastic-scattering cross section at 300 eV 共see Fig. 5兲. 共b兲 Same as 共a兲 for energies larger than 300 eV, thus avoiding the deep minimum in the scattering cross section at 300 eV. 共c兲 Same as 共b兲 but using Oswald’s formula for the energy and angular dependence of the surface excitation parameter equation 共30兲 instead of Eq. 共20兲.. . . . . . . . . . . . . . . . . . . . . . . . Comparison of deconvolution of REELS spectra for Au measured in significantly different energy ranges, corresponding to the PLDs and partial intensities shown in Figs. 5共b兲 and 5共c兲. 共a兲 Loss spectra for 700 and 3400 eV electrons, measured in the present work. 共b兲 Measurements of Ref. 58 for 5 and 40 keV. 共c兲 Comparison of the single-scattering loss distributions obtained with Eq. 共23兲 using the partial intensities 1015 1019 1020 1022 1025 1026 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1016 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL shown in Fig. 5共c兲.. . . . . . . . . . . . . . . . . . . . . . . . Influence of the chosen dispersion constant ␣ in the retrieval of the dielectric function from the single-scattering loss distributions for the Co 3p semicore transition. Dashed red curve with open circles: ELF values of retrieved from REELS using ␣ = 0.0 in Eq. 共26兲; solid red curve with filled circles: ELF values of retrieved from REELS using ␣ = 0.5; black curve: Palik’s data 共Ref. 1兲 for the ELF 关that were taken from Henke’s work 共Ref. 2兲兴. Blue curves: results of DFT calculations. Note that the DFT calculations accurately reproduce the position of the semicore edge binding energy E3p3/2 = 58.9 eV derived from photoemission data 共Ref. 59兲, as do the REELS data when a value of ␣ = 0.5 is used for the dispersion constant.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison of the dispersive 共1兲 and absorptive 共2兲 parts of for Au derived from the present REELS measurements 共red curves with error bars兲, DFT calculations 共blue curves兲, and Palik’s data 共black curves兲.. . . . . . . REELS data and optical constants derived from them for Ti. Upper panel: deconvoluted REELS data at the employed energies, as indicated in the legend; second panel from above: DIIMFP 关wb共T兲兴 and DSEP 关ws共T兲兴 共data points兲 as well as the best fit of these data to the Drude-Lorentz model of Eq. 共25兲 共solid curves兲; lower three panels: comparison of the loss function Im兵−1 / 其 as well as the dispersive 共1兲 and absorptive 共2兲 parts of the dielectric function extracted from REELS 共red curves兲 with results from DFT calculations 共blue curves兲 and Palik’s data set 共black curves兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for V.. . . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Fe.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Co.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Ni.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Cu.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Zn.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Mo.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Pd.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Ag.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Te.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Ta.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for W.. . . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Pt.. . . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Au.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Pb.. . . . . . . . . . . . . . . . . . . . Same as Fig. 10 for Bi.. . . . . . . . . . . . . . . . . . . . Comparison of values for the refractive index n and extinction coefficient k derived from REELS 共black full curves兲 and DFT 共red dashed curves兲 with the values given in Palik’s 1027 28. 29. 30. 31. 32. 33. 34. 35. 1028 36. 1028 book 共blue dotted curves兲 as a function of the photon wavelength for Cu, Ag, and Au.. . . . . . . Same as Fig. 27 for Fe, Co, and Ni.. . . . . . . . . . Same as Fig. 27 for Ti, V, and Zn.. . . . . . . . . . . Same as Fig. 27 for Mo, Ta, and W.. . . . . . . . . . Same as Fig. 27 for Pd, Pt, and Pb.. . . . . . . . . . . Same as Fig. 27 for Te and Bi.. . . . . . . . . . . . . . Comparison of IMFP values for Ti, Fe, Co, and Pd taken from different sources.. . . . . . . . . . Comparison of REELS spectra with fitted spectra for determination of the surface excitation parameter.. . . . . . . . . . . . . . . . . . . . . . . First-order reduced surface partial intensities 共data points兲 derived from the REELS spectra. Solid line: fit of these data to Eq. 共20兲; dashed line: results of Ref. 43 based on Oswald’s energy and angular dependence of the average number of surface excitations, Eq. 共30兲; dashed-dotted line: theoretical results by Chen 共Ref. 79兲 based on the optical constants of Palik 共Ref. 73兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison of the Padé approximation 关Eq. 共23兲, dots兴 for the DIIMFP and DSEP for Pt with the second-order truncated 关Eq. 共A6兲, red curves兴 and the full second-order 关Eq. 共A2兲, blue curves兴 expansion.. . . . . . . . . . . . . . . . . . . . . 1037 1037 1038 1038 1039 1039 1040 1040 1041 1042 1. Introduction 1028 1029 1029 1030 1030 1031 1031 1032 1032 1033 1033 1034 1034 1035 1035 1036 1036 The response of a solid to an external electromagnetic perturbation determines many important fundamental and technological properties of a material and its surface. The susceptibility of the solid to become polarized by incoming light or charged particles is described by the frequency- 共兲 and momentum- 共q兲 dependent dielectric function 共 , q兲 which can be measured by probing a surface with elementary particles such as photons1–4 or electrons.5,6 Energy-loss measurements with electrons mainly sample the energy loss function 共ELF兲, 再 冎 Im − 1 2 = 2 , 1 + 22 共1兲 where 1 and 2 are the real 共dispersive兲 and imaginary 共absorptive兲 parts of the dielectric function, respectively. These quantities are related to the index of refraction n and extinction coefficient k via 1 = n2 − k2 , 2 = 2nk. 共2兲 Since the rest mass of the photon is zero, conservation of energy and momentum requires that the particle be absorbed during an interaction with the solid-state electrons in the overwhelming majority of cases. This implies that optical spectra can be divided into regions of high opacity and transparency for which accurate simultaneous determination of the absorptive 共imaginary兲 and dispersive 共real兲 parts of the J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS dielectric function is not straightforward. Furthermore, to experimentally cover a wide wavelength range, different sources and monochromators as well as other optical components are needed. In the case of transmission experiments, accessing a wide wavelength range over which varies significantly generally also requires measurements on a series of samples with different thicknesses. Therefore, optical data found in the literature usually consist of a synthesis of various data sets employing a Kramers-Kronig analysis.7 Investigating the dielectric response of a nanostructure down to small dimensions is also problematic since photons are rather difficult to focus. Measurements of the optical constants by means of light scattering have in the past not always been carried out under ultrahigh vacuum 共UHV兲 conditions which implies that the investigated surfaces were not always well defined. The drawbacks mentioned above for measurements of the optical response using photons can be avoided by using electrons as probing particles instead: First of all, they are easy to focus in the sub-nanometer range. Furthermore, electron scattering experiments are routinely carried out in UHV equipment where sample cleaning and monitoring facilities are available and it is easy to access the spectral range between the 共near兲 infrared and soft x-ray regions in a single experiment. Both electron energy loss spectroscopy in transmission5 and reflection8,9 can be used for this purpose, the latter technique being the simplest from the experimental point of view, in particular, when applied to nanostructured surfaces. An inherent drawback of using probing particles with a finite rest mass is that they experience multiple scattering since in this case energy and momentum conservation makes it highly unlikely for them to be absorbed during an interaction. Therefore, features due to multiple scattering need to be eliminated from the raw experimental data by means of an appropriate deconvolution procedure properly accounting for the physics governing the transport of the electrons from the source to the detector. The main processes that need to be considered in this connection are deflections arising in the course of an elastic interaction10 as well as energy losses deep inside the solid 共“volume” or “bulk” excitations11兲 and additional losses that may occur during the crossing of the vacuum-solid boundary 共“surface” excitations12兲. For electron energy-loss spectra measured in the transmission electron microscope 共TEM兲, procedures for spectrum deconvolution have been developed several decades ago1,5,6 and the measurement of optical data in the TEM is nowadays a matter of routine. Such measurements need to be carried out at high enough energies of several hundreds of a keV where the mean free path for inelastic scattering is of the order of the thickness of films that can be prepared in practice. In this energy regime the loss spectrum is dominated by volume energy losses, since the time it takes for an electron to cross the solid-vacuum boundary is too small to give rise to surface excitations to a significant extent. Reflection electron energy-loss spectroscopy 共REELS兲 represents an attractive alternative to energy-loss measure- 1017 ments in transmission since the experiment is extremely simple,13,14 In many an UHV apparatus the required components are available, and REELS can therefore be conveniently combined with other surface characterization techniques. Owing to the energy dependence of the electron reflection coefficient, which decreases rapidly above several keV, energy-loss measurements in reflection are most easily carried out in the medium energy range 共100 eV– 10 keV兲. Then, the low-loss part of the spectrum is dominated by surface excitations, a fact which severely complicates data analysis, in particular, the elimination of plural scattering effects from the raw data. Existing sources of optical constants1–4 are often a synthesis of experimental and theoretical data and the reliability of these data sets below the soft x-ray regime is not well known. Self-consistent field calculations have been used for some decades to determine in the hard x-ray range for free atoms.2–4 On the other hand, solid-state calculations based on density functional theory 共DFT兲 beyond the ground state that allow one to access the soft x-ray range and below have only become available recently.15–18 While DFT has become a standard tool for describing material properties in a parameter-free manner, as far as ground state properties are concerned, the treatment of excited states with the same reliability and hence predictive power as the ground state is still a challenge; nevertheless significant progress has been achieved during the past years such that theoretical spectroscopy has become an emerging field in solid-state theory. In the present paper, two new sets of optical data for 17 elemental materials are presented. One is derived from DFT calculations made for energies between the infrared and soft x-ray regions. The other set is extracted from experimental energy-loss measurements in reflection between the visible and soft x-ray ranges. The method to extract the dielectric function from REELS is outlined and its consistency and accuracy are analyzed in detail. A comparison with earlier results compiled in Palik’s books1 is performed. Generally, very good consistency is found between the DFT calculations and the present measurements; while the overall agreement with Palik’s data is satisfactory, significant differences are observed in several instances, some of these deviations being systematic. This comparison proves the reliability of DFT results which therefore represent a novel way to theoretically obtain information of the response of a solid to an electromagnetic perturbation. Furthermore the results demonstrate that REELS, owing to its experimental simplicity, is a very attractive alternative to the other experimental techniques to obtain information on optical constants of solids addressed above. 2. Density Functional Theory Calculations DFT can be regarded as the standard model in computational solid-state science. Especially ground state properties such as equilibrium volumes, atomic positions, phonon frequencies, and elastic constants are obtained with high accuracy. Since the Hohenberg-Kohn theorem19 is valid for the J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1018 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL ground state only, the interpretation of the Kohn-Sham 共KS兲 eigenstates in terms of quasiparticle energies and wave functions should be handled with care. This is particularly true for semiconductors, which suffer from the band-gap problem. In contrast, for metals the KS band structure can be taken as a good approximation to the quasiparticle energies, where this approximation has proven successful for a variety of materials. The electronic structure is obtained by solving the KS equations with the linearized augmented planewave method using the WIEN2K code.20 It is based on a decomposition of the unit cell 共with volume ⍀兲 into two different volume types, the nonoverlapping muffin-tin spheres centered at the atomic positions and the interstitial region. In these areas appropriate basis sets are used.21–23 In the interstitial region a plane wave basis is adopted to account for the moderate change of the wave functions in this part of the unit cell: kជ +Gជ 共rជ兲 = 1 冑⍀ e ជ 兲·rជ i共kជ +G , rជ 苸 I. 共3兲 The rapid oscillations of the wave functions close to the atom cores are described by atomiclike basis functions inside the muffin-tin spheres, ␣ ជ ជ 兲u␣l 共r,El兲 kជ +Gជ 共Sជ ␣ + rជ兲 = 兺 关Alm 共k + G lm ␣ ជ ជ 兲u̇l␣共r,El兲兴Y lm共r̂兲, + Blm 共k + G 兩rជ兩 艋 R␣ , 共4兲 where Sជ ␣ represents the position of the atomic nucleus ␣ and R␣ = RMT is the radius of the muffin-tin sphere. ul␣共r , El兲 are the solutions of the radial Schrödinger equation for given linearization energies El, u̇␣l 共r , El兲 denote the corresponding energy derivatives, and Y lm共r̂兲 represent spherical harmonics. ␣ ជ ជ ␣ ជ ជ The expansion coefficients Alm 共k + G兲 and Blm 共k + G兲 are obtained by the condition that the two basis sets match in value and slope at the sphere boundaries. To improve the description of semicore states, local orbitals 共LOs兲 can be introduced as additional basis functions. Their form is similar to that of the basis function inside the muffin-tin sphere, ␣ ␣ ␣ ␣ LO共Sជ ␣ + rជ兲 = 兺 关Ãlm ul 共r,El兲 + B̃lm u̇l 共r,El兲 lm ␣ ␣ + C̃lm ul 共r,Elo兲兴Y lm共r̂兲, 共5兲 with the additional linearization energy Elo corresponding to ␣ ␣ the semicore states. The variational parameters Ãlm , B̃lm , and ␣ C̃lm are determined by the conditions that the basis set must be normalized and that the LO should be zero in value and slope at the sphere boundary. Thus, LOs are totally confined inside the atomic spheres. For all elemental solids presented in this work, exchange and correlation effects were treated by the generalized gradient approximation 共GGA兲 parametrized by Perdew et al.24 Spin-polarized calculations were performed for the ferromagnetic elements Fe, Ni, and Co. For Au, Pb, Pd, Pt, and W, spin-orbit 共SO兲 interaction was taken into account via a second variational scheme on top of the GGA calculation. In this procedure, the KS equations are solved neglecting SO coupling at first; the wave functions obtained in this way form the basis set for the eigenvalue problem including the SO part of the Hamiltonian.25 Structural and convergence parameters used in the electronic structure and optical calculations are listed in Table 1. We calculate the dielectric response within the random phase approximation, where the excited electron and the created hole are regarded to be independent 共independent particle approximation兲. Due to the effective screening of the Coulomb interaction this approach is well suited for metals. The imaginary part of the interband dielectric function is given by ប 2e 2 兺 m22 n,n ⬘ 冕 k pn⬘,n,k pn⬘,n,k ⫻关f共n,k兲 − f共n⬘,k兲兴␦共n⬘,k − n,k − 兲dk, 共6兲 where pn⬘,n,k is the momentum matrix element between bands n and n⬘ for a k point in the irreducible wedge of the Brillouin zone 共BZ兲 and f共n,k兲 is the occupation number of the corresponding single particle state with energy n,k. The intraband contributions 共n = n⬘兲 are described by a Drude-like lineshape with a lifetime broadening of 0.1 eV. The same value is also used for the interband spectra. To obtain the real part of the dielectric function a Kramers-Kronig transformation is performed. The details regarding this framework are described in Ref. 17. The BZ integration is carried out by the improved tetrahedron method.26 In the following, a procedure for analyzing features in the optical spectra is presented, with silver serving as an example. Figure 1 shows the complex dielectric function for two different values of the intraband broadening ⌫dr. ⌫dr = 0.02 eV corresponds to the experimentally determined lifetime of 31⫻ 10−15 s 共Ref. 27兲 and ⌫dr = 0.1 eV is a universal value chosen for all elemental metals in this work. The interband broadening ⌫inter was set to 0.1 eV. As can be seen from Fig. 1, the intraband broadening affects the low-energy region up to 2.6 eV. Because of a higher overlap between the interband and intraband contributions for ⌫dr = 0.1 eV, the first minimum is narrowed and decreases in depth. The spectrum shows two interesting features in the energy range up to 25 eV, ie., a strong peak at 4 eV and a broad structure around 20 eV. To investigate the origin of these two structures, the oscillator strength of transitions contributing to a given energy range is calculated for each k point in the BZ by OE共k兲 = 兺冕 n,n⬘ Emax =Emin dEpn⬘,n,k pn⬘,n,k␦共n⬘,k − n,k − 兲, 共7兲 where the sum runs over all band combinations n , n⬘ for which the related transition energies lie within the energy range of interest, i.e., band energies fulfill J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1019 TABLE 1. Structural and convergence parameters: For each element, crystal structure and lattice parameters are given. The angles between the basis vectors different from 90° are ␥ = 120° for the trigonal Te lattice and ␥ = 110.33° for the monoclinic Bi case. In addition, the k meshes used in the calculation of the electronic structure and the optical spectra, the radius of the muffin-tin spheres RMT, and the RKmax value, i.e., the product of the smallest muffin-tin radius and the plane wave cutoff, are listed Lattice parameters k mesh Material Crystal structure a 共a.u.兲 b 共a.u.兲 c 共a.u.兲 scf Optic RMT 共a.u.兲 RKmax Ag Au Cu Ni Pb Pt Pd Fe Mo Ta V W Co Ti Zn Bi Te fcc fcc fcc fcc fcc fcc fcc bcc bcc bcc bcc bcc hcp hcp hcp Monoclinic Trigonal 7.7290 7.7101 6.8219 6.6518 9.3541 7.4077 7.3510 5.4235 5.9526 6.2361 5.7259 5.9715 4.7432 5.5747 5.0359 6.2437 8.4229 7.7290 7.7101 6.8219 6.6518 9.3541 7.4077 7.3510 5.4235 5.9526 6.2361 5.7259 5.9715 4.7432 5.5747 5.0359 12.6120 8.4229 7.7290 7.7101 6.8219 6.6518 9.3541 7.4077 7.3510 5.4235 5.9526 6.2361 5.7259 5.9715 7.6912 8.8439 9.3481 11.5595 11.2042 34⫻ 34⫻ 34 31⫻ 31⫻ 31 31⫻ 31⫻ 31 34⫻ 34⫻ 34 31⫻ 31⫻ 31 31⫻ 31⫻ 31 31⫻ 31⫻ 31 34⫻ 34⫻ 34 34⫻ 34⫻ 34 31⫻ 31⫻ 31 34⫻ 34⫻ 34 34⫻ 34⫻ 34 29⫻ 29⫻ 15 23⫻ 23⫻ 11 34⫻ 34⫻ 16 20⫻ 9 ⫻ 20 19⫻ 19⫻ 12 58⫻ 58⫻ 58 58⫻ 58⫻ 58 58⫻ 58⫻ 58 58⫻ 58⫻ 58 58⫻ 58⫻ 58 58⫻ 58⫻ 58 58⫻ 58⫻ 58 58⫻ 58⫻ 58 58⫻ 58⫻ 58 53⫻ 53⫻ 53 58⫻ 58⫻ 58 58⫻ 58⫻ 58 62⫻ 62⫻ 33 59⫻ 59⫻ 32 70⫻ 70⫻ 32 42⫻ 18⫻ 42 40⫻ 40⫻ 26 2.5 2.5 2.1 2.25 2.5 2.5 2.5 2.33 2.5 2.5 2.4 2.5 2.3 2.6 2.4 2.5 2.5 11 11 10 11 11 11 11 10 10 11 10.5 11 11 10 10.5 11 11 Emin 艋 ⑀n⬘,k − ⑀n,k 艋 Emax . 共8兲 The resulting oscillator strengths OE共k兲 are visualized in Fig. 2 for selected planes in the BZ, depicted in the first row. In the second row, the oscillator strengths for transitions contributing to the feature around 4 eV are displayed, where dark gray areas correspond to high oscillator strengths. K points with kz values smaller than 0.5 / a in a ring close to the BZ boundaries are dominant. High contributions are found in the region around the X points 共see the first and third panels兲. They can be ascribed to transitions from valence bands of d character to p-like conduction bands. Moreover, k points in an area around the L point are involved in 7.0 Γdr = 0.10 eV Γdr = 0.02 eV 6.0 5.0 X ε2(ω) 4.0 X L 3.0 2.0 1.0 0.0 1.0 Reflectivity 0.8 3.5-5.0 eV 0.6 0.4 0.2 0 0 5 10 15 20 25 19.5-21.0 eV Energy (eV) FIG. 1. 共Color online兲 Imaginary part of the complex dielectric function and reflectivity of silver in the energy range of 0 – 25 eV for two different broadenings ⌫dr = 0.10 eV 共black line兲 and ⌫dr = 0.02 eV 共red line兲 of the intraband contributions. For the interband part of the spectrum a Lorentzian broadening of 0.10 eV was adopted. FIG. 2. Oscillator strengths for optical transitions of silver visualized for three planes in the BZ. From top to bottom: Position of the plane in the BZ; oscillator strength for transitions in the energy ranges of 3.5–5 and 19.5– 21.5 eV, respectively. From left to right: z = 共1 / 34兲共 / a兲, z = 0.5共 / a兲, and z = 共33/ 34兲共 / a兲 planes. Dark areas correspond to regions with high oscillator strengths. J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL p → sd and d → pd transitions 共middle panel兲. A different situation is found for the features in the 19.5– 21.5 eV range 共bottom panels兲. They stem from a region of k points around the center of the BZ, with high oscillator strengths close to the kz axis for small kz values. As kz increases, these areas move towards the BZ boundary and become strongest along K − L. The optical transitions creating this feature involve valence bands of d character and conduction bands of pf and f character. (a) Intensity (arb. units) 1020 x50 raw deconvoluted 1480 1490 1500 energy E (eV) 3. Experiment (b) 0.02 -1 Intensity(eV ) Loss spectra were acquired in UHV on a VG Microlab 310 F equipped with a hemispherical analyzer that was operated in the constant ⌬E mode at 20 eV pass energy. The primary electrons were normally incident on the target. The detection angle was 60° with respect to the surface normal. According to the manufacturer, the full polar opening angle of our spectrometer amounts to 24°. The base pressure of the system during the measurements was ⬃10−9 mbar. A single sample holder containing over 30 solids was used in order to ensure identical experimental conditions for the measurements of all samples. Of these samples, the following 17 elemental solids are considered in the present work: Ag, Au, Bi, Co, Cu, Fe, Mo, Ni, Ta, Te, Ti, Pb, Pd, Pt, V, W, and Zn. REELS data were measured for energies of 50, 100, 150, 200, 300, 500, 700, 1000, 1500, 2000, 2500, 3000, and 3400 eV. The REELS spectra for primary energies below 300 eV contain significant intensity from low-energy secondary electrons whose tail can exceed kinetic energies of 100 eV and therefore interferes significantly with the loss spectrum for primary energies below ⬃300 eV. For this reason, only spectra measured with primary energies of 300 eV or more are considered in the present analysis. Count rates in the elastic peak were kept well below the saturation count rate of the channeltrons and the spectra were corrected for detector dead time. The samples were cleaned by means of 3 keV Ar+ ion bombardment. This also served to amorphize some specimens such as silicon. Sample cleanliness was checked before and after the measurement of each sample by means of Auger electron spectroscopy. The primary beam current was stable throughout the measurements to within 2%. To minimize diffraction effects, the primary beam was scanned over a large area of the sample 共0.5⫻ 0.5 m2兲. Three complete sets of data were acquired in the course of half a year to check the reproducibility of the experimental procedure. The results were found to agree within the experimental error imposed by counting statistics. The raw REELS data were converted to loss spectra 关corresponding to Eq. 共22兲 below兴. The spectra were first subjected to a Richardson-Lucy deconvolution to remove the experimental energy broadening caused by the thermal fluctuations of the electron gun and the finite resolution of the analyzer.28 This is necessary to make a precise elimination of the elastic peak possible, as illustrated in Fig. 3.28 It is assumed that the experimental broadening is symmetric and can be described by a Gaussian, with a width and position Elastic REELS Loss 0 Deconvoluted 0.02 Raw 0 -5 0 5 Energy loss T (eV) 10 FIG. 3. 共Color online兲 共a兲 Comparison of raw REELS data for 1500 eV electrons backscattered from a Au sample 共red curve兲 with the corresponding data after a Richardson-Lucy deconvolution 共blue curve兲. 共b兲 Illustration of the elastic peak removal procedure for the data shown in 共a兲. Blue curves: spectrum before elimination of the elastic peak; red curves: elastic peak; black curves: loss spectrum after removal of the elastic peak. determined by fitting an appropriate portion of the elastic peak of the raw data. The spectrum is then subjected to a Richardson-Lucy deconvolution using a 共normalized兲 Gaussian as 共de兲convolution kernel. In the resulting spectrum the elastic peak is always distinctly separated from the loss features and is then fitted by an asymmetric lineshape accounting for final state effects in the recoil process,29 f 0共T兲 = a1G共T兲 + a2 3 3 G共T兲 + a G共T兲 + a4共T兲, 共9兲 3 T3 T4 where G共T兲 is a Gaussian centered around the origin and 共T兲 represents the error function. The elastic peak is then subtracted from the spectrum which is subsequently divided by the elastic peak area giving the loss spectrum in absolute units 关see Eq. 共22兲 in the next section兴. Figure 3共a兲 compares the REELS data for 1500 eV electrons backscattered from a Au sample before 共blue curve兲 and after 共red curve兲 deconvolution. The resulting loss spectrum is represented in Fig. 3共b兲 by the black solid curves. It should be noted that the fourth derivative in Eq. 共9兲 needs to be included in the fitted peak shape to properly account for final state effects in the elastic recoil process at the low energies considered here and furthermore, that any attempt to fit the elastic peak with a symmetric function leads to much larger misfits than the ones shown in the lower panel of Fig. 3共b兲. The latter also demonstrates the necessity for a deconvolution prior to the elastic peak elimination: Owing to the large dynamic range of REELS data which is caused by the fact that the elastic J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS peak is much sharper than any other features in the spectrum, it overlaps with the loss features unless the broadening can be reduced significantly during the experiment. Then only a comparably small energy range of the elastic peak can be used to fit its shape and the resulting fit is generally worse than after deconvolution, leading to spurious oscillations in the loss spectrum around zero energy loss. It can be seen in the lower panel of Fig. 3共b兲 that these oscillations may be comparable in intensity to the real loss features, which complicates quantitative interpretation of the loss spectra. 4. Extracting Optical Constants From REELS The procedure to extract the dielectric function from 共reflection兲 electron energy-loss spectra consists of two steps: eliminating multiple scattering from the spectra to reveal the single-scattering loss distribution in an inelastic interaction and subsequent determination of the optical constants from the latter. Since in a reflection experiment the momentum transfer is not fixed by the geometry, as in transmission electron energy-loss measurements,5 the single-scattering loss distribution represents an average over the BZ and therefore the second step cannot be achieved with a Kramers-Kronig analysis, as is usually done in a transmission experiment. Furthermore, since the reflection coefficient is very small for the typical energies used in the TEM, a reflection experiment is usually performed at much lower energies where it is no longer admissible to neglect surface excitations. Therefore, the procedure to eliminate multiple scattering also needs to be modified to take into account the effects of surface excitations. In the following, the fundamental parameters for the electron-solid interaction in the relevant energy range are presented and the procedure to eliminate multiple scattering to retrieve the single-scattering loss distributions as well as the method to extract the dielectric function from them are outlined. Finally, a detailed consistency check and an error analysis are performed. 4.1. Electron-solid interaction parameters When an electron hits the surface of a solid, it interacts strongly with the ionic and electronic subsystems of the solid. Therefore its degrees of freedom are subject to fluctuations. Changes in the direction of motion 共referred to as elastic collision in the following兲 are mainly brought about by interaction with the screened Coulomb field of the nucleus that is assumed to be static during the interaction. Energy losses of the probing particle 共referred to as inelastic collisions in the following兲 mainly occur via polarization of the solid-state electrons as a response of the loosely bound solid-state electrons to the incoming probing particle representing a strong perturbation. The incoming particle is decelerated by the polarization field it induces in the solid. In a semi-infinite solid with a planar surface, two types of inelastic excitations exist: bulk or volume excitations 共denoted by the subscript “b” in the following兲 taking place deep inside 1021 the solid where the influence of the vacuum-solid boundary can be neglected and surface excitations 共subscript “s”兲 that take place in a narrow depth region zs near the surface 共zs = v / s, where v is the electron speed and s is the surface plasmon frequency兲 both in vacuum and inside the solid. These surface modes are governed by the boundary conditions of Maxwell’s equations at the interface of two media with different dielectric susceptibilities and have a somewhat lower characteristic frequency than volume excitations 共s = b / 冑2 for a free-electron material with a planar surface兲. Since energy and momentum conservation governs the kinematics of the interaction, any change in the direction of motion is always accompanied by a change in the speed of the electron and vice versa. However, the recoil energy loss suffered during an elastic collision is typically of the order of some 10 meV which is much smaller than the energy loss during an inelastic collision, which is typically of the order of 10 eV. Furthermore, the scattering angles during an inelastic collision are much smaller than deflections caused by elastic collisions: milliradians for inelastic scattering compared to scattering angles of the order of for elastic scattering. Therefore, to a good approximation, deflections and energy losses can be treated as independent processes. Note that this follows immediately from energy and momentum conservation and by considering the fact that the masses of the interaction partners in an inelastic collision are very similar, while they are very different for an elastic interaction. When coherent scattering 共diffraction兲 is neglected, elastic-scattering processes are completely specified by the differential cross section for elastic scattering de共s兲 / d⍀, i.e., the distribution of polar scattering angles s in an individual interaction. This quantity can be calculated by means of the partial-wave expansion method.10,30 Usually a static atomic potential is used for such calculations, which is justified by the fact that solid-state effects mainly affect the small-angle scattering part of the cross section which is immaterial for the momentum relaxation process 共see Ref. 31 for a detailed discussion兲. Inelastic scattering is described by the differential inelastic mean free path 共DIIMFP兲 for bulk scattering Wb共T兲, i.e., the distribution of energy losses per unit path length. Surface excitations are most conveniently expressed via the so-called differential surface excitation probability 共DSEP兲 Ws共T兲, i.e., the distribution of energy losses in a single surface crossing. While calculations of the elastic-scattering cross section have been performed over several decades, only in the very recent past has the advent of density functional calculations made ab initio calculations for the inelastic-interaction characteristics possible. To date, empirical data for the susceptibility of any given solid to become polarized by an incoming charged particle have been used instead. The relationship between the inelastic-interaction characteristics and the macroscopic response function of a solid is provided by linear response theory. The DIIMFP is expressed in terms of the dielectric function 共 , q兲 of the solid via the well known formula11 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL 1 E 冕 再 冎 q+ Im q− −1 dq , 共,q兲 q 共10兲 (a) differential loss probability (arb. units) W b共 兲 = where a quadratic dispersion is usually assumed such that the momentum transfer q is limited by q− and q+ given by q⫾ = 冑2E ⫾ 冑2共E − 兲. 共11兲 Note that atomic units are used in this section and T = is used interchangeably throughout this work to denote the energy loss or the corresponding characteristic frequency. The differential inverse mean free path normalized to unity area is related to the unnormalized DIIMFP via wb共T兲 = iWb共T兲, where i is the 共total兲 inelastic mean free path 共IMFP兲, i.e., the average distance the particle travels in between successive inelastic collisions, measured along its trajectory. For the DSEP, the expression by Tung et al. that includes the recoil term32 is employed in the present work, Ws共, ,E兲 = Ps+共, ,E兲 + Ps−共, ,E兲, 共12兲 where the quantity Ps⫾共 , , E兲 is defined as Ps⫾共, ,E兲 1 = E cos 冋 ⫻Im and 冕 q+ q− 共共,q兲 − 1兲2 共,q兲共共,q兲 + 1兲 冋 冉 冑 冊册 qs⫾ = q2 − + q2/2 2E 兩qs⫾兩dq q3 2 1/2 cos ⫾ 冉 册 + q2/2 冑2E 共13兲 冊 sin . 共14兲 The normalized DSEP is calculated via ws共T , 兲 = Ws共T , 兲 / 具ns共 , E兲典, where 具ns共 , E兲典 is obtained by integrating Eq. 共13兲 over the energy loss and represents the average number of surface excitations experienced during a single surface crossing. To avoid confusion, it is noted that although the same symbol 共“W” in Wb and Ws兲 is used to denote the distribution of energy losses in a surface and bulk excitation, the physical meaning of these quantities is quite different. While the DIIMFP is the volume-scattering probability per unit path length and energy, the DSEP represents the surface excitation probability 共SEP兲 per unit energy, since this quantity is obtained by integrating over the path the electron takes through the surface-scattering zone.32 The normalized distribution of energy losses wb共T兲 and ws共T兲 are physically equivalent quantities and both have the dimension of reciprocal energy, which is the reason why the same symbol is chosen for these quantities. Examples of the DIIMFP and DSEP for Si and Pt are given in Fig. 4. The DIIMFP is shown for two energies 共1000 and 3000 eV兲, while the DSEP is given for 1000 eV for two different surface-crossing angles of 0° and 70°. It is seen that for the considered energy-loss range, being significantly smaller than the probing energy, the shape of the DIIMFP hardly depends on the energy, or, in other words, that the (b) differential loss probability (arb. units) 1022 Si DIIMFP DSEP 70° 1000eV 0° 3000eV 0 0 10 20 30 energy loss (eV) 40 50 Pt 1000eV DSEP DIIMFP 3000eV 70° 0° 0 0 5 10 15 20 25 energy loss (eV) 30 35 40 FIG. 4. DIIMFP and DSEP for medium energy electrons in Al and Pt. The DIIMFP is presented for 1000 eV 共solid curves兲 and 3000 eV 共dashed curves兲 while the DSEP is shown for 1000 eV for two different angles of surface crossing 共0°, solid curves; 70°, dashed curves兲. 共a兲 Al; 共b兲 Pt. normalized distribution of energy losses is independent of the incoming energy wb共T , E兲 ⯝ wb共T兲 to a good approximation. The same holds for the DSEP 共not shown兲. On the other hand, the angular dependence of the normalized DSEP is seen to be very weak as well, ws共T , E , 兲 ⯝ ws共T兲. Of course the total SEP 具ns共E , 兲典 exhibits a pronounced angular and energy dependence, while the energy dependence of the IMFP, i共E兲, which governs the total bulk scattering probability, is appreciable as well. 4.2. Multiple scattering Owing to their finite rest mass, electrons suffer intense multiple scatering when traveling through a solid. This is in contrast to the case of photon transport in matter where the vanishing rest mass makes it highly unlikely for the photon not to be absorbed during an interaction. The energy and direction of motion of a charged particle are changed repeatedly by multiple-scattering processes. For noncrystalline materials, where coherent scattering can be neglected 共see Ref. 33 for the limitations of the standard model for particle transport where diffraction effects are neglected兲, the fluctuations after multiple scattering can be expressed in terms of the fluctuation distributions for a single collision by solving a linearized Boltzmann-type kinetic equation.34 This was done in the so-called quasielastic approximation, valid for energy losses significantly smaller than the incoming energy 共T / E Ⰶ 1兲, where the interaction characteristics are taken to be J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1023 具ns典ns −具n 典 e s. n s! 共19兲 independent of the energy. Green’s function of the problem can then be expressed in terms of the 共nb − 1兲-fold selfb兲 convolution of the DIIMFP, w共n b 共T兲, and the 共ns − 1兲-fold self-convolution of the DSEP, ws共ns兲共T兲, weighted with the collision statistics Anb,ns, i.e., the number of times a given scattering process occurs for the considered boundary conditions 关Eq. 共12兲 in Ref. 34兴. The resulting REEL spectrum Y共E兲 is then found by superposition,8 ⬁ ⬁ Y共E兲 = 兺兺 n =0 n =0 b兲 Anb,nsw共n b 共T⬘兲 丢 A ns = The quantity 具ns共E , 兲典 represents the average number of surface excitations in a single surface crossing, which is given in terms of a material parameter as, the so-called surface excitation parameter, by the formula32 具ns共E, 兲典 = ws共ns兲共T⬙兲 as 共20兲 冑E cos , s b 丢 f 0共E + T⬘ + T⬙兲, 共15兲 where the energy distribution at the source is given by f 0共E兲 and the symbol “ 丢 ” denotes a convolution over the energy loss T. The partial intensities Anb,ns represent the number of electrons that arrive in the detector after being 共nb , ns兲-fold inelastically scattered in the solid. Since the width of the surface-scattering zone v / s is smaller than, or of the order of, the elastic mean free path e, the electron path in the surface-scattering zone is rectilinear to a good approximation. A most beneficial consequence of this fact is that the partial intensities for volume and surface scatterings are uncorrelated to a good approximation,35 Anb,ns = Anb ⫻ Ans . 共16兲 Although 共small兲 effects of deflections in the surfacescattering zone have been experimentally observed for a rather pathological case,36 implying that Eq. 共16兲 is not strictly true, this approach nonetheless has proven to constitute an effective approximation.35–38 The volume partial intensities Anb are given by an integral over all possible lengths of the paths, s, taken by the particle in the solid, and is the off-normal polar angle of surface crossing. Plural surface scattering is usually assumed to be described by the Poisson stochastic process. The fact that the normalized DSEP does not significantly depend on the energy and surface-crossing angle 共see Fig. 4兲 was utilized in Eq. 共19兲, allowing one to combine the effect of surface excitations along the in- and outgoing parts of the trajectory by writing8 具ns典 = 具ns共i兲典 + 具ns共o兲典, 共21兲 where the i and o indicate the incident and outgoing polar directions of surface crossing. Finally, for quantitative analysis of REELS, the elastic peak needs to be removed and the energy scale converted into an energy-loss scale. Furthermore, the spectrum is divided by the area of the elastic peak. These transformations then give the reduced loss spectrum y共T兲 which is used in the following analysis in the compact form: ⬁ y共T兲 = ⬁ 共n 兲 兲 ␣n ,n w共n 兺 兺 b 共T⬘兲 丢 ws 共T⬙兲, n =0 n =0 b s b s b 共22兲 s 共17兲 where the reduced partial intensities ␣nb,ns = Anb,ns / Anb=0,ns=0 have been introduced and the zero-order partial intensity is taken to be zero, ␣nb=0,ns=0 = 0, to account for the fact that the elastic peak has been removed from the spectrum. Here Q共s兲 is the distribution of path lengths and Wn共s兲 is the stochastic process for multiple scattering, which, in the quasielastic regime, is given by39 4.3. Deconvolution of multiple scattering from loss spectra A nb = 冕 ⬁ 0 Wnb共s兲Q共s兲ds. 冉冊 s Wn共s兲 = i n −s/i e n! . 共18兲 The path length distribution 共PLD兲 Q共s兲 can be calculated analytically34 or using a MC technique.31,34 Since there exists a unique straight line path connecting any two points in space, the part of the PLD relevant for surface excitations resembles a ␦ function, and Qs共s兲 ⬇ ␦共s − v / scosi兲 when the passage through the surface-scattering zone is approximately rectilinear. In this case an equation similar to Eq. 共17兲 for the surface partial intensities can readily be integrated giving To extract the dielectric function from an energy-loss spectrum, the single-scattering loss distributions wb共T兲 and ws共T兲 need to be retrieved, i.e., a method to eliminate multiple scattering from Eq. 共22兲 is needed. Recalling the convolution theorem, it is immediately obvious that in Fourier space, the spectrum is given by a bivariate power series in the variables wb共T兲 and ws共T兲. This result implies that a unique solution of these quantities cannot be found by reverting the series equation 共22兲 since a single equation with two unknowns has no unique solution. However, when two loss spectra y 1共T兲 and y 2共T兲, with a different sequence of partial intensities ␣nbns and nb,ns, are measured, reversion of the bivariate power series becomes possible using the formula8,40 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1024 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL N N 2共,q兲 = 兺 w共T兲 = 兺 兺 ak,lY k,l共T兲 i k=0 l=0 − 冕 T N N 兺 兺 bk,lY k,l共T − T⬘兲w共T⬘兲dT⬘ , T⬘=0 k=0 l=0 共23兲 where the quantity Y k,l共T兲 is the 共k , l兲-th order cross convolution of the two REELS spectra, Y k,l共T兲 = y 共k兲 1 共T − T ⬘兲 共l兲 丢 y 2 共T⬘兲. 共24兲 Since w共T = 0兲 ⬅ 0, the integration on the right hand side of Eq. 共23兲 can always be carried out over the energy-loss range for which the loss distribution is already known. For more details on the 共trivial兲 numerical treatment of the Volterra integral equation of the second kind see, e.g., Ref. 41. The expansion coefficients ak,l and bk,l are entirely determined by the reduced partial intensities of the two spectra,8,40 which, together with the two loss spectra, are therefore the only input parameters of the procedure. The reduced volume partial intensities can always be calculated with sufficient accuracy when a reasonable estimate for the IMFP is used, such as the TPP-2M predictive formula.42 While a similar guideline has been published for the surface excitation parameter,43 it is not needed to know the absolute value of this parameter at all, since the expansion coefficients turn out to scale with the value of as in Eq. 共20兲.40 Thus, apart from the functional form of the dependence of the SEP on the energy and surface-crossing direction, such as Eq. 共20兲, no information on surface excitations whatsoever is needed as input to the procedure. Note, finally, that the equations to retrieve the surface and volume single-scattering loss distributions are identical and given by Eq. 共23兲; merely the expansion coefficients are different.40 Calculation of the expansion coefficients in Eq. 共23兲 is quite tedious, as explained in Refs. 8 and 44. Therefore, in Appendix A, the synopsis of a recently developed simplified deconvolution procedure45 is given which is equivalent to the procedure employed here and can be used for the same purpose with considerably less numerical effort. 4.4. Retrieval of optical data from the singlescattering distributions The final step in the analysis is the retrieval of the dielectric function from the single-scattering loss distributions. This is achieved by fitting the theoretical expressions for the DIIMFP and DSEP to the corresponding experimental results using a suitable model for the dielectric function. The electromagnetic response of the solid is described in terms of the fit parameters f i, i, and ␥i using a model for the dielectric function in terms of a set of Drude-Lindhard oscillators for the evaluation of the theoretical expressions for the DIIMFP and DSEP,46 1共,q兲 = 1 − 兺 i f i共2 − i共q兲2兲 共2 − i共q兲2兲2 + 2␥2i , f i␥ i , 共2 − i共q兲2兲2 + 2␥2i 共25兲 where = T is the energy loss and q is the momentum transfer. In the above expressions, f i represents the oscillator strength, ␥i is the damping coefficient, and i is the energy of the i-th oscillator. A quadratic dispersion, i共q兲 = i + ␣q2/2, 共26兲 was used for the transition described by the i-th oscillator. The value of the dispersion coefficient ␣ was chosen to be unity, except for those oscillators with an energy higher than the most loosely bound core electrons 共semicore transitions兲, for which ␣ = 0.5 was used. Those values of the DrudeLorentz parameters in the above equation that minimize the deviation between the experimental data and the theoretical expressions for the DIIMFP and DSEP 共as described below兲 are taken to parametrize the dielectric function. Note that a dielectric function of the form of Eq. 共25兲 implicitly satisfies the Kramers-Kronig dispersion relationships as well as the perfect screening ps-sum rule. The 共normalized兲 distributions wb共T兲 and ws共T兲 obtained from the experimental data are simultaneously fitted to the above theoretical expressions by minimizing the function 2 2 XbDIIMFP 共pb, f i, i, ␥i兲 + XsDSEP 共ps, f i, i, ␥i兲. 共27兲 Here the function is the least-squares difference between theory and experiment, defined in the usual way, and Xb and Xs are weight factors chosen as Xb = 1.0 and Xs = 0.01, emphasizing the DIIMFP in the fitting procedure. The reason for this choice of Xs is that, although the experimental singlescattering loss distributions for surface scattering are reasonably described by Eq. 共12兲, they differ in detail for some materials 共see Sec. 5.1 below兲, while the theoretical expression for the DIIMFP does match the experimental results in much better detail. In consequence, the overall agreement of the simultaneous fit of experiment to theory is significantly improved by reducing the weight of the surface term in the fitting procedure. As discussed further below, the physical reason for this behavior is related to the approximation of depth-independent surface-scattering characteristics, made in the model of Tung et al. The fit parameters pb and ps are multiplicative scaling factors for the DIIMFP and the DSEP that compensate for an eventual mismatch of the surface excitation parameter and IMFP used as input. Using the TPP-2M formula42 to estimate the IMFP, the value of pb deviated from unity by less than 5% for all cases studied, while the returned value of ps scales with the value of the surface excitation parameter as, as expected. 2 4.5. Consistency test and error analysis In the above procedure to measure the dielectric function, the following of assumptions have been introduced that should be investigated in some detail in order to judge the reliability of the method and to arrive at a meaningful error estimate for the resulting optical constants. J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 共iv兲 共v兲 The first four assumptions above pertain to the deconvolution of multiple scattering providing the single-scattering loss distributions that will be discussed first, while the last assumption concerns the extraction of optical constants from the single-scattering loss distributions and will be dealt with at the end of this section. In Fig. 5, the calculation of the reduced volume partial intensities is illustrated. This is achieved most easily by means of a MC simulation for the PLD Q共s兲, such as the algorithm described in Ref. 31. The only input parameter for such calculations is the differential elastic-scattering cross section for the considered energy and the geometrical configuration employed in the experiment. The relevant portion of the differential elastic-scattering cross section for Au is shown in Fig. 5共a兲 for several energies. It is seen that the cross section exhibits deep minima at scattering angles varying with the energy. These minima are more pronounced for high-atomic-number elements and low energies. For energies in excess of some tens of a keV, these oscillations disappear and the differential cross section approaches a Rutherford shape. It has been known for some time47 that if the experimental configuration corresponds to scattering angles coinciding with a deep minimum in the cross section, the shape of the loss spectrum changes significantly. The explanation is that when the value of the cross section is small for the considered scattering geometry, the probability for the electron to be backscattered into the detector after a single elastic collision is also small and plural elastic scattering predominates for the electron to experience the required net direc- 300 eV 500 700 1000 2000 3000 3400 0.1 e 2 d ()/d (Å /sr) Au 0.001 100 (b) 110 120 130 Scattering angle 140 s 700 eV 0.001 -1 PLD Q(s) (Å ) 共iii兲 (a) 3400 eV -5 5 keV 10 40 keV -7 10 (c) 0 nb 共ii兲 An essential assumption that makes the outlined procedure possible at all is that the partial intensities for surface and volume scatterings are uncorrelated 关Eq. 共16兲兴. The model to calculate the reduced volume partial intensities via Eq. 共17兲 on the basis of state-of-the-art calculations for the elastic-scattering cross section is assumed to be accurate enough for the present purpose. The functional form of the energy and angular dependence of the surface-scattering probability is supposed to be known. In the present work, it is assumed to be given by Eq. 共20兲. The scaling properties of the deconvolution coefficients in Eq. 共23兲 with respect to the parameter as make any knowledge concerning the value of this parameter immaterial for the determination of the optical constants.8,40,44 The shapes of the normalized DIIMFP and DSEP are supposed not to depend on the primary energy of the reflected electrons and the surface-crossing direction. In the theoretical relationships between the DIIMFP and the DSEP and the dielectric function 关Eqs. 共10兲 and 共13兲兴, it is assumed that the dispersion of the oscillators in the Drude-Lorentz expansion used as model dielectric function 关Eq. 共25兲兴 is of the form i共q兲 = i + ␣q2 / 2 and that an appropriate value of ␣ can be chosen. Reduced bulk partial intensity 共i兲 1025 1000 Pathlength s(Å) 1.6 3400 eV 40 keV 1.2 5 keV 0.8 0.4 700 eV 0 0 2 4 6 8 10 Number of inelastic collisions n b FIG. 5. 共Color online兲 共a兲 Elastic scattering cross section of Au for several energies in the range of scattering angles between 100° and 140°. 共b兲 PLD Q共s兲 calculated by means of a MC simulation for Au for 700 and 3400 eV for the geometrical configuration used in the present work and for 5 and 40 keV for the experimental setup of Ref. 58. 共c兲 Reduced partial intensities for volume scattering calculated by means of Eq. 共17兲 for the PLDs shown in 共b兲. tional change. In consequence, the path length traveled in the solid is larger than for a case where the differential elastic cross section is larger. This can be clearly observed in Fig. 5共b兲 where the PLDs for 700 and 3400 eV, corresponding to a maximum and a minimum in the differential cross section, respectively, demonstrates the expected differences: For 700 eV, the PLD decreases monotonically with the traveled path length, while for 3400 eV it exhibits a maximum. As a consequence, the sequence of partial intensities for different energies also becomes qualitatively different, as can be seen in Figure 5共c兲 where the partial intensities calculated from the PLDs of Fig. 5共b兲 with Eq. 共17兲 are shown for four energies. Let us now address the uncertainty of the reduced volume partial intensities obtained in this way. It is easy to see from Eq. 共17兲 that the absolute value of the partial intensities scales with the value used for the IMFP. This is in fact the basis of the so-called elastic peak 共ns = nb ⬅ 0兲 electron spectroscopy 共EPES兲 technique to measure the IMFP.34,48–51 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1026 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL 0.02 However, the reduced partial intensities are virtually unaffected by the choice of the IMFP value. This can be seen by employing the common rules of error propagation to Eq. 共17兲. For the reduced partial intensities one finds that an uncertainty ⌬ in the IMFP leads to an error in the first-order reduced partial intensity given by 0.01 0 -0.005 -0.01 共28兲 -0.015 300 eVE3400 eV (b) 500 eVE3400 eV 0.015 -1 0.01 b In Fig. 5共b兲 it is seen that the width of the PLD is large compared to the value of the IMFP. The IMFP, on the other hand, governs the width of the Poisson distribution 关Eq. 共18兲兴 for any value of n. Taking into account Eq. 共17兲, it follows that the difference between the reduced partial intensities of subsequent order is always considerably smaller than unity, implying that ␣1 is always quite close to unity 共the zeroorder partial intensity is unity per definition, ␣0 ⬅ 1兲. In consequence, the error in the partial intensities due to an uncertainty in the IMFP is always negligible if a reasonable estimate of the IMFP is available. For example, for 0.9 ⬍ ␣1 ⬍ 1, the error in the partial intensities will be at least ten times smaller than the error in the IMFP, as follows from Eq. 共28兲. The second input parameter for calculation of the partial intensities is the elastic-scattering cross section based on a static atomic potential. The accuracy of this quantity has been studied in detail by Jablonski and co-workers.10,48,52 One of the main conclusions of these works was that the cross sections calculated in this way are appropriate and reliable for the description of elastic scattering in solids, except for scattering angles close to a deep minimum in the cross section. Also, the effects of absorption can reach up to 30% in the vicinity of a deep minimum53,54 adding to the uncertainty in this range of scattering angles. Moreover, for experimental geometries where the net scattering angle coincides with a deep minimum, most electrons experience plural elastic deflections before reaching the detector leading to a violation of assumption 共i兲 above, since in these cases the part of the trajectory in the surface-scattering zone is likely to be nonrectilinear. This expectation has indeed been proven experimentally.36 Finally, near a deep minimum the derivative of the cross section is relatively high implying that in MC calculations, the solid angle of acceptance of the analyzer needs to be accurately known. The above discussion may be summarized by stating that quantitative interpretation of REELS may be problematic when, for a particular element and energy and for a particular experimental scattering geometry, there is a deep minimum in the differential elastic-scattering cross section. On the other hand, it is clear that for the deconvolution procedure to yield numerically stable results, the spectra need to be sufficiently different. In other words, the employed combination of energies and/or surface-crossing directions should be chosen in such a way that the sequence of partial intensities for the two considered spectra is sufficiently different. The extent to which the spectra differ is to first order determined by the determinant40 (a) 0.005 w (T) (eV ) 冏 冏 ⌬␣1 ⌬ = 兩1 − ␣1兩. ␣1 0.015 0.005 0.02 (c) 0.015 0.01 0.005 0 -0.005 -0.01 0 500 eVE3400 eV, Oswald formula 50 100 Energy loss T (eV) 150 FIG. 6. 共a兲 Results of the deconvolution procedure equation 共23兲 applied to all possible energy combinations between 300 and 3400 eV. Note that the scattering geometry employed in the present work corresponds to a deep minimum in the elastic-scattering cross section at 300 eV 共see Fig. 5兲. 共b兲 Same as 共a兲 for energies larger than 300 eV, thus avoiding the deep minimum in the scattering cross section at 300 eV. 共c兲 Same as 共b兲 but using Oswald’s formula for the energy and angular dependence of the surface excitation parameter equation 共30兲 instead of Eq. 共20兲. ⌬ = ␣1,00,1 − ␣0,11,0 , 共29兲 where ␣nb,ns and nb,ns represent the partial intensities of the two spectra. The above considerations are fully supported by the outcome of the consistency test shown in Fig. 6. The result of the deconvolution procedure equation 共23兲 for the DIIMFP of Au is shown for all possible combinations of incident energies between 300 and 3400 eV for which ⌬ 艌 0.1 in Fig. 6共a兲. Note from Fig. 5 that the differential cross section at 300 eV exhibits a deep minimum at the scattering angle of 120° employed in our experiment. Comparison with the results in Fig. 6共b兲 where this deep minimum is avoided by disregarding the spectrum for an incident energy of 300 eV shows that the consistency is dramatically improved. A statistical analysis of the rms deviation from the average of these results leads to an error estimate for the DIIMFP of ⱗ10%. In Fig. 6共c兲 a similar result is shown, from an analysis in which the energy and angular dependence given by Eq. 共20兲 is replaced with the formula proposed by Oswald,49 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1 . 共30兲 0.03 700 eV 3400 eV -1 asⴱ冑E cos + 1 REELS (eV ) 具ns共E, 兲典 = 1027 0.02 0.01 Low Energy (a) 0 -1 REELS (eV ) 5 keV 40 keV 0.02 0.01 High Energy (b) 0 -1 w (T), w (T) (eV ) b 0.01 s It is seen that in this case the consistency of results is slightly worse, in particular, for small energy losses, where negative excursions are seen in the DIIMFP in Fig. 6共c兲, which are not physically realistic. The analysis so far demonstrates that when deep minima in the cross section are avoided, results consistent to within ⱗ10% are obtained for the considered experimental spectra. The assumption that the shapes of the DIIMFP and DSEP are approximately independent of the energy and surfacecrossing direction was studied in detail earlier8 by analyzing model spectra with Eq. 共23兲 and comparing the results with experimental data. The results verified the model for the dynamic interaction of an energetic electron with a surface, summarized by Eqs. 共10兲 and 共13兲 in great detail. It was found that this approximation leads to small spurious replicas of the DIIMFP and DSEP when the loss features are very sharp, such as for free-electron materials, such as Al and Si. For solids with a broad loss distribution, such as those studied in the present work, the approximation 共iv兲 mentioned above consitutes an appropriate approach. While the consistency for different incident energies is apparent from the above, the question remains whether the same level of consistency is also obtained when analyzing different geometrical configurations. Furthermore, Yubero and co-workers suggested that there may be an influence of interference effects between the in- and outgoing parts of the trajectory on the energy-loss spectrum when the field set up during the penetration of the electron into the solid affects the surface crossing on its way out.55–57 The magnitude of the interference effect is predicted to scale reciprocally with the speed of the incoming electron and should be negligible at energies above several keV. Figure 7 compares the result of the deconvolution for a set of spectra taken at rather low energies of 700 and 3400 eV 关Fig. 7共a兲兴, measured in the present work, with the spectra of Ref. 58 measured for incident energies of 5 and 40 keV 关Fig. 7共b兲兴. The shape of the loss spectra is seen to significantly depend on the energy: For 700 eV the spectrum is decreasing more or less monotonically with energy loss, while for energies above ⬃3 keV an increase is seen at small energy losses and a flat energy-loss dependence is observed at higher energies. Note that the shape of these spectra can be explained perfectly by considering the collision statistics imposed by elastic scattering, as follows from the partial intensities shown in Fig. 5共a兲. Considering the fact that these sets of spectra were measured at opposite sides of the world on different samples using a different spectrometer in a different energy range and with different geometrical setups, the consistency between the single-scattering loss distributions shown in the lower panel of Fig. 7 is remarkable and gives confidence in the experimental procedure as well as the method of analysis employed. It also suggests that the difference in shape of loss spectra taken at different energies is indeed caused by the (c) Surface (x0.25) Low Energy High Energy 0.0 0.01 Volume 0.0 0 10 20 30 40 50 60 70 80 Energy loss T (eV) FIG. 7. 共Color online兲 Comparison of deconvolution of REELS spectra for Au measured in significantly different energy ranges, corresponding to the PLDs and partial intensities shown in Figs. 5共b兲 and 5共c兲. 共a兲 Loss spectra for 700 and 3400 eV electrons, measured in the present work. 共b兲 Measurements of Ref. 58 for 5 and 40 keV. 共c兲 Comparison of the single-scattering loss distributions obtained with Eq. 共23兲 using the partial intensities shown in Fig. 5共c兲. influence of elastic scattering rather than by interference effects, for which no experimental evidence whatsoever can be found in the literature. In concluding this section, the model for the dielectric function and, in particular, the choice of the dispersion constant ␣ deserve to be discussed. First of all, it should be noted that the physical significance of the fit parameters describing the oscillators in the Drude-Lorentz expansion of the dielectric function, Eq. 共25兲, is limited in that the characteristic frequencies i and damping constants ␥i in the low-energy region 共i.e., for energies clearly below the ionization edges of the semicore states兲 do not necessarily reflect the correct energies describing the inter- and intraband transitions, etc. The values of the fit parameters, together with the Drude-Lorentz expansion, should rather be regarded as a convenient numerical representation of the data. Also, in this energy-loss range, the choice of the dispersion constant is immaterial, as can be seen from Eq. 共11兲 which shows that for low-energy losses Ⰶ E the range of momentum transfers over which the averaging is performed is small. Indeed, changing the dispersion constant ␣ between unity and 0.5 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL Co 3p 2 1.5 REELS, α=0.0 REELS, α=0.5 DFT Palik (Henke) -1 60 ω (eV) 65 70 FIG. 8. 共Color online兲 Influence of the chosen dispersion constant ␣ in the retrieval of the dielectric function from the single-scattering loss distributions for the Co 3p semicore transition. Dashed red curve with open circles: ELF values of retrieved from REELS using ␣ = 0.0 in Eq. 共26兲; solid red curve with filled circles: ELF values of retrieved from REELS using ␣ = 0.5; black curve: Palik’s data 共Ref. 1兲 for the ELF 关that were taken from Henke’s work 共Ref. 2兲兴. Blue curves: results of DFT calculations. Note that the DFT calculations accurately reproduce the position of the semicore edge binding energy E3p3/2 = 58.9 eV derived from photoemission data 共Ref. 59兲, as do the REELS data when a value of ␣ = 0.5 is used for the dispersion constant. during the retrieval of from the single-scattering loss distributions does not lead to any significant change in the resulting values for for ⱗ 50 eV. For the semicore transitions, i.e., the ionization edges of the core states with the lowest binding energy, the situation is different. This is illustrated in Fig. 8 that compares the value of the ELF function for the Co 3p edge retrieved from REELS data with the present procedure using different values of the dispersion constant ␣ with DFT calculations and 1 0 1 () 2 -2 0 20 40 60 Energy loss, (eV) 2 () 80 REELS Palik DFT 8 4 0 700 eV 3400 eV Surface (x0.16) 0.02 Volume 0 2 20 40 60 Energy loss, (eV) 80 FIG. 9. 共Color online兲 Comparison of the dispersive 共1兲 and absorptive 共2兲 parts of for Au derived from the present REELS measurements 共red curves with error bars兲, DFT calculations 共blue curves兲, and Palik’s data 共black curves兲. Im[-1/ε (ω)] 55 1 0 2 ε1 (ω) 0 50 0 wb,s(T) (eV ) 0.5 0 0.03 0 1 0 -2 REELS DFT ε2 (ω) ELF, Im {-1/ε(ω)} Ti =58.9 eV 3p1/2 -1 E 2.5 REELS (eV ) 1028 5 0 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) FIG. 10. 共Color online兲 REELS data and optical constants derived from them for Ti. Upper panel: deconvoluted REELS data at the employed energies, as indicated in the legend; second panel from above: DIIMFP 关wb共T兲兴 and DSEP 关ws共T兲兴 共data points兲 as well as the best fit of these data to the DrudeLorentz model of Eq. 共25兲 共solid curves兲; lower three panels: comparison of the loss function Im兵−1 / 其 as well as the dispersive 共1兲 and absorptive 共2兲 parts of the dielectric function extracted from REELS 共red curves兲 with results from DFT calculations 共blue curves兲 and Palik’s data set 共black curves兲. with the optical constants taken from Palik’s book.1 For this larger energy-loss range, the entire BZ is sampled by Eq. 共11兲 and the influence of dispersion becomes more important. At this stage it should be noted that the employed DrudeLorentz expansion model for the dielectric function only roughly accounts for the effects of dispersion through a single parameter, the dispersion constant ␣, which is a fundamental weakness of this model. Three effects of dispersion play a role in electron energy-loss spectra: the dispersion of 共1兲 the initial and 共2兲 the final state and 共3兲 the fact that the scattered electron itself can transfer momentum to the solid. It should be clear that the details of these phenomena are difficult to describe with a single dispersion parameter in , which complicates the choice of ␣. Therefore, the retrieval was performed for different values of ␣ and the results were compared with other results for the dielectric function. It was found that for ␣ = 0.5 the characteristic energies for the semicore transitions compare best to the binding energies J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1029 wb,s(T) (eV-1) REELS (eV ) -1 0 700 eV 3000 eV Surface (x0.16) 0.02 Volume 2 0 0.02 Volume 1 0 -2 REELS DFT Palik 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) ε2 (ω) ε2 (ω) -2 0 Surface (x0.16) 0 0 2 ε1 (ω) ε1 (ω) 0 2 5 700 eV 3400 eV 0 Im[-1/ε (ω)] 0 0.02 0 -1 0.03 0 Im[-1/ε (ω)] Fe wb,s(T) (eV ) REELS (eV-1) V 5 0 REELS DFT Palik 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) FIG. 11. 共Color online兲 Same as Fig. 10 for V. FIG. 12. 共Color online兲 Same as Fig. 10 for Fe. derived from photoemission data found in the literature.59 This value of ␣ also gives very good agreement with the DFT calculations for the semicore transitions, as can be seen in Fig. 8. For ␣ = 0, the retrieved ELF agrees closely with the data found in Palik’s books. In this energy region Palik’s data were taken from Henke’s work,2 which is a synthesis of empirical and theoretical data for free atoms, and therefore is not expected to be representative for the semicore ionization edges in a solid. The same is true for the more recent compilation by Chantler,3,4 which gives values very close to those obtained by Henke for most of the transitions considered in the present work. Therefore, although our approach introduces a small systematic uncertainty in the retrieved dielectric function for energies beyond the semicore edges, we have chosen a value of ␣ = 0.5 throughout this work for all transitions involving semicore levels, while for lower energies ␣ was taken to be unity. In the above, the error in the retrieved DIIMFP was derived from a statistical analysis of data derived from different energy combinations and was estimated to be ⱗ10%. Assuming that the resulting error in the ELF Im兵−1 / 共0 , 兲其 is of the same order of magnitude, the common rules of error propagation can be used to estimate the uncertainty in 1 and 2. The results of this analysis are shown for Au in Fig. 9 which again also shows Palik’s data and the results of DFT calculations. The uncertainty in 1 is seen to be rather large below 20 eV. This is a fundamental characteristic of the derivation of optical data from absorption measurements that mainly sample 2. Within the estimated uncertainty, the three data sets agree satisfactorily both for the real as well as the imaginary parts of . It should be noted again at this point that the employed procedure determines in the first place the ELF, Im兵−1 / 共0 , 兲其, for which the uncertainty is estimated to amount to ⱗ10%. 5. Results and Discussion 5.1. Optical constants The results of the data analysis according to the procedure outlined above are given in Figs. 10–32. A comparison of the optical constants Im兵−1 / 其, 1, and 2 as a function of frequency or energy loss derived from REELS, DFT calculations, and Palik’s data are presented in Figs. 10–26. In Figs. 27–32 the refractive index n and extinction coefficient k derived from the same data are shown as a function of the photon wavelength. Numerical values corresponding to the data in the lower three panels of Figs. 10–32 are given in the Appendixes. J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1030 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL Ni -1 700 eV 3400 eV 0 Surface (x0.16) 0 0.02 Volume 1 ε1 (ω) ε1 (ω) 0 REELS DFT Palik ε2 (ω) ε2 (ω) 0 0.01 Volume 1 0 -2 -2 0 Surface (x0.16) 0 2 0 2 5 700 eV 3400 eV 0 Im[-1/ε (ω)] 0 0.02 -1 wb,s(T) (eV-1) 0 Im[-1/ε (ω)] REELS (eV ) 0.02 wb,s(T) (eV ) REELS (eV-1) Co 5 0 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) REELS DFT Palik 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) FIG. 13. 共Color online兲 Same as Fig. 10 for Co. FIG. 14. 共Color online兲 Same as Fig. 10 for Ni. In Figs. 10–26, the upper panels display the pair of energy-loss spectra used for the analysis. The raw data were subjected to a Richardson-Lucy deconvolution, and subsequently the elastic peak was fitted to a function of the form given by Eq. 共9兲 and removed from the spectra, which were finally divided by the elastic peak area to give the loss spectrum in absolute units. The primary energies chosen for the analysis are indicated. These were selected according to the guidelines given in the previous section, i.e., those energy combinations were selected for which the contributions of surface excitations are sufficiently different. This is indicated by the value of the determinant ⌬ 关Eq. 共29兲兴 using Eq. 共20兲 to estimate the surface excitation parameter. On the other hand, energies close to a deep minimum in the differential elastic-scattering cross section were avoided. Values of ⌬ for all energy combinations were in the range ⌬ ⬇ 0.2− 0.4. For most materials the overall shape of the two spectra is very similar, in particular, for energy losses in excess of ⬃30 eV where the effects of multiple inelastic scattering dominate. Significant differences in the high-energy-loss tail can be observed for some materials, such as Ag, Au, W, Pd, Pt, Mo, Ta, Pb, and Bi, which is attributable to the influence of elastic scattering on the shape of energy-loss spectra measured in reflection, as discussed in detail in the previous section 共see Figs. 5 and 7兲. The fact that such differences mainly occur for materials with high atomic number, for which the effects of elastic scattering are most pronounced, supports these considerations. The influence of surface excitations on REELS is evident in the differences of the spectral pair at energies ⱗ20 eV: for the lower energy of the pair, the corresponding features are significantly enhanced as compared to the region of higher energy losses. For some materials, such as, Ti, the spectral pair is very similar, and at first sight the attempted separation of the distribution of individual losses inside the solid and during the surface crossing may seem questionable. However, it should be kept in mind that the sequence of partial intensities is generally different for the spectral pair allowing a stable decomposition of the spectra to be made. The second panel from the top in Figs. 15–26 shows the result of the partial-intensity analysis 关Eq. 共23兲兴 to retrieve the energy-loss distributions for single surface- and volumescattering processes, represented by the blue 共surface兲 and red 共bulk兲 data points. The results for the DIIMFP are in absolute units; the units for the DSEP are arbitrary since a value of as ⬅ 1 was chosen throughout for the calculation of the SEP with Eq. 共20兲, as the normalized DSEP scales with SEP and accurate values for this quantity are not known for all materials under study.43 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1031 Zn 0.01 -1 Volume 0 ε1 (ω) ε1 (ω) 0 0.02 Volume 1 0 2 0 2 0 0 -2 -2 REELS DFT Palik REELS DFT ε2 (ω) ε2 (ω) Surface (x0.16) 0 Im[-1/ε (ω)] 1 0 0.06 0 Surface (x0.16) 0 5 700 eV 3400 eV -1 wb,s(T) (eV-1) 0 Im[-1/ε (ω)] REELS (eV ) 0.03 wb,s(T) (eV ) REELS (eV-1) Cu 700 eV 3400 eV 3 0 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) FIG. 15. 共Color online兲 Same as Fig. 10 for Cu. FIG. 16. 共Color online兲 Same as Fig. 10 for Zn. Comparison with the loss spectra in the upper panels clearly shows that the contribution of plural inelastic scattering becomes significant above ⬃20 eV and that the lowenergy-loss regions in the loss spectra are dominated by surface excitations. These observations emphasize the need for spectral decomposition before information on the optical constants can be retrieved from loss spectra. The solid curves drawn through the data points represent the results of a simultaneous fit of the volume and surface single-scattering loss distributions 共DIIMFP and DSEP, respectively兲 to the theoretical expressions for these quantities, Eqs. 共10兲 and 共13兲, using a Drude-Lorentz model for the optical constants. For the bulk single-scattering loss distributions this procedure always leads to a very good match of the experimental data and the fitted loss distribution. The only exceptions to this statement are the sharp low-loss features in the DIIMFP at about 5 eV in Cu, Ag, and Au, which almost, but not quite,60 coincide with the surface plasmon loss feature, representing the dominant structure in the DSEP. It should be emphasized that the fact that these features are attributed to volume scattering 共and are therefore observable in the DIIMFP after deconvolution兲 rather than surface excitations not only follows from a partial-intensity analysis on a spectral pair taking into account the collision statistics, as in Figs. 15, 19, and 24, but can also be demonstrated directly experimentally by covering the surface with a small amount of another material and observing the changes in the 共double兲 peak structure.60 We also note that 1 increases rapidly with increasing energy loss in this region so that the conditions for prominent surface and volume energy losses are satisfied for similar energy-loss values. The fit of the data for the DSEP is slightly worse than for the DIIMFP for the same optimum values of the fitted Drude-Lorentz parameters, in particular, for materials with a pronounced “begrenzungs” effect that display a slight negative excursion in the DSEP at the energy of the volume plasmon. This effect is caused by the coupling of the surface and the bulk plasmon,12,35 i.e., the polarization of the surface dipoles leads to a decrease in the polarization for frequencies corresponding to volume excitations. Since, per definition, the DSEP describes the influence of the surface on the electron energy loss it consists of the “pure” surface term and the begrenzungs term and becomes 共slightly兲 negative whenever the magnitude of the former exceeds the latter. This effect can be clearly identified in the present data set for Ti, V, W, Mo, Ta, Pb, Te, and Bi. Since the absolute value of the intensity of the DSEP for these materials near the energy of the volume plasmon is quite small, the deviation of the fit from J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1032 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL wb,s(T) (eV-1) -1 REELS (eV ) 300 eV 3400 eV Surface (x0.16) 0 0.02 Volume 0 Im[-1/ε (ω)] ε1 (ω) ε1 (ω) 0 0.01 Volume 1 0 2 0 -2 0 Surface (x0.16) 0 2 0 -2 REELS DFT Palik 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) ε2 (ω) 3 0.03 0 0 2 ε2 (ω) 300 eV 3400 eV -1 0.03 0 Im[-1/ε (ω)] Pd wb,s(T) (eV ) REELS (eV-1) Mo REELS DFT Palik 4 0 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) FIG. 17. 共Color online兲 Same as Fig. 10 for Mo. FIG. 18. 共Color online兲 Same as Fig. 10 for Pd. the data points is nonetheless moderate. It should be noted that for materials with a pronounced begrenzungs effect, such as the free-electron materials, the predicted negative excursion is satisfactorily reproduced by the deconvoluted DSEP.35 The second reason why the fitted dielectric function matches the volume data better than the surface data is that the theoretical expression for the DIIMFP 关Eq. 共10兲兴 is exact, while the model for the DSEP is based on the approximation that the actual shape of the trajectory the electron takes has no influence on the normalized DSEP, allowing one to integrate the effect of surface excitations over depth along a V-shaped trajectory. This approach then gives rise to the expression in Eq. 共13兲 in the framework of the model of Tung et al.32 Indeed, in a recent work,61 this model has been studied in detail and it was found that the assumption of simple rectilinear surface crossing gives rise to changes in the shape of the DSEP similar to the deviations between the fitted function and the data points observed here. However, the influence of the actual trajectory shape on the collision statistics was found to be negligible, which implies that the basis of the deconvolution procedure, i.e., Eq. 共16兲, retains its validity and the procedure should thus return the correct shape of the volume single-scattering loss distribution. This is the rea- son why the DSEP was given a relative weight of 0.01 in the fitting procedure. The sets of Drude-Lorentz parameters giving the best fits of the experimental single-scattering loss distributions to the theoretical expressions for these quantities 关Eqs. 共10兲 and 共13兲兴 is given in Appendix B. The corresponding optical constants, i.e., Im共−1 / 兲, 1, and 2, are displayed in the lower three panels of Figs. 15–26. For comparison, the results of the DFT calculations and the corresponding data taken from Palik are also included in these figures. In general, the three data sets agree reasonably well for all examined cases in view of the experimental uncertainties involved in the analysis of the present experimental data and the data sets of Palik. The important exception to this rule are the strong deviations observed in all cases for the semicore edges, where Palik’s data are consistently different from the other two data sets. The DFT and REELS results show a very good mutual agreement for Fe, Co, and Ni, while for the other materials the DFT and REELS data for the semicore edges agree satisfactorily but differ in detail. Palik’s data, on the other hand, always essentially deviate from the DFT and REELS results. This can be attributed to the fact that most of Palik’s data in this energy range have been taken from Henke’s tables2 which are based on atomic calculations. J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1033 0 0.01 0 -1 REELS (eV ) 0.02 0 0 -1 wb,s(T) (eV-1) Surface (x0.16) wb,s(T) (eV ) 0.05 0 Im[-1/ε (ω)] Te 300 eV 3400 eV Volume 2 0 2 ε1 (ω) ε1 (ω) 0 2 0 0 -2 REELS DFT Palik ε2 (ω) ε2 (ω) -2 0 Volume 0 1 5 Surface (x0.16) 0.04 Im[-1/ε (ω)] REELS (eV-1) Ag 300 eV 2500 eV REELS DFT Palik 4 0 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) Energy Loss ω (eV) FIG. 19. 共Color online兲 Same as Fig. 10 for Ag. For energy losses below the semicore edges 共 ⱗ 50 eV兲, the three data sets are consistent within the involved errors, although for most materials the DFT and REELS data agree in more detail with each other than with Palik’s data. For example, for the position of the peaks below 30 eV in the ELF for Ag, Pd, and Au 共Figs. 19, 18, and 24兲, the DFT and REELS data are accurately consistent, while the peaks appear a bit shifted in Palik’s data. For Fe, Co, and Ni 共Figs. 12–14兲 the strong deviations of the latter in this energy range are particularly dramatic. When comparing 1 and 2 instead of the ELF, similar general observations can be made. It should be kept in mind, however, that for the REELS data, the volume singlescattering loss function that is used in the fit procedure is essentially governed by the ELF rather than the real and imaginary parts of the dielectric function. Consequently, small deviations in the retrieved ELF for small energy losses can lead to large uncertainties in 1 and 2 共see Fig. 9兲. Therefore, for energies below ⬃5 eV, where the loss function assumes small values, the uncertainty in the real and imaginary parts of the dielectric function derived from REELS becomes appreciable 共that may exceed 100% in the case of 1兲. Indeed, the deviations of the REELS data from the other data sets in this energy range generally seem to be FIG. 20. 共Color online兲 Same as Fig. 10 for Te. more significant than for the ELF, as expected. This is even more apparent when the refractive index and the extinction coefficient derived from the three data sets are plotted against the photon wavelength, as shown in Figs. 27–32 where the REELS data deviate from the other data sets for wavelengths above ⬃0.2 m. The DFT results generally agree quite well with Palik’s data for wavelengths ranging from the soft x-ray regime up to the near infrared. The origin of the rather large uncertainty in the REELS data from the near-UV to the infrared regime 共i.e., energy losses between 0.1 and 5 eV兲 lies in the dynamic range of the REELS spectrum, i.e., the fact that tails of the elastic peak in this energyloss range assumes values comparable to the loss features which makes their separation problematic. The only way to improve this situation seems to be the use of a better monochromated primary beam. An additional test of the consistency of the derived data is provided by the sum rules for optical constants. The data presented here were subjected to two sum rule tests: The f-sum rule or Thomas-Reiche-Kuhn sum rule, Zeff = 2 ⍀2p 冕 max Im兵− 1/共兲其d , 共31兲 0 where ប⍀ p = 冑4nae2 / me is the generalized plasmon energy and na is the atomic density. The expectation value of the J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1034 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL -1 REELS (eV ) 0.03 0 500 eV 3400 eV 0.02 Volume 1 0 REELS DFT Palik max 0 1 Im兵− 1/共兲其d . REELS DFT Palik 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) FIG. 22. 共Color online兲 Same as Fig. 10 for W. f-sum rule is the total number of electrons per atom and should approach Z, the atomic number, for sufficiently large values of max ⲏ Ec, where Ec is the largest binding energy for the inner-shell levels. Therefore, the main contribution to the f-sum rule comes from energies beyond the range of interest here 共 ⬃ 1 – 80 eV兲. The ps-sum rule for metals, on the other hand, emphasizes energy losses below 100 eV, and is therefore more relevant in the present context: 冕 0 0 0 10 20 30 40 50 60 70 80 FIG. 21. 共Color online兲 Same as Fig. 10 for Ta. 2 Volume 2 -2 5 Energy Loss ω (eV) Peff = 0.02 ε2 (ω) ε2 (ω) -2 0 Surface (x0.16) 0 2 ε1 (ω) ε1 (ω) 0 2 5 0 700 eV 3400 eV 0 Im[-1/ε (ω)] Im[-1/ε (ω)] 0 0.03 0 Surface (x0.16) -1 0 wb,s(T) (eV-1) W wb,s(T) (eV ) REELS (eV-1) Ta 共32兲 The expectation value of the ps-sum rule is unity when max is significantly larger than ⬃100 eV. Since the DFT and REELS data provide values of the optical constants over a limited energy range 共 ⱗ 100 eV兲, they were complemented by Henke’s data above 80 eV in order to perform the sum rule tests. The results are summarized in Table 2. It is seen that the deviations from the expectation value for the f-sum rule is of the same order of magnitude for the three data sets, of the order of 3%–5%, but except for Pd and Pt, the REELS and DFT data yield values of Zeff consistently closer to the atomic number of the considered element. Since the used optical data are essentially identical for energies above 80 eV, this suggests that the REELS and DFT data are generally superior to Palik’s data in the UV regime. As far as the REELS data are concerned this is not surprising since electron energy-loss measurements mainly sample the UV regime. A similar conclusion can be drawn from the results for the ps-sum rule, which is most sensitive to the UV regime, where the REELS data exhibit deviations typically of the order of 2% and never in excess of 4%, while Palik’s data show much larger deviations from the expected value. The analysis so far can be summarized by stating that the DFT calculations for the 17 examined materials agree satisfactorily with earlier optical data available in the literature, as compiled in Palik’s books, for wavelengths ranging from the near infrared to the soft x-ray region. In the UV regime, these data differ in detail, however. The DFT data exhibit significantly more fine structure in the optical constants, a result probably caused simply by the finite energy resolution of the experiments and the fact that detailed optical measurements in this regime are more difficult. Indeed, the number of earlier measurements 共or calculations which are mostly for free atoms兲 in the UV range is generally far smaller than measurements in the near UV to infrared range, indicating the need for simple experimental methods that produce reliable data in the UV range. J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1035 wb,s(T) (eV-1) -1 REELS (eV ) 700 eV 3400 eV Surface (x0.16) 0 0.02 Volume 0 Im[-1/ε (ω)] 0 1 0 Surface (x0.16) 0 0.01 Volume 0 1 0 -2 REELS DFT Palik 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) ε2 (ω) ε2 (ω) -2 0 700 eV 3400 eV 0 2 ε1 (ω) ε1 (ω) 0 2 5 0.02 -1 0.02 0 Im[-1/ε (ω)] Au wb,s(T) (eV ) REELS (eV-1) Pt 5 0 REELS DFT Palik 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) FIG. 23. 共Color online兲 Same as Fig. 10 for Pt. FIG. 24. 共Color online兲 Same as Fig. 10 for Au. Important deviations between DFT and Palik’s data are mainly seen for the semicore ionization edges in the far UV where the DFT calculations predict much more pronounced peaks in the optical data than Palik’s data. It is believed that this result reflects the difference between solid-state calculations, such as the present DFT calculations, and atomic calculations, such as the far UV values for the optical constants in Palik’s data sets. The assessment of the uncertainties associated with optical constants derived from electron energy-loss measurements in reflection, together with a comparison with the DFT results and Palik’s data, leads us to conclude that the energy-loss measurements provide accurate values 共with an uncertainty better than 10%兲 for the optical constants in the range between the near-UV and the soft x-ray regime. Thus, such measurements can provide useful information to further improve theoretical techniques to calculate the optical response, in particular, for energy losses in the UV regime and beyond. mount importance.42,62–69 In calculations of the stopping power of charged particles in matter66–69 the relevant transport process is dominated by momentum relaxation rather than by energy fluctuations,31 such as scattering of ions in solids, inelastic electron backscattering, x-ray production by electron bombardment, and emission of secondary electrons. When energy fluctuations dominate the particle transport, i.e., when discrete 共multiple兲 energy losses are observable in the corresponding spectra, the quantities of relevance are the total IMFP i, the DIIMFP wb共T兲, the DSEP ws共T兲, and the integral SEP 具ns典. The DSEP and DIIMFP are graphically represented in the second panel from the top in Figs. 10–26. These quantities can also be derived from the corresponding Drude-Lorentz parameters given in Appendix B using Eqs. 共10兲 and 共13兲. Accurate knowledge of the DIIMFP and DSEP is essential for a detailed analysis of the shape of a photoelectron line in an electron spectrum as well as the inelastic background accompanying it.70,71 The inelastic background in an x-ray photoelectron spectrum is in fact similar to the REELS spectrum recorded at the same energy, apart from the fact that the collision statistics, i.e., the partial intensities, are generally essentially different for an emission geometry compared to the case of a reflection geometry. Therefore, the present op- 5.2. Inelastic electron-scattering data Calculation of the inelastic-interaction characteristics of charged particles with solids within the framework of linear response theory represents an important example where optical constants, in particular, in the UV regime, are of para- J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1036 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL wb,s(T) (eV-1) Surface (x0.16) 0 0.03 Volume 1 0.04 0 0 0.03 0 -2 1 0 -2 REELS DFT ε2 (ω) REELS DFT ε2 (ω) Volume 0 2 ε1 (ω) 0 2 2 0 Surface (x0.16) 0 Im[-1/ε (ω)] 0 ε1 (ω) 700 eV 3400 eV -1 REELS (eV ) 500 eV 3000 eV -1 0.04 0 Im[-1/ε (ω)] Bi wb,s(T) (eV ) REELS (eV-1) Pb 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) 3 0 0 10 20 30 40 50 60 70 80 Energy Loss ω (eV) FIG. 25. 共Color online兲 Same as Fig. 10 for Pb. FIG. 26. 共Color online兲 Same as Fig. 10 for Bi. tical constants in Appendixes A and B are believed to be useful in peak-shape analysis31,70,72 where multiple inelastic scattering needs to be eliminated from an experimental spectrum in order to reveal the intrinsic photoemission lineshape which contains important information on the electronic structure of a solid. It should be noted that even for a very common material, such as Au, for which quite a large number of data have been published for the optical constants 共see Ref. 73 and references therein兲, the present opical data, in particular, those for the ELF, are believed to lead to an improvement in inelastic background analysis. This can be seen by comparing the peaks in the ELF in Fig. 24 for Au with the corresponding REELS data in the upper panel. The two interband transitions at around 25 and 35 eV in Palik’s optical constants are clearly located at a slightly higher energy loss than the corresponding peaks in the REELS. In the ELF and 2 derived from REELS, on the other hand, the location of these peaks is obviously consistent with the REELS itself. While the chosen example may not lead to dramatical differences in the background analysis, it is nonetheless important to conclude that in general an analysis of REELS spectra such as in the present work can provide, in a straightforward way, data needed in background analysis. The quantity of foremost importance for quantitative analysis of electron spectra is the total IMFP. It is not only needed to convert measured intensities of a certain element in an electron spectrum into chemical composition,74 but is also essential for nanoscale calibration in the depth dimension,75 which can be established accurately by means of data for electron-beam attenuation provided a reliable value for the IMFP is available. Figure 33 shows a comparison of IMFP values derived from four sets of optical constants. The four materials chosen for this figure are those for which the deviations between Palik’s data for the ELF and the two other data sets are the largest 共Fe, Co兲 as well as Ti and Pd for which the optical data used by Tanuma and co-workers,42,65,68,69,76 deviate significantly from the present results. For all other materials considered here a very good agreement between the IMFP results from the four sets of optical constants was found. In Fig. 33, IMFP values calculated with Penn’s algorithm63 are shown as solid lines for energies between 100 and 10 000 eV using the optical constants calculated with DFT, those derived from REELS, and those taken from Palik’s and Tanuma’s77 data sets. Above 80 eV the REELS and DFT data have again been complemented by Henke’s data.2 In addition, the data points represent results of EPES 共Ref. 48兲 measurements of the IMFP.51,78 The first apparent feature of this figure is the fact J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS Frequency ω (eV) 10 100 Frequency ω (eV) 10 100 Cu 1037 Fe 1 10 1 10 n n 0.1 1 0.1 1 k k 1 0.01 0.001 10 n 0.1 1 k 0.01 0.001 0.1 0.01 Au 1 10 0.1 0.01 Co 1 10 n 0.1 1 k 0.01 0.001 0.1 0.01 Ni 1 n 10 n 0.1 1 0.1 1 k k 0.01 0.1 0.01 0.1 REELS DFT Palik 0.001 0.01 Extinction coefficient k Ag 0.01 Refractive Index n Refractive Index n 0.001 0.1 Extinction coefficient k 0.01 REELS DFT Palik 0.01 0.1 Wavelength (μm) 1 FIG. 27. 共Color online兲 Comparison of values for the refractive index n and extinction coefficient k derived from REELS 共black full curves兲 and DFT 共red dashed curves兲 with the values given in Palik’s book 共blue dotted curves兲 as a function of the photon wavelength for Cu, Ag, and Au. that the DFT and REELS results for the IMFP are indistinguishably similar, leading to the very important conclusion that DFT nowadays provides accurate enough optical data to calculate the reference length used in in-depth nanoscale calibration by means of electron-beam attenuation. The importance of this finding can only be appropriately appreciated after familiarizing oneself with the serious problems related to IMFP measurements in the past three decades, as outlined in an excellent review by Powell and Jablonski.48 In view of the significant differences for the ELF for Co according to Palik’s data on one hand and the REELS and DFT results on the other hand, in particular, in the UV range, the difference of ⬃20% in the corresponding IMFP values sets a rather moderate upper limit to the uncertainty of IMFP values in use nowadays. It should be emphasized again that for all other materials examined here a much better mutual agreement in the IMFP values of typically better than 5% is found. The IMFP values derived from the REELS data have been fitted to an equation of the form 0.001 0.01 0.01 0.1 Wavelength (μm) 1 FIG. 28. 共Color online兲 Same as Fig. 27 for Fe, Co, and Ni. i共E兲 = k1E p1 + k2E p2 . 共33兲 The resulting fit parameters are given in Table 3. As a final result of this work, values of the total surface excitation parameter have been derived from the REELS spectra. This was done by fitting the REELS spectra to Eq. 共15兲 using a single quantity, the zero-order partial intensity, or the average number of surface excitations in a single surface crossing 具ns共E兲典 as a free parameter. The values for the DIIMFP and DSEP derived from the deconvolution of REELS spectra were used in the fitting procedure, along with the appropriate volume partial intensities. The higher-order surface partial intensities were calculated according to the Poisson stochastic process. A result of the fitting procedure for all considered energies is shown for Cu, Fe, Ag, and Au in Fig. 34. In spite of the fact that the shape of the loss spectra is significantly different, as a result of the energy dependence of the shape of the elastic cross section, as discussed above, the fit is satisfactory in all cases, indicating that the approximations involved in Eq. 共15兲 and, in particular, in Eq. 共16兲 are reasonable and lead to a detailed understanding of the electrodynamical interaction of electrons with plane surfaces in the considered energy range. J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1038 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL Frequency ω (eV) 10 100 Frequency ω (eV) 10 100 Ti Mo 1 10 1 10 n n 0.1 1 0.1 1 k k 1 0.01 0.001 10 n 0.1 1 k 0.01 0.001 0.1 0.01 Zn 1 10 0.1 1 10 n 0.1 1 k 0.01 0.001 0.1 0.01 W 1 n 10 n 0.1 1 0.1 k 1 k 0.01 0.1 0.01 REELS DFT Palik 0.001 0.01 0.01 Ta Extinction coefficient k V 0.01 Refractive Index n Refractive Index n 0.001 0.1 Extinction coefficient k 0.01 0.01 0.1 Wavelength (μm) 0.1 REELS DFT Palik 1 0.001 0.01 0.01 0.1 Wavelength (μm) 1 FIG. 29. 共Color online兲 Same as Fig. 27 for Ti, V, and Zn. FIG. 30. 共Color online兲 Same as Fig. 27 for Mo, Ta, and W. For each energy, such a fit gives the zero-order surface partial intensity, being equal to the average number of surface excitations for a single surface crossing, 具ns共E兲典. The energy dependence of this quantity is compared with results from other sources in Fig. 35. The filled circles are the present results, and the solid lines represent a fit of the energy dependence of the zero-order partial-intensity Eq. 共20兲 using the surface excitation parameter as as a free parameter. For all studied cases, the energy dependence of the zeroorder partial intensity is seen to be well described by Eq. 共20兲. Therefore, the magnitude of surface excitations can be accurately predicted by using the values of the surface excitation parameter given in Table 4, in combination with Eq. 共20兲. The dashed curves in Fig. 35 were derived in a very similar way in Ref. 43 but using Palik’s data to calculate the DIIMFP and DSEP. The resulting fit was also considerably worse than the ones shown in Fig. 34. Thus the differences in the resulting values of the zero-order partial intensities are attributed to the systematic error caused by using Palik’s data. The present results for the surface excitation parameter are therefore believed to be significantly more reliable than the earlier ones. The dashed-dotted lines are theoretical calculations by Chen79 using Palik’s optical data as input. 6. Summary Two new sets of optical constants have been presented for 16 elemental metals 共Ti, V, Fe, Co, Ni, Cu, Zn, Mo, Pd, Ag, Ta, W, Pt, Au, Pb, and Bi兲 and one semimetal 共Te兲 and are compared with existing data in the literature. Values are given for the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant as well as the ELF 共Im兵−1 / 其兲. These values have been calculated from the Drude-Lorentz expansion coefficients derived from experimental results for the DIIMFP 共and DSEP兲 which are also given in graphical and tabular forms. The method to determine such data using DFT calculations has been given and a detailed analysis of the experimental determination of optical constants from REELS spectra is also described, along with an analysis of the reliability of the results. The latter analysis showed that accurate results can be expected for optical constants ranging from the visible to the soft x-ray regime of wavelengths. In principle such measurements can also provide optical constants in the infrared regime; however, in this case the use of a monochromated electron source is mandatory since the thermal spread in the source energy distribution cannot be adequately eliminated numerically. The agreement between J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS Frequency ω (eV) 10 100 Frequency ω (eV) 10 100 Pd 1039 Te 1 10 1 n 10 n 1 0.1 1 k 0.01 Pt 1 10 n 0.1 1 k 0.01 0.1 Extinction coefficient k Refractive Index n 0.001 k 0.1 Refractive Index n 0.01 0.01 0.001 0.1 0.01 Bi 1 10 n 0.1 1 k 0.01 0.001 0.1 REELS DFT Palik 0.01 Pb 0.001 0.01 1 Extinction coefficient k 0.1 0.01 0.1 1 Wavelength (μm) 10 n 0.1 FIG. 32. 共Color online兲 Same as Fig. 27 for Te and Bi. 1 k 0.01 0.1 REELS DFT Palik 0.001 0.01 共iii兲 0.01 0.1 Wavelength (μm) 1 FIG. 31. 共Color online兲 Same as Fig. 27 for Pd, Pt, and Pb. the DFT and REELS results is satisfactory for all studied materials, while larger deviations are observed with Palik’s data. The experimental data for the optical constants were derived from a particular pair of energy-loss spectra for each material, selected according to outlined criteria that the sequence of partial intensities be sufficiently different for the two spectra while at the same time avoiding measurements where the combination of primary energy and scattering angle corresponding to a deep minimum in the elasticscattering cross section. A detailed consistency check for many different pairs of spectra with arbitrary energy combinations demonstrates that this is essential to appropriately separate surface and bulk contributions contained in an energy-loss spectrum. Further consistency checks also support other key assumptions that need to be made in order to perform the analysis: 共i兲 共ii兲 The collision statistics 共partial intensities兲 for surface and bulk scattering are uncorrelated. Calculation of the volume partial intensities using elastic-scattering cross sections for free atoms on the basis of a Boltzmann-type kinetic equation 共i.e., ne- glecting coherent scattering and diffraction兲 is adequate for the present purpose. The functional form of the energy and angular dependence of the surface-scattering probability is appropriately described by Eq. 共20兲 rather than by Eq. 共30兲. Plural surface scattering is described by the Poisson stochastic process. TABLE 2. Results of sum-rule checks on the three sets of optical data discussed in the present work f sum Ti V Fe Co Ni Cu Zn Mo Pd Ag Te Ta W Pt Au Pb Bi 22 23 26 27 28 29 30 42 46 47 52 73 74 78 79 82 83 ps sum REELS DFT Palik REELS DFT Palik 20.8 22.3 25.9 27.3 29.9 30.6 16.2 40.1 43.0 46.6 55.4 69.9 71.5 74.4 74.5 79.9 80.8 20.7 22.0 25.2 26.7 27.8 29.5 29.4 40.3 43.2 44.5 53.7 70.9 72.7 76.0 75.2 77.9 72.6 – 21.0 24.0 24.2 26.7 28.3 – 39.7 45.6 50.6 69.1 70.5 77.7 75.2 75.0 – – 1.023 1.029 1.012 1.035 1.000 1.037 1.021 1.022 1.026 1.018 1.027 1.041 1.039 1.028 1.008 1.024 1.018 0.979 0.990 1.007 1.016 1.017 1.016 1.034 0.991 0.997 1.005 0.991 1.007 1.012 1.012 0.992 1.009 1.003 – 1.016 0.944 0.845 1.011 0.995 – 1.013 1.143 1.148 1.378 1.025 0.986 1.105 1.107 – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1040 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 3. Fit parameters in Eq. 共33兲 describing the IMFP values derived from the REELS measurements IMFP (Å) Ti REELS EPES 10 DFT Tanuma IMFP (Å) Fe REELS EPES Palik DFT Tanuma 10 Ti V Fe Co Ni Cu Zn Mo Pd Ag Te Ta W Pt Au Pb Bi k1 p1 k2 p2 0.046 0.043 0.043 0.042 0.041 0.040 0.042 0.038 0.045 0.048 0.050 0.035 0.034 0.039 0.044 0.048 0.054 0.85 0.85 0.84 0.83 0.83 0.84 0.86 0.85 0.83 0.82 0.87 0.85 0.84 0.83 0.83 0.85 0.84 4.2 6.1 16.9 22.3 24.0 14.1 4.7 3.5 15.7 29.3 12.5 3.9 5.0 10.5 14.0 16.2 13.6 −0.17 −0.23 −0.40 −0.45 −0.45 −0.34 −0.11 −0.13 −0.42 −0.52 −0.36 −0.10 −0.16 −0.31 −0.35 −0.42 −0.35 IMFP (Å) Co REELS EPES Palik DFT Tanuma 10 The uncertainty in the experimental data has been analyzed and is estimated to amount to about 10% for the ELF 3400 3000 0.08 2500 2000 1500 1000 700 500 eV Pd IMFP (Å) 0.04 1000 Energy (eV) 10000 FIG. 33. 共Color online兲 Comparison of IMFP values for Ti, Fe, Co, and Pd taken from different sources. 共iv兲 共v兲 The shapes of the normalized DIIMFP and DSEP are independent of the energy of the reflected electrons and the surface crossing direction to a good approximation. The dispersion of the characteristic frequency of any electronic transition, as well as the dispersion of the involved initial and final states, can appropriately be described by a single dispersion parameter ␣ in a Drude-Lorentz expansion of the dielectric constant using oscillator energies of the form i共q兲 = i + ␣q2 / 2. This follows from the fact that the results show no pronounced variation around a reasonable choice of this parameter of ␣ = 0.5. 3000 2500 2000 1500 1000 700 0.04 500 eV -1 100 3400 0.08 REELS (eV ) 10 Cu 0 0.12 REELS EPES Palik DFT Tanuma Ag 0 3400 3000 0.08 2500 2000 1500 0.04 1000 700 500 eV Au 0 3400 3000 0.08 2500 0.04 0 Fit Raw 0 2000 1500 1000 700 500 eV 20 40 60 Energy loss (eV) Fe 80 FIG. 34. 共Color online兲 Comparison of REELS spectra with fitted spectra for determination of the surface excitation parameter. J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS First order reduced surface scattering partial intensity 1 0.1 1 Cu This work Fit Chen Werner et al. Surf. Sci Ag 0.1 1 Au 0.1 1 Fe 0.1 100 Energy (eV) 10000 FIG. 35. First-order reduced surface partial intensities 共data points兲 derived from the REELS spectra. Solid line: fit of these data to Eq. 共20兲; dashed line: results of Ref. 43 based on Oswald’s energy and angular dependence of the average number of surface excitations, Eq. 共30兲; dashed-dotted line: theoretical results by Chen 共Ref. 79兲 based on the optical constants of Palik 共Ref. 73兲. 1041 may exceed 100%, which is a consequence of the fact that energy-loss measurements mainly sample the absorptive part of the dielectric constant. Below ⬃3 – 5 eV, the uncertainty in the present REELS data 共for 1 as well as for 2兲 is additionally increased as a result of the large dynamic range of REELS experiments, leading to difficulties in the separation of the elastic peak from the energy-loss portion of the spectra. The accuracy of the DFT results is difficult to estimate quantitatively, but the comparison with the experimental results and Palik’s data shows that for energies below 10 eV, where, for the reasons mentioned above, the experimental data are known to be less reliable, the agreement between DFT and Palik’s data is comparable to the agreement of all three data sets at higher energies. The above may be summarized by stating that the REELS data provide optical constants with an experimental accuracy of about 10% for energies between the near-ultraviolet regime and the 共far兲 soft x-ray regime of energies, while the DFT results provide similarly reliable data for energies ranging from the infrared to the soft-x-ray regime. Electron-scattering data derived from the optical constants have also been compared with literature values, again showing very good agreement. In particular, values for the electron IMFP derived from REELS and DFT show a very good consistency and agree better than 5% for the majority of all cases studied for energies between 50 and 5000 eV. An important conclusion in this context is that nanoscale calibration by means of electron-beam attenuation is nowadays possible on the basis of DFT calculations without the need for an experimental calibration of the electron attenuation length. 7. Acknowledgments and 2 as well as for 1 for energies above 10 eV. For energies below 10 eV, the uncertainty in 1 in the present data TABLE 4. Values for the surface excitation parameter as in units of aNFE = 2.896 eV−1/2 derived from the REELS measurements, compared with the theoretical values of Chen 共Ref. 79兲 Metal as Chen 共Ref. 79兲 Ti V Fe Co Ni Cu Zn Mo Pd Ag Te Ta W Pt Au Pb Bi 2.8 3.3 3.8 3.8 4.1 4.3 4.8 3.9 2.9 3.4 3.8 3.3 3.4 2.7 2.6 3.1 3.2 – – 2.51 – – 2.45 – – – 2.34 – – – – 3.06 – – Support by the Austrian Science Foundation FWF 共Project Nos. P16227 and P20891-N20兲 is gratefully acknowledged. 8. Appendix A: Deconvolution Algorithm For REELS Spectra In the present work, multiple-scattering contributions in REELS spectra were eliminated by the deconvolution procedure equation 共23兲. Calculation of the coefficients needed using this Padé expansion is very tedious as described in Refs. 8 and 44. A simplified deconvolution procedure was recently developed45 which leads to the same results and may be used for the same purpose while the numerical effort is dramatically reduced. Therefore, for completeness, a synopsis of this simplified deconvolution procedure is given below. The simplified algorithm for retrieval of the DIIMFP and DSEP can be summarized as follows: Let y 1共T兲 and y 2共T兲 be the measured spectra with the reduced volume partial intensities ␣n and n, respectively. In the first step, the intermediate spectra y ⴱ1共T兲 and y ⴱ2共T兲 are derived by y ⴱ1共T兲 = y 1共T兲 − 冕 T y 1共T − T⬘兲y ⴱ1共T⬘兲dT⬘ , 0 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL 冕 T y 2共T − T⬘兲y ⴱ2共T⬘兲dT⬘ . -1 The DIIMFP and DSEP can then be retrieved by means of the series expansion ⴱ ⴱ 丢 y 1共T兲 + u02y 2 丢 y 2共T兲, 共A2兲 where the expansion coefficients are different for the surface and bulk 共subscripts “s” and “b,” below兲 single-scattering loss distributions. To bring the expressions for the expansion coefficients into a more tractable form, it is useful to introduce the shorthand notation 1 冉 冉 = 冑E 1 = 1 冑E 2 1 cos 1 i1 cos i2 + + 1 冊 冊 cos o1 1 cos 02 , l , l! l k,l = k l! where the subscript “k” in ␣k and k indicate the fact that these quantities represent the bulk partial intensities, the expressions for the expansion coefficients read ⌬ = ␣ 1 −  1 , ub10 = /⌬, ub01 = − /⌬, us10 = − 1/⌬, 共A3兲 us01 = ␣1/⌬, 冉 冎 冊 ␣21 ␣2 2 2 + ␣ 1 1 − ␣ 2 − 1 2 , 3 共  2 −  1兲 + 2 2 ⌬ ub11 = 3 兵21 − 22 − ␣21 + 2␣2其, ⌬ 21 + ␣ 1 1 −  2 ub20 = − 3 共␣2 − ␣21兲2 + 2 ⌬ 再 − us02 = 冉 冊 21 2 , 2 再冉 冎 共A4兲 冋 1 ␣ 1 1 2 ␣21 + ␣1 21 − 2 − 2 ⌬3 + 2 us11 = 冎 0 0 ␣31 , 2 兵1共␣21 − 2␣2 − ␣11兲 + 2␣12其, ⌬3 册冊 − ␣211 2nd order, truncated 2nd order, full Padé 10 20 30 40 50 60 70 80 energy loss T (eV) FIG. 36. 共Color online兲 Comparison of the Padé approximation 关Eq. 共23兲, dots兴 for the DIIMFP and DSEP for Pt with the second-order truncated 关Eq. 共A6兲, red curves兴 and the full second-order 关Eq. 共A2兲, blue curves兴 expansion. s u20 =− ␣k,l = ␣k 再 Volume 0.02 , where the indices “1” and “2” refer to the two spectra y 1共T兲 and y 2共T兲 and the superscript i and o indicate the ingoing and outgoing polar direction of surface crossing. Furthermore, by writing ub02 = Surface (x0.16) 0.04 s w共T兲 = u10y ⴱ1共T兲 + u01y ⴱ2共T兲 + u11y ⴱ1 丢 y ⴱ2共T兲 + u20y ⴱ1 ⴱ Pt 共A1兲 0 b y ⴱ2共T兲 = y 2共T兲 − w (T), w (T) (eV ) 1042 再冉 冎 冋 1 ␣ 1 1 2 2 3 ␣ 1 2 +  1 ␣ 1 − ␣ 2 − 2 ⌬ + 2 册冊 31 . 2 − 21␣1 共A5兲 Equation 共A2兲 can also be truncated after the mixed second-order term, giving for the deconvoluted singlescattering loss distributions w共T兲 = u10y ⴱ1共T兲 + u01y ⴱ2共T兲 + u11y ⴱ1 丢 y ⴱ2共T兲. 共A6兲 In this case, the expansion coefficients for the mixed secondorder term are given by 共 ␣ 1 −  1兲 b = , u11 共 ␣ 1 兲 2 − 共  1 兲 2 ␣ 1 1共 − 兲 s = , 共A7兲 u11 共 ␣ 1 兲 2 − 共  1 兲 2 while u01 and u10 are still given by Eq. 共A3兲. The above deconvolution scheme 关Eqs. 共A1兲, 共A6兲, and 共A7兲兴 is extremely simple and yet accurate enough for most practical purposes. In Fig. 36 the red curves are the single-scattering loss distributions for Pt obtained by means of Eq. 共A6兲 that are compared with the results for the DIIMFP and DSEP obtained with the second-order Padé approximation equation 共23兲, calculating the coefficients in the usual way.44 Considering the complexity of the calculation of the former Padé coefficients in comparison to the simplicity of the coefficients ukl, the agreement between the resulting singlescattering loss functions is remarkable. The agreement can be even further improved by taking into account the quadratic terms in the intermediate spectra, leading to the full second-order expansion 关blue curves, Eq. 共A2兲兴. The latter is also shown in these figures and is seen to agree excellently with the results of the Padé approximation. 9. Appendix B: Values of the Drude-Lorentz Parameters for the Dielectric Function This appendix contains values of the Drude-Lorentz parameters for the dielectric function as given in Tables 5–10. J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS TABLE 5. Drude-Lorentz parameters for Ti 共E3p1/2 = 32.6 eV兲, V 共E3p3/2 = 37.3 eV兲, and Fe 共E3p1/2 = 52.7 eV兲 Ti i 共eV兲 ␥i 共eV兲 0.000 0.027 1.0 0.5 3.7 1.2 5.5 3.0 9.9 10.5 22.8 10.8 37.2 6.5 41.7 5.1 47.5 4.1 80.6 37.1 V i 共eV兲 Ai 共eV2兲 116.1 7.8 22.3 36.5 197.8 28.7 112.6 116.5 49.8 0.1 ␥i 共eV兲 0.000 0.027 1.0 9.8 3.6 3.6 8.2 7.3 11.5 1.5 15.4 11.1 40.1 4.0 46.3 8.9 54.1 3.3 82.1 11.8 TABLE 8. Drude-Lorentz parameters for Ag 共E4p3/2 = 58.3 eV兲, Te 共E4d5/2 = 40.4 eV兲, and Ta 共E4f7/2 = 21.6 eV兲 Fe i 共eV兲 Ai 共eV2兲 143.3 0.2 73.6 108.3 14.2 145.9 106.8 214.8 29.6 95.7 ␥i 共eV兲 1043 Ag Ai 共eV2兲 0.000 8.0 0.049 1.1 0.5 168.5 3.9 2.0 31.5 8.9 10.5 225.2 19.0 8.4 58.1 32.8 148.6 19.1 44.0 231.9 1278.6 53.1 2.1 150.1 63.3 16.8 246.8 TABLE 6. Drude-Lorentz parameters for Co 共E3p1/2 = 58.9 eV兲, Ni 共E3p3/2 = 66.2 eV兲, and Cu 共E3p3/2 = 75.1 eV兲 Te i 共eV兲 ␥i 共eV兲 Ai 共eV2兲 0.000 1.0 4.9 10.3 13.2 21.2 30.2 43.0 65.7 0.065 93.8 0.7 22.0 6.3 3.3 3.7 16.7 38.8 98.4 103.9 23.8 318.3 89.6 63.5 43.3 313.3 519.9 i 共eV兲 i 共eV兲 ␥i 共eV兲 0.000 0.027 1.0 0.5 4.0 3.6 10.1 12.8 15.1 32.3 20.8 7.7 26.1 1.2 58.6 1.4 66.1 37.1 Ni i 共eV兲 Ai 共eV2兲 133.4 19.0 71.8 133.3 407.5 38.3 3.2 91.8 645.3 ␥i 共eV兲 Cu Ai 共eV2兲 0.000 0.027 32.0 1.0 0.5 127.3 3.9 1.6 44.7 6.2 7.9 111.2 7.7 2.3 13.3 13.6 10.8 237.3 22.9 8.8 83.7 33.2 0.9 4.6 40.5 32.4 160.1 63.4 1.9 86.2 79.6 109.5 1843.5 i 共eV兲 0.000 1.0 1.0 4.0 4.8 7.2 14.2 16.9 24.3 59.4 ␥i 共eV兲 Ai 共eV2兲 0.027 86.3 0.5 19.8 0.5 21.9 1.7 30.2 0.5 2.5 11.3 157.7 10.1 130.9 68.2 108.6 3.0 40.0 55.1 1022.4 i 共eV兲 ␥i 共eV兲 Mo Ai 共eV2兲 0.000 0.8 85.9 0.9 0.5 0.002 4.2 0.5 3.6 5.9 1.4 9.5 10.4 3.5 14.3 23.6 26.4 16.1 35.7 114.7 1257.7 i 共eV兲 ␥i 共eV兲 0.000 0.027 1.0 0.5 5.9 4.9 11.8 1.0 14.0 7.3 21.7 9.6 34.7 0.5 36.6 1.9 39.2 3.4 43.0 6.1 46.6 0.5 49.4 6.6 56.4 20.6 Ai 共eV2兲 i 共eV兲 ␥i 共eV兲 Ai 共eV2兲 139.3 138.2 161.8 8.6 92.5 6.5 12.3 108.4 180.6 411.2 TABLE 9. Drude-Lorentz parameters for W 共E4f7/2 = 31.4 eV兲, Pt 共E5p3/2 = 51.7 eV兲, and Au 共E5p3/2 = 57.2 eV兲 Pt Au i 共eV兲 ␥i 共eV兲 Ai 共eV2兲 i 共eV兲 ␥i 共eV兲 Ai 共eV2兲 i 共eV兲 ␥i 共eV兲 Ai 共eV2兲 0.000 1.0 2.7 3.9 5.0 7.0 11.1 16.7 22.9 38.4 41.1 48.5 80.2 0.027 0.5 0.9 0.5 0.8 2.5 6.0 7.7 0.6 3.1 0.9 8.9 65.1 168.0 54.3 47.4 25.5 33.4 37.9 164.2 125.1 2.9 98.4 11.1 221.9 495.5 0.000 3.5 4.5 9.0 9.1 9.7 18.2 18.7 26.4 28.2 38.9 39.2 49.6 53.5 72.4 0.2 0.8 0.9 0.5 11.5 0.5 4.9 36.1 55.5 4.0 6.0 25.0 0.5 5.7 47.6 179.1 16.6 7.5 2.1 367.4 1.0 121.3 18.5 486.5 36.9 12.1 3.3 14.5 87.2 421.4 0.000 4.0 7.3 12.8 18.9 19.9 28.9 38.7 64.3 0.2 1.5 3.3 11.8 71.0 2.9 3.9 13.0 51.9 113.1 44.6 54.8 184.9 728.1 65.7 50.0 74.7 544.0 TABLE 7. Drude-Lorentz parameters for Zn 共E3d5/2 = 10.1 eV兲, Mo 共E4p3/2 = 35.5 eV兲, and Pd 共E4p3/2 = 50.9 eV兲 Zn ␥i 共eV兲 0.000 0.027 102.3 0.000 0.027 1.0 2.3 19.8 1.0 7.9 6.6 3.7 92.5 5.4 7.2 9.0 405.0 0.1 9.5 0.5 13.4 5.6 44.2 13.7 7.5 39.7 0.9 29.4 18.3 1.9 48.9 0.5 3.5 25.5 3.6 59.4 4.2 95.8 36.8 4.9 72.4 8.6 236.1 45.1 7.6 86.0 10.8 177.8 70.4 70.0 W Co Ta Pd Ai 共eV2兲 177.0 114.1 88.8 15.4 201.5 56.5 6.9 55.4 102.0 94.9 5.7 73.9 99.9 i 共eV兲 ␥i 共eV兲 0.000 0.027 3.7 2.6 6.1 1.9 12.1 7.4 18.8 5.3 23.7 5.2 29.9 7.5 38.9 5.7 44.0 3.7 52.0 10.6 54.8 0.5 64.6 15.3 Ai 共eV2兲 138.9 59.9 8.3 281.0 121.6 32.8 119.3 68.3 40.7 217.3 3.4 176.4 TABLE 10. Drude-Lorentz parameters for Pb 共E5d5/2 = 18.1 eV兲 and Bi 共E5d5/2 = 23.8 eV兲 Pb Bi i 共eV兲 ␥i 共eV兲 Ai 共eV2兲 i 共eV兲 ␥i 共eV兲 Ai 共eV2兲 0.000 1.9 8.7 19.5 24.4 35.9 37.9 45.4 59.9 0.4 0.5 4.2 2.1 4.8 10.9 48.6 9.7 21.6 161.7 6.3 64.5 66.1 42.9 126.8 0.6 120.1 400.8 0.000 3.9 6.6 11.3 24.1 27.5 40.2 55.8 84.2 0.087 1.8 4.5 6.2 0.6 1.9 9.6 21.7 48.4 108.4 23.6 50.2 44.8 6.6 13.2 99.3 326.8 373.1 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1044 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 11. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ti calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Ti DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 5.812 6.799 9.039 9.622 3.674 −1.163 −3.570 −4.749 −4.804 −3.433 −2.755 −3.440 −4.892 −5.655 −8.458 −9.576 −8.658 −7.080 −5.583 −3.065 −0.546 −1.970 −3.447 −2.567 −1.733 −0.470 0.601 −0.283 −0.443 −0.661 −0.970 −1.108 −0.958 −0.731 −0.498 −0.368 −0.322 −0.230 −0.165 −0.069 −0.084 0.008 0.103 0.187 0.258 0.322 0.386 0.444 0.509 0.538 0.570 0.617 51.273 49.843 39.345 38.053 39.479 33.160 27.125 23.926 19.609 17.267 16.906 16.717 15.876 14.873 14.037 9.965 6.784 4.875 3.795 2.833 3.494 6.058 3.264 2.263 1.244 1.195 1.972 2.461 2.571 2.409 2.266 1.716 1.317 1.055 0.966 0.892 0.829 0.759 0.683 0.651 0.550 0.447 0.388 0.342 0.321 0.279 0.261 0.238 0.228 0.218 0.201 0.163 0.019 0.020 0.024 0.025 0.025 0.030 0.036 0.040 0.048 0.056 0.058 0.057 0.058 0.059 0.052 0.052 0.056 0.066 0.083 0.163 0.279 0.149 0.145 0.193 0.273 0.724 0.464 0.401 0.378 0.386 0.373 0.411 0.497 0.641 0.818 0.959 1.048 1.206 1.383 1.519 1.777 2.234 2.408 2.250 1.891 1.540 1.204 0.938 0.732 0.648 0.551 0.399 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −447.600 −189.661 −109.799 −74.201 −49.772 −34.555 −24.626 −17.761 −12.773 −9.016 −6.197 −4.395 −4.024 −4.737 −4.994 −4.481 −3.749 −3.120 −2.686 −2.292 −2.099 −1.825 −1.509 −1.235 −1.034 −0.902 −0.821 −0.773 −0.739 −0.709 −0.674 −0.632 −0.581 −0.523 −0.458 −0.390 −0.319 −0.248 −0.178 −0.108 −0.041 0.023 0.084 0.142 0.196 0.247 0.294 0.338 0.377 0.413 0.445 0.474 28.594 16.723 19.374 9.230 4.557 3.018 2.496 2.422 2.638 3.144 4.025 5.352 6.719 6.945 6.007 5.080 4.570 4.367 4.306 4.170 3.796 3.366 3.039 2.822 2.670 2.545 2.422 2.290 2.146 1.993 1.836 1.681 1.531 1.391 1.262 1.145 1.040 0.947 0.864 0.792 0.728 0.673 0.625 0.584 0.548 0.518 0.492 0.470 0.450 0.433 0.417 0.402 0.000 0.000 0.002 0.002 0.002 0.003 0.004 0.008 0.016 0.034 0.074 0.112 0.110 0.098 0.098 0.111 0.131 0.152 0.167 0.184 0.202 0.230 0.264 0.297 0.326 0.349 0.370 0.392 0.417 0.445 0.480 0.521 0.571 0.630 0.700 0.782 0.878 0.988 1.110 1.240 1.368 1.484 1.571 1.617 1.616 1.572 1.497 1.404 1.306 1.210 1.121 1.040 0.0 0.0 0.1 0.1 0.1 −0.2 −0.4 −0.9 −1.2 −0.6 1.1 2.9 4.0 4.3 4.3 4.2 4.4 5.0 6.0 7.7 7.6 7.7 9.7 12.0 12.1 11.5 12.4 14.1 15.0 14.8 15.6 18.5 20.4 20.0 20.1 22.2 24.8 26.9 28.4 29.3 30.9 34.4 38.2 38.8 37.2 37.7 39.0 37.4 34.6 32.8 30.9 29.3 1.2 1.9 2.5 3.1 3.7 4.8 8.3 17.5 33.5 51.6 62.7 63.8 60.2 56.6 55.3 56.2 58.3 59.9 60.4 60.3 63.7 66.4 62.1 56.8 59.3 63.6 63.0 61.3 63.8 70.7 73.8 69.9 65.7 69.0 75.2 72.8 63.1 55.6 54.0 53.5 47.5 36.5 23.9 18.4 22.2 20.8 11.3 8.6 13.8 15.4 13.9 13.6 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1045 TABLE 11. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ti calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Ti DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.670 0.721 0.769 0.814 0.859 0.898 0.933 0.969 1.008 1.046 1.090 1.133 1.185 1.241 1.305 1.383 1.479 1.585 1.719 1.915 2.204 2.771 4.014 2.453 0.520 0.340 0.677 0.936 0.640 −1.133 −1.064 −0.581 −0.324 −0.142 −0.021 0.065 0.179 0.306 0.441 0.570 0.415 0.393 0.377 0.385 0.416 0.453 0.497 0.514 0.517 0.529 0.543 0.563 0.147 0.136 0.129 0.124 0.121 0.124 0.123 0.119 0.117 0.112 0.107 0.103 0.098 0.093 0.089 0.085 0.091 0.102 0.108 0.123 0.154 0.254 1.617 3.220 3.144 1.949 1.662 1.835 2.725 2.471 0.861 0.568 0.408 0.327 0.272 0.213 0.139 0.114 0.124 0.252 0.336 0.307 0.262 0.211 0.169 0.143 0.133 0.145 0.141 0.124 0.110 0.102 0.312 0.252 0.212 0.183 0.161 0.151 0.139 0.125 0.114 0.101 0.089 0.079 0.069 0.060 0.052 0.044 0.041 0.040 0.036 0.033 0.032 0.033 0.086 0.197 0.310 0.498 0.516 0.432 0.348 0.334 0.460 0.860 1.502 2.573 3.652 4.298 2.702 1.065 0.589 0.649 1.178 1.237 1.242 1.093 0.841 0.632 0.503 0.510 0.491 0.422 0.359 0.311 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.501 0.526 0.549 0.573 0.596 0.620 0.644 0.669 0.694 0.720 0.747 0.773 0.800 0.827 0.855 0.882 0.910 0.938 0.967 0.995 1.024 1.052 1.079 1.103 1.124 1.138 1.143 1.136 1.113 1.076 1.029 0.982 0.942 0.915 0.898 0.884 0.864 0.825 0.760 0.675 0.588 0.520 0.482 0.473 0.484 0.506 0.534 0.560 0.578 0.579 0.558 0.519 0.387 0.372 0.357 0.341 0.325 0.310 0.296 0.282 0.270 0.259 0.250 0.243 0.238 0.234 0.232 0.233 0.235 0.240 0.249 0.260 0.275 0.295 0.320 0.351 0.389 0.433 0.484 0.538 0.591 0.635 0.665 0.679 0.680 0.676 0.677 0.690 0.715 0.749 0.777 0.780 0.747 0.684 0.607 0.533 0.471 0.426 0.397 0.385 0.388 0.402 0.414 0.409 0.966 0.897 0.831 0.767 0.705 0.646 0.589 0.535 0.487 0.443 0.404 0.370 0.341 0.316 0.296 0.279 0.266 0.256 0.249 0.246 0.245 0.247 0.253 0.262 0.275 0.292 0.314 0.341 0.372 0.407 0.443 0.476 0.504 0.523 0.536 0.549 0.569 0.604 0.658 0.733 0.827 0.927 1.010 1.050 1.034 0.973 0.897 0.834 0.802 0.809 0.858 0.936 28.6 27.7 25.5 23.6 22.5 21.0 18.6 17.5 18.2 17.1 14.9 14.3 14.1 13.1 12.0 11.2 10.3 9.4 9.3 9.7 9.1 8.0 7.7 8.4 9.3 9.2 8.9 9.2 8.7 8.3 9.5 9.7 8.3 8.3 10.3 11.5 10.8 10.4 12.0 13.6 12.7 12.3 13.7 15.8 16.8 16.4 15.6 15.7 17.3 18.4 16.8 15.3 10.1 6.1 8.1 10.0 8.3 8.0 11.0 11.5 6.4 4.8 7.2 6.7 6.0 5.2 3.2 4.1 8.1 9.1 5.5 2.1 2.9 6.5 6.4 2.9 1.2 3.6 4.3 2.8 5.4 6.9 2.7 2.0 7.7 9.4 3.3 −0.5 3.0 5.7 1.8 −0.3 4.8 7.1 2.9 −1.2 −0.6 2.2 4.5 6.2 4.6 0.9 3.6 7.3 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1046 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 11. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ti calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Ti DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.574 0.590 0.600 0.608 0.627 0.643 0.662 0.661 0.667 0.680 0.692 0.706 0.706 0.714 0.725 0.731 0.736 0.747 0.757 0.759 0.758 0.763 0.771 0.779 0.784 0.791 0.799 0.807 0.809 0.812 0.809 0.812 0.819 0.824 0.825 0.827 0.829 0.833 0.835 0.832 0.834 0.837 0.841 0.844 0.847 0.850 0.096 0.089 0.085 0.072 0.063 0.060 0.064 0.064 0.057 0.049 0.047 0.048 0.049 0.043 0.040 0.041 0.037 0.034 0.038 0.042 0.039 0.033 0.029 0.028 0.028 0.025 0.025 0.028 0.032 0.035 0.036 0.029 0.028 0.031 0.032 0.031 0.031 0.031 0.033 0.032 0.028 0.025 0.024 0.023 0.022 0.022 0.285 0.251 0.232 0.192 0.160 0.144 0.145 0.146 0.127 0.105 0.097 0.096 0.098 0.083 0.076 0.077 0.069 0.060 0.065 0.073 0.067 0.056 0.049 0.047 0.045 0.041 0.039 0.043 0.049 0.053 0.055 0.045 0.042 0.046 0.047 0.046 0.045 0.044 0.047 0.046 0.040 0.036 0.034 0.032 0.030 0.030 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.480 0.458 0.455 0.466 0.484 0.504 0.525 0.545 0.564 0.582 0.598 0.613 0.627 0.640 0.652 0.663 0.674 0.684 0.693 0.702 0.710 0.718 0.726 0.733 0.739 0.746 0.752 0.758 0.764 0.769 0.774 0.779 0.784 0.789 0.793 0.797 0.801 0.805 0.809 0.813 0.816 0.820 0.823 0.826 0.830 0.833 0.377 0.328 0.277 0.232 0.196 0.167 0.145 0.128 0.114 0.102 0.093 0.084 0.078 0.072 0.067 0.062 0.058 0.055 0.051 0.049 0.046 0.044 0.041 0.039 0.038 0.036 0.034 0.033 0.031 0.030 0.029 0.028 0.027 0.026 0.025 0.024 0.023 0.022 0.022 0.021 0.020 0.020 0.019 0.018 0.018 0.017 1.012 1.035 0.976 0.856 0.718 0.592 0.489 0.407 0.343 0.293 0.253 0.221 0.195 0.173 0.155 0.140 0.127 0.116 0.106 0.098 0.091 0.084 0.078 0.073 0.068 0.064 0.060 0.057 0.054 0.051 0.048 0.046 0.044 0.041 0.039 0.038 0.036 0.034 0.033 0.032 0.030 0.029 0.028 0.027 0.026 0.025 16.3 17.2 17.0 17.1 17.1 16.1 15.0 15.6 16.6 15.3 12.8 11.0 10.5 11.0 10.4 9.2 8.3 7.3 7.1 7.6 8.0 7.7 6.4 5.5 5.2 4.7 5.5 6.4 5.3 4.2 4.2 4.6 3.9 2.0 1.1 2.4 3.2 3.1 3.5 4.0 3.1 0.8 0.5 2.6 3.0 1.0 5.4 3.0 1.2 1.3 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1047 TABLE 12. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of V calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 V DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −209.448 −80.837 −35.526 −13.731 −0.230 5.941 5.912 3.891 5.740 7.038 4.130 −4.903 −11.641 −13.812 −15.732 −14.030 −12.191 −9.981 −8.197 −5.954 −3.185 −3.799 −4.655 −3.820 −3.038 −2.275 −1.480 −0.522 0.437 −0.077 0.014 0.563 0.120 −0.170 −0.340 −0.405 −0.364 −0.290 −0.207 −0.127 −0.069 −0.069 −0.587 −0.493 −0.340 −0.186 −0.097 −0.078 0.047 0.130 0.226 0.217 52.784 21.302 14.875 12.682 14.499 19.382 23.941 22.714 22.225 25.386 30.735 32.995 26.728 21.725 16.148 11.544 8.189 6.249 5.364 3.761 3.171 6.461 3.741 2.521 1.771 1.235 0.860 0.662 1.571 1.867 1.681 1.795 2.396 2.243 2.089 1.840 1.645 1.506 1.416 1.376 1.390 1.559 1.343 0.974 0.778 0.685 0.666 0.566 0.511 0.468 0.474 0.503 0.001 0.003 0.010 0.036 0.069 0.047 0.039 0.043 0.042 0.037 0.032 0.030 0.031 0.033 0.032 0.035 0.038 0.045 0.056 0.076 0.157 0.115 0.105 0.120 0.143 0.184 0.293 0.932 0.591 0.535 0.595 0.507 0.416 0.443 0.466 0.518 0.579 0.640 0.691 0.721 0.718 0.640 0.625 0.817 1.080 1.360 1.470 1.735 1.939 1.984 1.719 1.677 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −562.518 −245.332 −134.086 −82.588 −54.671 −37.947 −27.262 −20.172 −15.399 −12.203 −10.098 −8.720 −7.781 −7.069 −6.452 −5.866 −5.294 −4.738 −4.210 −3.275 −2.534 −1.987 −1.608 −1.352 −1.170 −1.017 −0.865 −0.695 −0.505 −0.312 −0.231 −0.538 −0.765 −0.680 −0.551 −0.450 −0.378 −0.328 −0.292 −0.264 −0.239 −0.213 −0.185 −0.152 −0.116 −0.076 −0.033 0.011 0.056 0.102 0.148 0.193 32.050 10.631 5.797 4.446 4.209 4.441 4.904 5.476 6.061 6.563 6.892 6.987 6.843 6.507 6.056 5.568 5.098 4.680 4.326 3.808 3.490 3.294 3.152 3.015 2.859 2.684 2.506 2.348 2.241 2.235 2.401 2.502 2.139 1.824 1.651 1.544 1.464 1.392 1.321 1.247 1.170 1.091 1.012 0.934 0.859 0.788 0.722 0.662 0.607 0.557 0.512 0.472 0.000 0.000 0.000 0.001 0.001 0.003 0.006 0.013 0.022 0.034 0.046 0.056 0.064 0.070 0.077 0.085 0.094 0.106 0.119 0.151 0.188 0.223 0.252 0.276 0.300 0.326 0.357 0.392 0.425 0.439 0.413 0.382 0.415 0.481 0.545 0.597 0.640 0.681 0.722 0.767 0.820 0.883 0.957 1.044 1.144 1.258 1.382 1.511 1.634 1.737 1.802 1.816 0.1 0.1 0.1 0.2 0.2 −0.1 −0.4 −1.2 −2.5 −3.7 −3.5 −1.7 0.4 1.7 2.2 2.3 2.4 2.8 3.3 4.9 6.1 7.1 8.2 9.4 10.6 11.8 12.2 12.4 13.6 14.9 14.8 13.7 13.9 14.9 15.1 16.2 18.5 19.1 18.4 19.9 21.8 21.5 21.8 24.9 27.7 27.6 27.5 29.7 32.5 35.2 36.7 35.5 0.6 1.0 1.3 1.6 1.9 2.7 5.1 11.9 25.2 42.7 54.5 54.8 49.2 44.4 42.8 44.2 46.9 49.6 51.2 51.5 51.9 54.5 55.5 55.0 55.2 57.5 61.5 63.7 61.8 59.4 62.3 68.4 68.8 65.5 65.7 65.0 58.5 57.4 63.2 58.9 49.9 52.4 56.1 46.3 34.5 35.3 38.3 30.9 21.7 14.1 8.2 10.1 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1048 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 12. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of V calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued V DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.201 0.297 0.349 0.389 0.427 0.424 0.485 0.522 0.542 0.588 0.644 0.702 0.760 0.799 0.840 0.871 0.913 0.959 0.998 1.034 1.065 1.106 1.161 1.212 1.256 1.296 1.377 1.497 1.657 1.901 2.447 1.990 2.003 2.531 2.556 1.250 −0.517 −0.751 −0.934 −0.840 −0.454 −0.230 −0.095 0.006 0.097 0.175 0.243 0.308 0.363 0.446 0.549 0.645 0.425 0.364 0.354 0.330 0.326 0.294 0.244 0.250 0.211 0.170 0.146 0.132 0.133 0.137 0.138 0.139 0.134 0.137 0.145 0.153 0.161 0.153 0.158 0.172 0.191 0.185 0.159 0.152 0.160 0.188 0.358 1.571 1.007 1.331 2.668 3.425 3.353 2.460 1.523 0.786 0.518 0.417 0.359 0.301 0.254 0.218 0.189 0.170 0.145 0.126 0.144 0.359 1.922 1.647 1.432 1.268 1.131 1.104 0.827 0.746 0.623 0.453 0.334 0.259 0.224 0.209 0.191 0.178 0.157 0.146 0.143 0.140 0.139 0.122 0.115 0.115 0.118 0.108 0.083 0.067 0.058 0.051 0.058 0.244 0.200 0.163 0.195 0.258 0.291 0.372 0.477 0.594 1.091 1.840 2.605 3.322 3.433 2.788 1.992 1.374 0.950 0.584 0.446 0.658 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.237 0.279 0.321 0.361 0.400 0.438 0.474 0.510 0.544 0.577 0.609 0.640 0.670 0.700 0.729 0.757 0.786 0.814 0.842 0.870 0.898 0.927 0.956 0.986 1.017 1.050 1.083 1.119 1.156 1.194 1.232 1.268 1.295 1.302 1.270 1.180 1.037 0.889 0.785 0.737 0.729 0.739 0.753 0.764 0.765 0.757 0.737 0.708 0.672 0.634 0.598 0.567 0.436 0.404 0.375 0.349 0.326 0.306 0.288 0.272 0.257 0.245 0.233 0.224 0.215 0.208 0.202 0.197 0.193 0.191 0.190 0.189 0.191 0.193 0.198 0.204 0.213 0.225 0.240 0.260 0.286 0.321 0.366 0.427 0.508 0.610 0.731 0.844 0.907 0.893 0.821 0.737 0.669 0.626 0.604 0.598 0.603 0.614 0.624 0.630 0.627 0.613 0.590 0.557 1.772 1.674 1.538 1.383 1.223 1.072 0.935 0.814 0.711 0.623 0.549 0.487 0.435 0.390 0.353 0.322 0.296 0.273 0.255 0.239 0.226 0.216 0.208 0.201 0.197 0.195 0.195 0.197 0.202 0.210 0.222 0.239 0.262 0.295 0.340 0.401 0.478 0.563 0.637 0.678 0.684 0.668 0.648 0.636 0.635 0.646 0.669 0.702 0.742 0.789 0.836 0.881 34.5 35.5 35.7 33.4 30.5 28.9 27.5 24.2 21.4 20.7 19.6 17.6 16.1 15.4 14.6 12.8 11.0 10.0 9.7 10.3 10.6 9.0 8.1 9.2 9.3 8.2 7.7 7.6 6.4 4.8 4.8 5.7 5.8 6.1 7.4 8.1 7.9 7.7 8.1 9.2 10.4 10.4 9.9 10.6 11.5 10.9 10.5 11.7 12.9 12.8 12.4 12.9 12.8 5.6 −1.4 2.4 10.5 11.4 8.8 14.0 18.4 15.4 14.5 16.7 16.7 15.3 14.9 17.3 19.5 20.0 19.3 14.0 8.0 10.1 13.1 8.4 4.6 7.5 7.8 4.3 7.0 13.5 13.0 7.6 6.4 7.4 5.9 3.1 1.3 3.3 6.5 3.7 −1.5 −1.3 1.4 0.6 −0.7 2.4 3.4 0.4 −0.3 0.7 0.6 0.5 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1049 TABLE 12. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of V calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued V DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.433 0.443 0.446 0.465 0.480 0.492 0.504 0.521 0.542 0.568 0.579 0.597 0.615 0.612 0.624 0.634 0.635 0.645 0.653 0.671 0.687 0.700 0.708 0.717 0.729 0.736 0.737 0.737 0.743 0.751 0.746 0.756 0.757 0.761 0.751 0.741 0.748 0.764 0.768 0.771 0.774 0.777 0.788 0.799 0.793 0.794 0.304 0.269 0.222 0.200 0.182 0.166 0.151 0.129 0.112 0.110 0.106 0.099 0.102 0.110 0.095 0.094 0.089 0.078 0.069 0.059 0.059 0.062 0.062 0.062 0.063 0.071 0.074 0.075 0.070 0.075 0.072 0.071 0.074 0.079 0.083 0.068 0.052 0.049 0.052 0.048 0.049 0.040 0.036 0.046 0.047 0.042 1.087 1.003 0.895 0.780 0.691 0.613 0.545 0.448 0.366 0.330 0.305 0.271 0.262 0.284 0.237 0.228 0.217 0.185 0.161 0.130 0.124 0.125 0.122 0.120 0.117 0.130 0.134 0.137 0.125 0.132 0.128 0.123 0.128 0.135 0.145 0.124 0.092 0.084 0.088 0.081 0.082 0.066 0.058 0.071 0.075 0.067 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.545 0.532 0.527 0.529 0.537 0.550 0.566 0.585 0.603 0.619 0.627 0.616 0.586 0.552 0.534 0.536 0.548 0.565 0.582 0.599 0.616 0.630 0.644 0.657 0.669 0.681 0.692 0.702 0.711 0.720 0.729 0.738 0.745 0.753 0.760 0.768 0.774 0.781 0.787 0.794 0.800 0.806 0.811 0.817 0.822 0.828 0.520 0.480 0.440 0.403 0.370 0.341 0.319 0.303 0.295 0.297 0.308 0.323 0.327 0.304 0.263 0.222 0.188 0.163 0.143 0.128 0.116 0.107 0.099 0.092 0.086 0.081 0.076 0.073 0.069 0.066 0.063 0.061 0.059 0.057 0.055 0.054 0.053 0.052 0.051 0.050 0.050 0.049 0.049 0.049 0.049 0.049 0.916 0.935 0.934 0.911 0.870 0.815 0.755 0.699 0.654 0.629 0.632 0.667 0.726 0.766 0.742 0.660 0.561 0.471 0.399 0.341 0.297 0.261 0.232 0.208 0.189 0.172 0.158 0.146 0.135 0.126 0.118 0.112 0.105 0.100 0.095 0.091 0.088 0.084 0.082 0.079 0.077 0.075 0.074 0.073 0.072 0.072 13.2 12.9 14.0 14.9 13.6 12.9 14.1 14.8 14.3 13.8 13.9 13.5 12.3 12.2 13.2 13.0 12.1 12.2 12.2 11.6 12.2 12.4 9.9 8.1 9.0 9.7 8.3 6.8 6.8 6.8 6.0 5.6 5.2 5.2 6.4 6.1 4.1 3.2 3.9 5.5 6.5 5.3 3.1 2.6 4.4 5.6 2.5 5.6 2.3 −2.4 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1050 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 13. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Fe calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Fe DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −121.135 −44.593 −21.687 −12.071 −6.571 −2.809 −1.020 0.299 −0.271 −3.785 −7.452 −9.978 −12.033 −11.333 −9.111 −7.145 −5.305 −4.149 −3.737 −3.006 −0.875 −2.031 −2.930 −2.009 −1.017 0.015 0.244 0.236 −0.275 −0.401 −0.214 −0.014 −0.064 −0.202 −0.254 −0.236 −0.198 −0.155 −0.089 −0.005 0.083 0.170 0.261 0.361 0.438 0.474 0.371 0.235 0.217 0.162 0.068 0.049 68.667 43.976 35.929 29.833 25.884 23.737 22.815 22.856 24.683 24.655 22.970 19.331 15.646 10.479 7.753 6.103 5.326 5.558 5.352 4.113 3.585 6.103 3.661 2.515 1.957 2.088 2.619 2.981 2.997 2.562 2.275 2.336 2.316 2.216 2.036 1.857 1.707 1.569 1.439 1.334 1.255 1.197 1.159 1.153 1.200 1.305 1.383 1.318 1.264 1.229 1.158 1.015 0.004 0.011 0.020 0.029 0.036 0.042 0.044 0.044 0.041 0.040 0.039 0.041 0.040 0.044 0.054 0.069 0.094 0.116 0.126 0.158 0.263 0.148 0.166 0.243 0.402 0.479 0.378 0.333 0.331 0.381 0.436 0.428 0.431 0.448 0.484 0.530 0.578 0.631 0.692 0.750 0.793 0.819 0.821 0.790 0.736 0.677 0.674 0.735 0.768 0.800 0.860 0.983 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 157.124 186.611 158.602 −85.798 −102.565 −69.923 −47.877 −33.944 −24.733 −18.384 −13.936 −10.913 −9.058 −8.074 −7.491 −6.907 −6.204 −5.443 −4.705 −3.456 −2.551 −1.933 −1.529 −1.275 −1.120 −1.026 −0.962 −0.909 −0.856 −0.798 −0.732 −0.659 −0.581 −0.499 −0.416 −0.334 −0.254 −0.179 −0.108 −0.045 0.009 0.053 0.087 0.109 0.122 0.128 0.132 0.135 0.143 0.155 0.172 0.194 35.710 90.339 242.890 233.642 89.018 40.072 22.358 14.618 10.850 8.988 8.183 7.985 8.014 7.874 7.355 6.583 5.807 5.169 4.692 4.112 3.824 3.670 3.562 3.458 3.336 3.189 3.021 2.837 2.646 2.457 2.275 2.104 1.949 1.809 1.685 1.577 1.484 1.406 1.340 1.287 1.243 1.208 1.177 1.147 1.116 1.079 1.036 0.986 0.932 0.876 0.821 0.768 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.011 0.015 0.021 0.031 0.044 0.055 0.062 0.067 0.072 0.080 0.092 0.106 0.143 0.181 0.213 0.237 0.255 0.269 0.284 0.301 0.320 0.342 0.368 0.398 0.433 0.471 0.514 0.559 0.607 0.655 0.700 0.741 0.776 0.804 0.826 0.845 0.864 0.886 0.914 0.950 0.995 1.048 1.107 1.167 1.224 −0.1 −0.1 −0.2 −0.2 −0.2 −0.2 −0.4 −0.8 −1.4 −1.8 −1.3 −0.2 0.7 0.9 0.7 0.5 0.5 0.8 1.5 3.1 4.5 5.7 6.1 6.1 7.3 8.5 8.4 8.4 9.0 9.6 10.3 11.0 11.3 12.1 12.7 12.7 14.2 16.5 17.2 17.3 18.0 19.1 19.7 19.4 19.3 19.9 20.4 20.8 20.7 21.3 23.2 24.0 0.9 1.4 1.8 2.3 2.7 2.6 3.9 8.1 16.7 29.0 40.2 46.1 48.9 51.2 54.6 59.0 63.8 68.1 71.3 74.2 74.6 76.4 81.6 85.8 83.8 79.9 78.8 77.4 75.3 73.3 69.9 67.4 67.7 65.2 63.7 67.0 64.2 54.8 50.2 50.5 49.9 45.2 39.6 37.9 38.1 36.8 33.7 30.8 31.5 30.7 24.3 22.1 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1051 TABLE 13. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Fe calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Fe DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.070 0.084 0.127 0.208 0.272 0.308 0.386 0.342 0.333 0.357 0.418 0.459 0.491 0.469 0.523 0.538 0.550 0.569 0.573 0.576 0.587 0.623 0.637 0.664 0.678 0.672 0.680 0.697 0.709 0.717 0.725 0.744 0.749 0.738 0.731 0.743 0.746 0.757 0.775 0.789 0.796 0.811 0.826 0.837 0.859 0.873 0.896 0.920 0.942 0.956 0.976 0.997 0.914 0.818 0.717 0.651 0.635 0.589 0.606 0.624 0.568 0.493 0.479 0.448 0.474 0.439 0.413 0.426 0.404 0.407 0.393 0.389 0.349 0.339 0.329 0.323 0.346 0.328 0.318 0.305 0.308 0.301 0.295 0.291 0.304 0.305 0.283 0.271 0.256 0.238 0.231 0.223 0.218 0.204 0.202 0.190 0.183 0.179 0.172 0.170 0.177 0.178 0.177 0.174 1.087 1.210 1.353 1.395 1.329 1.334 1.173 1.233 1.309 1.330 1.184 1.088 1.017 1.063 0.930 0.904 0.869 0.831 0.814 0.805 0.750 0.674 0.641 0.593 0.598 0.586 0.564 0.527 0.515 0.498 0.481 0.455 0.466 0.479 0.461 0.433 0.412 0.378 0.353 0.332 0.320 0.291 0.279 0.258 0.237 0.225 0.206 0.194 0.193 0.189 0.180 0.170 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.220 0.248 0.278 0.308 0.338 0.368 0.397 0.425 0.452 0.478 0.503 0.527 0.550 0.572 0.593 0.613 0.632 0.650 0.668 0.685 0.702 0.718 0.733 0.748 0.762 0.776 0.790 0.804 0.817 0.830 0.842 0.855 0.867 0.879 0.891 0.903 0.916 0.928 0.940 0.953 0.965 0.979 0.992 1.006 1.020 1.036 1.052 1.069 1.087 1.107 1.129 1.154 0.718 0.673 0.632 0.594 0.561 0.531 0.504 0.480 0.457 0.437 0.419 0.403 0.388 0.374 0.361 0.349 0.338 0.328 0.319 0.310 0.302 0.294 0.287 0.281 0.275 0.269 0.264 0.259 0.254 0.250 0.246 0.242 0.239 0.236 0.233 0.230 0.228 0.226 0.225 0.223 0.222 0.222 0.221 0.221 0.222 0.223 0.225 0.227 0.231 0.235 0.241 0.248 1.272 1.308 1.326 1.326 1.307 1.272 1.225 1.168 1.106 1.042 0.978 0.916 0.857 0.801 0.750 0.702 0.658 0.618 0.582 0.548 0.517 0.489 0.463 0.440 0.418 0.398 0.380 0.363 0.347 0.333 0.319 0.307 0.295 0.284 0.274 0.265 0.256 0.248 0.240 0.233 0.226 0.220 0.214 0.209 0.204 0.199 0.194 0.190 0.187 0.183 0.180 0.178 23.4 23.5 24.3 24.7 24.5 23.6 23.3 23.5 22.8 21.8 21.0 19.6 18.6 18.7 18.4 17.5 16.7 15.8 14.9 14.7 13.7 12.5 12.3 11.9 11.3 11.2 10.8 9.8 9.7 9.7 9.4 9.6 9.9 9.0 7.7 7.1 7.1 7.0 6.8 6.7 6.1 5.1 5.2 6.3 5.9 4.7 4.8 5.1 4.3 3.9 4.4 4.5 25.0 25.4 21.3 16.0 14.6 16.0 13.6 10.1 11.6 12.7 12.5 13.3 13.0 9.8 7.8 8.3 9.4 11.0 10.9 8.4 9.5 12.6 12.2 11.9 12.7 10.7 9.8 11.7 11.5 10.3 10.2 8.4 6.1 8.0 11.6 12.4 11.4 10.9 10.6 9.3 9.8 12.6 11.7 7.5 8.5 12.2 10.9 7.8 9.7 11.9 8.9 6.9 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1052 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 13. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Fe calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Fe DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 1.027 1.060 1.104 1.156 1.225 1.323 1.487 1.728 1.921 1.768 1.146 −0.010 −0.002 0.010 0.203 0.302 0.369 0.420 0.466 0.506 0.543 0.576 0.619 0.677 0.757 0.672 0.712 0.701 0.671 0.675 0.689 0.694 0.693 0.698 0.701 0.700 0.700 0.704 0.711 0.719 0.730 0.736 0.734 0.738 0.735 0.741 0.170 0.169 0.170 0.174 0.179 0.195 0.224 0.453 0.820 1.514 1.848 1.834 0.856 0.572 0.419 0.349 0.298 0.257 0.224 0.198 0.177 0.154 0.135 0.129 0.218 0.199 0.180 0.243 0.214 0.192 0.181 0.182 0.178 0.170 0.168 0.162 0.152 0.143 0.133 0.126 0.122 0.127 0.124 0.122 0.117 0.109 0.157 0.147 0.136 0.127 0.117 0.109 0.099 0.142 0.188 0.280 0.391 0.545 1.168 1.748 1.933 1.641 1.326 1.058 0.839 0.671 0.543 0.434 0.337 0.271 0.351 0.405 0.334 0.442 0.432 0.390 0.356 0.354 0.348 0.329 0.323 0.314 0.297 0.276 0.254 0.237 0.223 0.228 0.225 0.218 0.211 0.194 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 1.182 1.213 1.250 1.293 1.345 1.408 1.483 1.565 1.622 1.534 1.093 0.531 0.314 0.332 0.409 0.485 0.549 0.600 0.641 0.673 0.698 0.718 0.733 0.744 0.751 0.755 0.756 0.756 0.753 0.749 0.744 0.739 0.733 0.728 0.723 0.718 0.714 0.711 0.709 0.708 0.708 0.708 0.710 0.711 0.714 0.716 0.258 0.270 0.288 0.312 0.347 0.399 0.482 0.620 0.858 1.228 1.546 1.399 1.012 0.728 0.563 0.470 0.416 0.384 0.365 0.354 0.348 0.346 0.345 0.347 0.348 0.350 0.352 0.352 0.352 0.351 0.348 0.344 0.338 0.332 0.324 0.315 0.305 0.295 0.285 0.275 0.264 0.254 0.244 0.234 0.225 0.216 0.176 0.175 0.175 0.176 0.180 0.186 0.198 0.219 0.255 0.318 0.431 0.625 0.901 1.137 1.163 1.031 0.878 0.757 0.671 0.612 0.572 0.545 0.526 0.515 0.508 0.506 0.505 0.507 0.509 0.512 0.515 0.518 0.519 0.518 0.516 0.512 0.506 0.498 0.488 0.476 0.463 0.448 0.433 0.418 0.402 0.386 3.5 3.0 3.9 4.5 3.1 2.3 2.9 4.0 4.3 3.4 3.1 4.3 5.6 6.5 7.4 8.2 9.0 9.5 9.3 9.0 9.4 9.6 9.3 8.6 8.7 8.9 8.5 8.3 8.0 8.3 9.3 9.2 8.2 7.4 6.9 7.1 7.5 7.3 7.3 7.6 7.4 7.3 7.9 7.8 7.1 7.0 10.5 11.9 6.6 5.0 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1053 TABLE 14. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Co calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Co DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −107.960 −21.595 7.463 −2.923 −8.233 −8.132 −14.932 −15.453 −14.114 −11.590 −9.627 −8.842 −9.154 −8.455 −7.090 −5.789 −4.495 −3.055 −2.177 −1.739 −0.747 −3.518 −2.770 −1.747 −0.833 −0.445 −0.338 −0.170 0.170 0.180 −0.024 0.177 0.141 0.033 −0.018 0.015 0.111 0.173 0.263 0.320 0.373 0.455 0.457 0.486 0.474 0.441 0.405 0.375 0.353 0.341 0.326 0.316 51.266 33.538 45.855 54.923 43.145 40.200 33.796 26.390 19.689 16.011 13.889 13.049 11.116 8.557 6.923 5.745 4.929 4.560 5.233 4.616 6.263 5.088 3.164 2.384 2.161 2.412 2.381 2.199 2.123 2.434 2.292 2.121 2.176 2.105 1.904 1.778 1.614 1.543 1.476 1.436 1.386 1.404 1.402 1.394 1.425 1.411 1.390 1.357 1.312 1.272 1.232 1.190 0.004 0.021 0.021 0.018 0.022 0.024 0.025 0.028 0.034 0.041 0.049 0.053 0.054 0.059 0.071 0.086 0.111 0.151 0.163 0.190 0.157 0.133 0.179 0.273 0.403 0.401 0.412 0.452 0.468 0.409 0.436 0.468 0.458 0.475 0.525 0.562 0.617 0.640 0.657 0.663 0.673 0.645 0.645 0.640 0.632 0.646 0.663 0.685 0.711 0.734 0.759 0.785 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −501.815 −203.650 −119.311 −91.209 −61.840 −42.714 −30.446 −22.251 −16.616 −12.702 −10.014 −8.222 −7.070 −6.335 −5.833 −5.427 −5.042 −4.648 −4.245 −3.453 −2.747 −2.163 −1.702 −1.348 −1.079 −0.878 −0.726 −0.609 −0.517 −0.442 −0.377 −0.319 −0.266 −0.215 −0.166 −0.118 −0.071 −0.026 0.018 0.061 0.102 0.140 0.175 0.206 0.232 0.251 0.264 0.271 0.271 0.268 0.265 0.265 36.182 27.709 42.469 22.506 10.778 7.132 5.951 5.691 5.842 6.183 6.574 6.902 7.079 7.056 6.841 6.480 6.043 5.589 5.160 4.444 3.931 3.574 3.321 3.132 2.981 2.848 2.725 2.606 2.489 2.373 2.258 2.147 2.039 1.937 1.840 1.749 1.665 1.587 1.517 1.453 1.395 1.345 1.300 1.262 1.228 1.199 1.172 1.144 1.113 1.078 1.036 0.990 0.000 0.001 0.003 0.003 0.003 0.004 0.006 0.011 0.019 0.031 0.046 0.060 0.071 0.078 0.085 0.091 0.098 0.106 0.116 0.140 0.171 0.205 0.238 0.269 0.297 0.321 0.343 0.364 0.385 0.407 0.431 0.456 0.482 0.510 0.539 0.569 0.600 0.630 0.659 0.687 0.713 0.736 0.755 0.772 0.786 0.799 0.812 0.828 0.848 0.874 0.906 0.943 0.0 −0.1 −0.1 −0.1 −0.1 −0.2 −0.3 −0.6 −1.0 −1.1 −0.2 1.4 2.4 2.5 2.2 1.8 1.6 1.5 1.5 2.7 5.0 6.0 5.9 6.5 7.4 8.1 8.8 9.0 8.9 9.4 10.3 10.9 11.1 11.7 12.6 13.7 14.9 14.7 13.7 14.3 16.0 16.6 16.3 17.2 17.8 16.7 17.0 18.7 18.5 17.1 17.6 19.5 0.7 1.1 1.4 1.8 2.1 2.0 3.2 7.1 15.7 29.5 43.2 50.8 53.0 53.3 54.4 57.6 62.3 67.5 71.5 72.8 69.7 74.4 84.7 89.3 89.0 86.8 82.9 80.9 79.8 75.3 69.1 65.8 64.5 62.4 61.1 58.5 52.6 50.5 52.7 50.5 44.3 40.3 38.4 35.0 34.7 38.1 34.2 26.5 27.8 33.9 33.5 26.6 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1054 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 14. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Co calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Co DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.304 0.286 0.253 0.276 0.281 0.253 0.191 0.196 0.228 0.264 0.268 0.263 0.315 0.346 0.365 0.426 0.463 0.472 0.471 0.495 0.509 0.535 0.562 0.572 0.581 0.581 0.583 0.583 0.593 0.613 0.621 0.625 0.633 0.650 0.672 0.685 0.700 0.719 0.726 0.732 0.741 0.749 0.752 0.757 0.768 0.780 0.793 0.800 0.811 0.821 0.817 0.820 1.157 1.121 1.062 1.003 0.994 0.977 0.901 0.808 0.737 0.700 0.673 0.601 0.554 0.528 0.482 0.452 0.462 0.472 0.441 0.424 0.404 0.388 0.385 0.388 0.382 0.380 0.369 0.354 0.328 0.317 0.313 0.301 0.281 0.265 0.256 0.252 0.242 0.245 0.248 0.243 0.239 0.238 0.237 0.226 0.219 0.212 0.213 0.211 0.209 0.215 0.218 0.205 0.808 0.837 0.891 0.927 0.932 0.959 1.062 1.170 1.239 1.251 1.283 1.397 1.365 1.326 1.320 1.170 1.081 1.058 1.059 0.999 0.958 0.889 0.829 0.812 0.790 0.789 0.775 0.761 0.715 0.664 0.647 0.625 0.586 0.537 0.495 0.473 0.441 0.424 0.422 0.409 0.395 0.385 0.381 0.362 0.344 0.324 0.316 0.308 0.298 0.298 0.305 0.286 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.269 0.279 0.294 0.313 0.337 0.364 0.396 0.427 0.420 0.372 0.392 0.424 0.452 0.478 0.501 0.523 0.543 0.562 0.580 0.598 0.615 0.631 0.646 0.661 0.676 0.690 0.704 0.717 0.729 0.742 0.754 0.766 0.777 0.788 0.799 0.809 0.820 0.830 0.840 0.849 0.859 0.868 0.877 0.886 0.894 0.903 0.911 0.919 0.927 0.935 0.943 0.951 0.941 0.892 0.844 0.799 0.759 0.724 0.699 0.692 0.714 0.662 0.594 0.554 0.526 0.503 0.483 0.465 0.449 0.433 0.420 0.407 0.395 0.384 0.373 0.363 0.354 0.346 0.338 0.331 0.324 0.318 0.312 0.307 0.302 0.298 0.294 0.290 0.286 0.283 0.281 0.278 0.277 0.275 0.273 0.272 0.272 0.271 0.271 0.271 0.271 0.272 0.273 0.274 0.982 1.021 1.057 1.084 1.100 1.102 1.084 1.046 1.041 1.148 1.173 1.139 1.093 1.045 0.997 0.950 0.904 0.860 0.818 0.778 0.740 0.704 0.670 0.638 0.609 0.581 0.555 0.531 0.509 0.488 0.469 0.451 0.435 0.419 0.405 0.392 0.380 0.369 0.358 0.349 0.340 0.332 0.324 0.317 0.311 0.305 0.300 0.295 0.291 0.287 0.283 0.280 20.3 19.8 19.6 20.0 20.9 21.1 20.7 20.9 20.9 20.4 20.5 21.3 21.9 21.5 19.8 18.6 18.4 18.0 17.5 17.3 16.9 15.9 15.1 15.1 14.6 13.7 13.3 12.7 11.5 10.6 10.6 11.3 11.5 10.1 8.8 9.0 9.8 9.9 9.2 8.5 8.3 7.7 7.5 8.2 7.8 6.7 6.4 6.5 6.6 6.4 5.6 5.6 21.9 22.5 24.0 22.9 18.3 16.1 17.4 15.3 12.7 13.1 13.7 10.6 4.2 2.4 8.4 11.3 7.8 6.6 6.7 5.2 4.8 6.3 6.2 4.5 5.5 7.1 6.3 6.0 7.7 10.4 10.3 5.2 2.1 6.6 11.7 10.1 4.9 2.9 4.7 5.5 5.6 8.9 10.0 5.6 5.2 8.2 7.8 6.5 5.7 6.6 9.9 8.7 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1055 TABLE 14. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Co calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Co DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.834 0.839 0.847 0.853 0.862 0.872 0.886 0.898 0.911 0.924 0.935 0.960 0.985 1.021 1.061 1.115 1.191 1.321 1.640 1.582 1.392 0.086 0.148 0.425 0.466 0.506 0.548 0.580 0.602 0.623 0.631 0.652 0.685 0.721 0.741 0.776 0.735 0.759 0.731 0.719 0.719 0.723 0.716 0.715 0.721 0.728 0.203 0.200 0.199 0.194 0.189 0.184 0.181 0.178 0.178 0.176 0.171 0.162 0.159 0.158 0.160 0.163 0.171 0.188 0.287 0.978 1.355 1.798 0.482 0.430 0.377 0.325 0.281 0.258 0.236 0.222 0.201 0.175 0.159 0.156 0.159 0.212 0.203 0.204 0.221 0.205 0.190 0.186 0.178 0.163 0.150 0.139 0.275 0.269 0.263 0.254 0.243 0.232 0.221 0.213 0.207 0.199 0.189 0.171 0.159 0.148 0.139 0.129 0.118 0.106 0.103 0.283 0.359 0.555 1.897 1.175 1.050 0.899 0.742 0.641 0.566 0.509 0.459 0.384 0.321 0.287 0.277 0.327 0.348 0.330 0.379 0.366 0.343 0.333 0.327 0.303 0.276 0.253 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.959 0.967 0.975 0.983 0.992 1.000 1.009 1.019 1.029 1.040 1.053 1.067 1.083 1.103 1.127 1.158 1.198 1.253 1.328 1.421 1.445 0.995 0.403 0.365 0.455 0.533 0.589 0.629 0.658 0.679 0.695 0.707 0.716 0.722 0.727 0.731 0.733 0.735 0.736 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.276 0.277 0.279 0.282 0.284 0.287 0.290 0.294 0.298 0.302 0.308 0.314 0.321 0.331 0.343 0.360 0.385 0.425 0.500 0.655 0.998 1.417 1.117 0.721 0.537 0.453 0.409 0.385 0.369 0.358 0.351 0.344 0.339 0.335 0.330 0.326 0.322 0.317 0.313 0.308 0.304 0.299 0.294 0.289 0.284 0.278 0.277 0.274 0.271 0.269 0.267 0.265 0.263 0.261 0.260 0.258 0.256 0.254 0.252 0.249 0.247 0.245 0.243 0.243 0.248 0.268 0.323 0.473 0.792 1.104 1.083 0.925 0.795 0.707 0.648 0.607 0.578 0.557 0.541 0.528 0.518 0.509 0.501 0.495 0.489 0.483 0.478 0.472 0.467 0.461 0.455 0.449 6.2 6.1 5.7 5.8 5.9 5.9 5.9 5.4 5.1 5.6 5.8 5.4 5.1 4.7 4.5 5.0 5.5 4.9 3.7 3.2 3.9 5.3 5.3 4.4 5.4 7.4 7.6 7.0 8.5 10.2 8.7 6.8 7.3 8.0 7.6 7.1 7.4 7.9 8.0 7.1 6.0 5.9 6.7 7.4 7.2 7.0 4.4 3.5 5.2 6.6 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1056 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 15. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ni calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Ni DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −158.422 −61.253 −38.025 −26.202 −18.963 −14.840 −14.053 −13.486 −10.674 −8.490 −7.375 −6.702 −5.608 −4.513 −3.434 −2.354 −1.142 0.609 1.483 −1.126 −3.203 −2.102 −1.139 −0.447 −0.417 −0.352 −0.351 −0.173 −0.036 −0.150 0.065 0.291 0.377 0.416 0.505 0.653 0.587 0.491 0.431 0.288 0.216 0.193 0.194 0.211 0.234 0.246 0.257 0.272 0.313 0.371 0.434 0.498 79.503 52.551 43.332 32.429 26.763 23.273 21.248 15.632 12.483 10.728 9.830 8.230 6.892 5.867 5.090 4.507 4.098 4.338 6.323 8.154 5.108 3.420 2.926 2.955 3.033 2.862 2.633 2.354 2.399 2.127 1.856 1.816 1.847 1.803 1.741 1.777 1.926 1.916 1.908 1.862 1.727 1.602 1.491 1.397 1.319 1.257 1.189 1.106 1.025 0.964 0.925 0.905 0.003 0.008 0.013 0.019 0.025 0.031 0.033 0.037 0.046 0.057 0.065 0.073 0.087 0.107 0.135 0.174 0.226 0.226 0.150 0.120 0.141 0.212 0.297 0.331 0.324 0.344 0.373 0.423 0.417 0.468 0.538 0.537 0.520 0.527 0.530 0.496 0.475 0.490 0.499 0.524 0.570 0.615 0.659 0.700 0.735 0.766 0.804 0.853 0.892 0.903 0.886 0.848 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 33.880 119.796 −22.964 −112.616 −79.874 −53.413 −36.711 −25.791 −18.275 −12.903 −9.046 −6.503 −5.365 −5.591 −6.390 −6.746 −6.452 −5.809 −5.081 −3.774 −2.777 −2.042 −1.559 −1.360 −1.280 −1.088 −0.825 −0.575 −0.370 −0.217 −0.114 −0.054 −0.031 −0.034 −0.054 −0.078 −0.101 −0.114 −0.116 −0.105 −0.081 −0.047 −0.005 0.042 0.092 0.142 0.190 0.233 0.270 0.298 0.317 0.327 58.369 146.571 256.452 114.300 46.863 24.412 15.339 11.169 9.221 8.505 8.631 9.397 10.469 11.101 10.605 9.269 7.853 6.728 5.917 4.923 4.383 4.089 3.958 3.845 3.553 3.192 2.921 2.749 2.644 2.581 2.540 2.505 2.466 2.414 2.344 2.257 2.155 2.042 1.924 1.806 1.693 1.587 1.492 1.408 1.337 1.277 1.229 1.191 1.162 1.140 1.121 1.102 0.013 0.004 0.004 0.004 0.005 0.007 0.010 0.014 0.022 0.036 0.055 0.072 0.076 0.072 0.069 0.071 0.076 0.085 0.097 0.128 0.163 0.196 0.219 0.231 0.249 0.281 0.317 0.349 0.371 0.385 0.393 0.399 0.405 0.414 0.426 0.442 0.463 0.488 0.518 0.552 0.589 0.629 0.670 0.709 0.745 0.774 0.795 0.808 0.816 0.821 0.826 0.834 0.1 0.1 0.2 0.2 0.3 0.0 −0.4 −1.1 −2.6 −4.2 −3.9 −0.9 2.1 2.9 2.0 0.4 −0.7 −1.1 −0.7 1.3 3.2 4.5 5.7 6.6 6.6 6.9 8.2 9.2 9.3 10.1 11.2 11.4 10.4 9.8 10.6 11.4 11.8 12.3 12.5 12.4 12.9 13.8 14.3 14.9 15.4 15.4 15.5 16.1 16.6 17.0 17.4 17.0 0.5 0.7 1.0 1.2 1.5 2.4 4.7 11.7 26.9 50.0 68.9 72.3 66.4 61.7 61.9 65.5 69.9 73.2 74.9 76.3 79.6 82.8 81.1 79.0 81.3 81.7 76.5 72.9 73.7 70.3 62.8 60.7 65.4 67.9 63.3 58.5 56.1 54.1 54.0 54.7 52.7 50.5 49.0 46.2 44.7 45.8 44.5 41.1 39.5 37.3 33.0 31.7 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1057 TABLE 15. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ni calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Ni DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.557 0.602 0.634 0.632 0.612 0.564 0.460 0.361 0.273 0.223 0.200 0.210 0.245 0.275 0.323 0.411 0.494 0.548 0.564 0.546 0.542 0.540 0.556 0.582 0.607 0.613 0.607 0.614 0.611 0.606 0.607 0.612 0.619 0.627 0.637 0.645 0.655 0.667 0.681 0.693 0.701 0.710 0.719 0.728 0.736 0.738 0.743 0.751 0.760 0.765 0.770 0.776 0.907 0.928 0.966 1.027 1.048 1.111 1.125 1.092 1.014 0.922 0.810 0.711 0.624 0.551 0.471 0.426 0.413 0.445 0.480 0.500 0.476 0.455 0.426 0.414 0.415 0.423 0.420 0.410 0.406 0.395 0.377 0.360 0.344 0.331 0.317 0.305 0.293 0.281 0.274 0.270 0.264 0.260 0.256 0.253 0.250 0.251 0.242 0.237 0.235 0.234 0.231 0.231 0.801 0.758 0.723 0.706 0.711 0.716 0.761 0.826 0.919 1.024 1.164 1.294 1.389 1.454 1.443 1.215 0.996 0.894 0.875 0.912 0.914 0.912 0.868 0.811 0.767 0.763 0.770 0.752 0.755 0.754 0.738 0.714 0.687 0.658 0.626 0.599 0.569 0.536 0.508 0.488 0.470 0.454 0.439 0.425 0.415 0.413 0.396 0.383 0.372 0.366 0.357 0.352 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.328 0.324 0.318 0.315 0.315 0.322 0.334 0.352 0.373 0.398 0.425 0.453 0.481 0.508 0.536 0.563 0.589 0.616 0.642 0.670 0.701 0.738 0.746 0.629 0.647 0.679 0.703 0.721 0.737 0.750 0.761 0.772 0.781 0.790 0.797 0.805 0.811 0.818 0.824 0.829 0.834 0.839 0.844 0.849 0.853 0.858 0.862 0.866 0.870 0.874 0.878 0.882 1.079 1.051 1.015 0.973 0.926 0.876 0.827 0.780 0.737 0.697 0.662 0.631 0.604 0.580 0.559 0.542 0.526 0.514 0.503 0.497 0.496 0.513 0.589 0.566 0.488 0.461 0.449 0.441 0.436 0.431 0.426 0.422 0.419 0.415 0.412 0.409 0.405 0.402 0.399 0.396 0.392 0.389 0.386 0.383 0.380 0.377 0.374 0.371 0.368 0.365 0.362 0.359 0.848 0.869 0.897 0.931 0.968 1.006 1.039 1.065 1.080 1.081 1.070 1.046 1.014 0.975 0.932 0.888 0.843 0.799 0.756 0.714 0.672 0.635 0.652 0.791 0.743 0.685 0.646 0.617 0.595 0.576 0.560 0.546 0.533 0.522 0.511 0.502 0.493 0.484 0.476 0.469 0.462 0.455 0.448 0.442 0.435 0.429 0.423 0.418 0.412 0.407 0.401 0.396 16.3 16.3 16.8 17.3 17.6 17.6 17.8 18.4 18.7 18.5 18.3 18.2 18.3 18.6 18.2 16.9 16.2 16.7 17.2 16.5 14.9 13.7 13.6 13.8 13.3 13.3 13.5 12.7 12.3 12.8 12.5 11.3 10.9 11.2 11.3 10.6 10.1 9.7 9.8 10.4 10.1 9.0 8.7 9.2 9.4 9.2 8.8 8.4 8.2 8.2 8.2 8.2 33.0 31.9 28.5 24.8 22.3 22.1 22.5 20.8 18.2 18.3 18.7 16.9 15.5 14.4 14.1 14.5 12.8 9.9 6.6 5.5 9.0 13.7 13.4 9.1 8.1 6.8 4.6 7.5 7.8 3.0 2.3 5.5 5.8 3.1 1.8 3.5 4.3 4.3 3.1 0.2 0.5 3.3 3.0 0.9 0.5 0.2 0.5 2.4 2.2 0.6 0.4 0.5 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1058 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 15. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ni calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Ni DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.779 0.785 0.783 0.781 0.780 0.780 0.781 0.788 0.803 0.818 0.820 0.820 0.824 0.831 0.839 0.849 0.858 0.860 0.864 0.869 0.877 0.889 0.910 0.933 0.950 0.958 0.971 0.996 1.045 1.148 1.466 0.583 0.596 0.650 0.649 0.660 0.679 0.697 0.715 0.732 0.748 0.768 0.793 0.825 0.798 0.768 0.230 0.231 0.231 0.228 0.222 0.214 0.203 0.191 0.182 0.186 0.190 0.188 0.180 0.176 0.172 0.169 0.172 0.176 0.173 0.167 0.161 0.155 0.149 0.156 0.172 0.180 0.183 0.183 0.182 0.197 0.330 1.258 0.413 0.395 0.331 0.279 0.241 0.214 0.194 0.180 0.167 0.157 0.152 0.185 0.221 0.205 0.348 0.345 0.347 0.345 0.337 0.327 0.312 0.290 0.269 0.264 0.269 0.266 0.253 0.244 0.234 0.225 0.224 0.228 0.223 0.213 0.203 0.190 0.175 0.174 0.185 0.190 0.187 0.179 0.162 0.145 0.146 0.654 0.785 0.684 0.624 0.544 0.464 0.402 0.353 0.316 0.284 0.255 0.234 0.259 0.322 0.324 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.886 0.890 0.894 0.898 0.902 0.906 0.910 0.914 0.918 0.923 0.927 0.932 0.937 0.942 0.948 0.954 0.961 0.968 0.977 0.986 0.997 1.009 1.024 1.041 1.063 1.090 1.124 1.166 1.215 1.246 1.153 0.815 0.551 0.519 0.561 0.608 0.648 0.678 0.703 0.722 0.738 0.751 0.762 0.771 0.778 0.785 0.356 0.354 0.351 0.349 0.346 0.344 0.342 0.340 0.338 0.336 0.335 0.333 0.331 0.330 0.329 0.328 0.328 0.328 0.328 0.328 0.330 0.332 0.337 0.343 0.352 0.368 0.393 0.436 0.515 0.664 0.901 1.017 0.814 0.597 0.473 0.405 0.366 0.341 0.325 0.313 0.305 0.298 0.292 0.287 0.283 0.280 0.391 0.386 0.381 0.376 0.371 0.367 0.362 0.358 0.353 0.349 0.344 0.340 0.336 0.331 0.327 0.322 0.318 0.313 0.309 0.304 0.299 0.295 0.290 0.285 0.281 0.278 0.277 0.281 0.296 0.333 0.421 0.599 0.843 0.954 0.878 0.758 0.661 0.592 0.542 0.506 0.478 0.456 0.439 0.425 0.413 0.403 8.1 7.5 6.8 7.5 8.5 7.5 6.0 6.5 7.9 7.9 7.0 7.1 7.9 7.4 6.4 6.8 7.3 6.8 6.4 6.6 6.2 5.9 6.4 6.5 5.9 5.8 6.4 5.8 4.9 5.5 6.1 5.7 5.5 5.4 5.0 5.4 6.4 6.4 6.0 6.6 7.3 7.2 7.2 7.7 7.7 7.3 −0.3 1.6 4.9 1.5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1059 TABLE 16. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Cu calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Cu DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −299.196 −130.859 −69.909 −40.759 −23.639 −13.577 −10.040 −7.983 −6.180 −4.739 −3.917 −3.285 −2.609 −1.802 −1.069 −0.881 −0.326 −0.387 −1.537 −2.102 −1.560 −1.023 −0.706 −0.682 −0.582 −0.330 −0.303 −0.203 −0.010 0.227 0.309 0.399 0.532 0.498 0.453 0.433 0.422 0.395 0.240 0.178 0.163 0.171 0.191 0.211 0.218 0.245 0.293 0.354 0.423 0.496 0.566 0.633 61.762 18.836 8.228 4.587 3.677 6.510 8.153 7.972 7.459 7.155 6.950 6.444 5.922 5.503 5.653 5.677 5.632 6.684 6.586 4.852 3.826 3.345 3.257 2.988 2.685 2.375 2.304 2.031 1.808 1.783 1.757 1.699 1.742 1.804 1.774 1.738 1.707 1.732 1.674 1.536 1.410 1.299 1.204 1.132 1.044 0.949 0.864 0.793 0.741 0.707 0.691 0.692 0.001 0.001 0.002 0.003 0.006 0.029 0.049 0.063 0.079 0.097 0.109 0.123 0.141 0.164 0.171 0.172 0.177 0.149 0.144 0.174 0.224 0.273 0.293 0.318 0.356 0.413 0.427 0.487 0.553 0.552 0.552 0.558 0.525 0.515 0.529 0.542 0.552 0.549 0.585 0.642 0.700 0.757 0.810 0.854 0.918 0.987 1.038 1.051 1.018 0.948 0.865 0.787 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −288.397 −91.601 −73.064 −80.642 −55.729 −38.032 −26.696 −19.112 −13.794 −9.934 −7.103 −5.121 −3.996 −3.742 −4.026 −4.207 −3.982 −3.825 −4.101 −3.056 −2.248 −1.687 −1.281 −0.971 −0.726 −0.525 −0.356 −0.214 −0.097 −0.002 0.070 0.120 0.148 0.157 0.151 0.136 0.117 0.101 0.092 0.092 0.102 0.121 0.150 0.186 0.227 0.273 0.322 0.373 0.427 0.482 0.539 0.598 34.594 49.326 86.333 41.391 17.567 9.757 6.718 5.428 4.945 4.932 5.268 5.898 6.705 7.351 7.393 6.838 6.206 6.013 5.185 3.918 3.429 3.128 2.902 2.714 2.553 2.414 2.296 2.198 2.118 2.054 2.002 1.959 1.918 1.876 1.826 1.765 1.693 1.611 1.520 1.426 1.331 1.239 1.152 1.071 0.998 0.934 0.877 0.829 0.790 0.760 0.740 0.733 0.000 0.005 0.007 0.005 0.005 0.006 0.009 0.014 0.023 0.040 0.067 0.097 0.110 0.108 0.104 0.106 0.114 0.118 0.119 0.159 0.204 0.248 0.288 0.327 0.362 0.396 0.425 0.451 0.471 0.487 0.499 0.509 0.518 0.529 0.544 0.563 0.588 0.618 0.655 0.699 0.747 0.800 0.854 0.906 0.952 0.987 1.005 1.003 0.980 0.938 0.883 0.819 −0.1 −0.1 −0.1 −0.2 −0.2 −0.2 −0.4 −0.8 −1.5 −1.0 1.8 4.8 5.3 3.8 2.0 0.8 0.3 0.3 0.7 2.4 4.3 5.8 7.0 7.5 7.6 8.9 10.7 11.7 11.7 12.1 13.1 12.8 12.2 13.4 14.2 13.4 13.5 14.6 15.1 15.3 15.7 16.1 17.0 18.2 18.3 17.7 17.7 18.9 20.4 19.8 17.5 17.0 0.6 0.9 1.2 1.5 1.8 1.9 3.3 8.7 22.3 46.1 71.2 88.4 97.8 101.4 102.2 101.9 101.6 101.3 101.0 101.1 106.4 118.3 128.1 126.2 115.8 103.8 94.0 86.9 80.5 72.7 64.8 62.1 58.8 49.7 45.5 47.8 44.5 38.5 39.4 41.3 37.9 34.9 34.6 33.8 32.9 32.4 30.3 26.9 21.8 20.1 24.5 23.5 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1060 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 16. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Cu calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Cu DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.695 0.757 0.818 0.812 0.650 0.545 0.429 0.342 0.322 0.328 0.356 0.363 0.416 0.511 0.608 0.664 0.635 0.627 0.626 0.640 0.669 0.700 0.709 0.707 0.712 0.704 0.707 0.712 0.723 0.732 0.734 0.741 0.749 0.761 0.770 0.775 0.774 0.773 0.776 0.785 0.794 0.796 0.800 0.805 0.810 0.818 0.815 0.810 0.812 0.798 0.786 0.786 0.706 0.741 0.813 0.983 1.040 1.011 0.980 0.869 0.752 0.659 0.582 0.515 0.410 0.359 0.367 0.412 0.456 0.438 0.420 0.387 0.373 0.379 0.388 0.387 0.394 0.384 0.372 0.358 0.348 0.346 0.340 0.330 0.323 0.317 0.317 0.320 0.320 0.313 0.306 0.297 0.299 0.297 0.295 0.295 0.291 0.297 0.304 0.303 0.306 0.314 0.301 0.291 0.719 0.660 0.611 0.605 0.692 0.766 0.856 0.997 1.123 1.216 1.250 1.297 1.201 0.920 0.727 0.675 0.747 0.748 0.740 0.692 0.636 0.599 0.594 0.596 0.595 0.597 0.584 0.564 0.540 0.527 0.520 0.502 0.485 0.466 0.458 0.455 0.456 0.450 0.440 0.422 0.415 0.412 0.407 0.402 0.393 0.393 0.402 0.405 0.406 0.427 0.424 0.414 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.656 0.708 0.742 0.727 0.632 0.481 0.370 0.340 0.360 0.400 0.444 0.486 0.525 0.560 0.592 0.621 0.647 0.671 0.693 0.713 0.732 0.749 0.765 0.780 0.793 0.806 0.817 0.828 0.838 0.848 0.856 0.864 0.871 0.878 0.884 0.889 0.894 0.899 0.903 0.906 0.909 0.911 0.914 0.915 0.916 0.917 0.918 0.918 0.918 0.917 0.916 0.915 0.743 0.777 0.841 0.933 1.013 1.004 0.897 0.766 0.660 0.583 0.528 0.489 0.460 0.438 0.420 0.406 0.395 0.386 0.378 0.372 0.367 0.362 0.359 0.356 0.354 0.352 0.351 0.350 0.349 0.349 0.349 0.349 0.350 0.351 0.352 0.353 0.354 0.355 0.357 0.358 0.359 0.361 0.362 0.364 0.366 0.367 0.368 0.370 0.371 0.372 0.373 0.374 0.756 0.703 0.669 0.666 0.711 0.810 0.952 1.090 1.168 1.167 1.110 1.029 0.944 0.866 0.797 0.738 0.687 0.644 0.607 0.575 0.547 0.523 0.503 0.485 0.469 0.455 0.443 0.433 0.423 0.415 0.408 0.402 0.397 0.392 0.389 0.385 0.383 0.380 0.379 0.377 0.376 0.376 0.375 0.375 0.376 0.376 0.377 0.378 0.379 0.380 0.381 0.383 17.9 17.1 14.9 14.1 15.0 15.2 15.0 15.2 16.0 17.1 17.7 17.1 16.3 16.9 17.9 16.4 13.3 11.5 12.3 13.9 13.3 11.7 11.4 11.7 11.5 11.2 11.3 10.7 9.2 8.8 9.0 9.0 9.1 9.0 8.6 8.7 9.1 9.1 8.5 7.9 7.9 7.9 7.5 7.8 7.8 7.3 7.7 7.4 6.3 6.0 6.1 6.2 15.8 15.6 22.6 23.4 19.0 18.4 19.5 18.8 16.9 12.8 9.8 11.8 14.8 9.8 2.0 5.7 15.7 19.9 14.7 5.9 5.3 10.8 11.6 8.5 7.8 8.7 6.7 7.1 12.8 14.3 10.6 9.3 10.9 11.5 9.4 6.9 6.8 8.2 8.7 7.7 6.6 8.8 11.3 7.9 6.0 7.8 6.7 7.5 10.8 10.4 10.0 9.7 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1061 TABLE 16. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Cu calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Cu DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.781 0.778 0.783 0.785 0.792 0.788 0.795 0.792 0.793 0.794 0.808 0.811 0.813 0.812 0.811 0.821 0.838 0.858 0.857 0.842 0.830 0.825 0.827 0.829 0.831 0.824 0.816 0.807 0.805 0.807 0.820 0.834 0.842 0.846 0.850 0.853 0.854 0.862 0.860 0.867 0.877 0.885 0.898 0.924 0.976 0.898 0.288 0.272 0.264 0.257 0.249 0.249 0.240 0.235 0.233 0.220 0.211 0.218 0.213 0.210 0.201 0.186 0.187 0.192 0.220 0.225 0.221 0.212 0.206 0.204 0.205 0.208 0.204 0.193 0.179 0.161 0.149 0.147 0.149 0.151 0.148 0.149 0.148 0.146 0.144 0.138 0.136 0.141 0.133 0.138 0.191 0.247 0.415 0.400 0.386 0.376 0.362 0.365 0.348 0.345 0.341 0.324 0.302 0.309 0.302 0.298 0.288 0.262 0.253 0.248 0.281 0.296 0.299 0.292 0.284 0.280 0.280 0.288 0.288 0.281 0.263 0.238 0.215 0.204 0.204 0.204 0.199 0.198 0.197 0.191 0.190 0.179 0.173 0.175 0.161 0.158 0.193 0.285 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.914 0.912 0.910 0.908 0.906 0.904 0.901 0.898 0.895 0.892 0.889 0.886 0.882 0.879 0.875 0.872 0.868 0.865 0.861 0.858 0.855 0.851 0.848 0.845 0.842 0.839 0.836 0.833 0.830 0.828 0.825 0.823 0.821 0.819 0.817 0.815 0.813 0.811 0.810 0.809 0.807 0.806 0.805 0.804 0.804 0.803 0.375 0.376 0.376 0.377 0.377 0.377 0.377 0.376 0.376 0.375 0.374 0.373 0.372 0.370 0.368 0.367 0.364 0.362 0.360 0.357 0.354 0.351 0.348 0.345 0.341 0.338 0.334 0.330 0.326 0.322 0.318 0.314 0.310 0.306 0.301 0.297 0.292 0.288 0.284 0.279 0.275 0.270 0.266 0.261 0.257 0.253 0.384 0.386 0.388 0.390 0.391 0.393 0.395 0.397 0.399 0.401 0.402 0.404 0.406 0.407 0.409 0.410 0.411 0.412 0.413 0.413 0.414 0.414 0.414 0.414 0.414 0.413 0.412 0.411 0.410 0.409 0.407 0.405 0.403 0.400 0.398 0.395 0.392 0.389 0.385 0.381 0.378 0.374 0.370 0.365 0.361 0.356 6.9 7.3 6.5 5.4 5.6 6.8 7.1 6.3 5.8 6.2 6.4 5.4 4.9 5.6 6.5 6.5 6.0 5.9 6.4 6.8 6.7 6.4 6.1 6.1 6.4 6.5 6.4 6.6 6.3 5.6 6.0 6.9 6.9 6.3 5.8 5.2 5.5 6.4 6.3 5.0 4.9 6.4 6.7 5.5 4.9 5.4 5.6 4.2 8.2 10.9 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1062 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 17. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Zn calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Zn DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −275.430 −101.234 −27.773 8.567 −13.915 −30.897 −40.810 −37.319 −30.798 −25.283 −20.922 −17.484 −14.745 −12.536 −10.741 −9.286 −8.035 −6.967 −6.049 −4.572 −3.458 −2.568 −1.706 −1.177 −0.884 −0.617 −0.484 −0.411 −0.312 −0.289 −0.254 −0.160 −0.068 0.049 0.177 0.251 0.292 0.342 0.394 0.440 0.478 0.511 0.514 0.454 0.408 0.382 0.367 0.413 0.473 0.534 0.591 0.630 67.392 23.545 19.008 49.900 69.615 59.184 42.263 24.856 15.829 10.759 7.669 5.664 4.304 3.353 2.674 2.154 1.734 1.422 1.184 0.867 0.703 0.550 0.538 0.766 0.876 0.960 1.046 1.044 1.016 1.014 0.896 0.798 0.719 0.645 0.629 0.644 0.640 0.619 0.611 0.609 0.614 0.633 0.680 0.687 0.645 0.585 0.496 0.409 0.357 0.326 0.317 0.323 0.001 0.002 0.017 0.019 0.014 0.013 0.012 0.012 0.013 0.014 0.015 0.017 0.018 0.020 0.022 0.024 0.026 0.028 0.031 0.040 0.057 0.080 0.168 0.388 0.565 0.737 0.787 0.830 0.899 0.912 1.033 1.205 1.379 1.542 1.472 1.347 1.293 1.238 1.156 1.079 1.014 0.956 0.935 1.013 1.108 1.198 1.304 1.211 1.018 0.832 0.705 0.644 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −179.123 −129.337 −92.759 −67.690 −50.584 −38.689 −30.201 −23.981 −19.306 −15.706 −12.869 −10.577 −8.670 −7.021 −5.647 −5.612 −5.426 −4.480 −3.669 −2.666 −2.550 −2.205 −1.644 −1.158 −0.771 −0.467 −0.238 −0.085 −0.012 0.010 0.032 0.081 0.150 0.224 0.295 0.359 0.416 0.466 0.509 0.547 0.580 0.609 0.634 0.656 0.676 0.693 0.708 0.721 0.733 0.744 0.753 0.762 276.550 133.940 72.687 42.949 27.174 18.182 12.745 9.294 7.015 5.464 4.386 3.634 3.134 2.899 3.156 3.698 2.645 2.117 1.977 2.164 2.118 1.545 1.206 1.054 0.991 0.980 1.005 1.049 1.083 1.068 1.002 0.918 0.843 0.784 0.740 0.707 0.681 0.660 0.642 0.627 0.614 0.602 0.591 0.580 0.571 0.561 0.552 0.543 0.534 0.526 0.517 0.509 0.003 0.004 0.005 0.007 0.008 0.010 0.012 0.014 0.017 0.020 0.024 0.029 0.037 0.050 0.075 0.082 0.073 0.086 0.114 0.184 0.193 0.213 0.290 0.430 0.629 0.831 0.943 0.947 0.923 0.936 0.997 1.081 1.150 1.179 1.166 1.125 1.070 1.012 0.956 0.906 0.861 0.822 0.787 0.757 0.730 0.706 0.685 0.666 0.649 0.633 0.619 0.606 0.0 0.0 0.1 0.1 0.1 0.0 0.0 −0.1 −0.2 −0.6 −1.0 −1.2 −1.2 −0.8 −0.4 0.0 0.4 0.8 1.2 2.4 3.6 5.4 9.6 16.6 24.9 29.2 28.0 26.7 26.6 27.7 29.6 29.5 27.9 29.0 30.5 30.4 31.3 31.8 30.0 26.1 23.5 24.9 25.8 22.7 20.0 19.4 19.8 20.8 19.9 17.9 17.9 18.5 0.2 0.3 0.4 0.4 0.5 0.5 0.8 1.8 4.2 9.1 15.7 22.0 26.0 27.4 27.7 27.8 28.8 30.9 33.8 41.2 49.6 56.5 65.3 94.4 159.8 229.7 221.7 156.0 112.9 102.1 94.1 86.9 86.9 78.4 70.4 69.8 63.7 55.7 54.4 61.8 64.4 51.7 42.6 47.4 51.0 49.8 43.7 32.8 32.3 38.5 33.8 25.7 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1063 TABLE 17. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Zn calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Zn DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.663 0.690 0.740 0.775 0.797 0.783 0.749 0.718 0.689 0.676 0.676 0.676 0.692 0.738 0.784 0.804 0.790 0.778 0.784 0.793 0.804 0.811 0.821 0.826 0.830 0.841 0.849 0.856 0.856 0.857 0.859 0.863 0.868 0.870 0.864 0.857 0.855 0.852 0.849 0.849 0.841 0.839 0.833 0.833 0.833 0.839 0.840 0.845 0.847 0.847 0.847 0.844 0.315 0.306 0.310 0.335 0.377 0.417 0.437 0.428 0.409 0.371 0.341 0.310 0.267 0.238 0.241 0.273 0.295 0.276 0.264 0.252 0.248 0.244 0.244 0.239 0.242 0.231 0.238 0.240 0.245 0.244 0.240 0.242 0.243 0.250 0.255 0.256 0.251 0.250 0.246 0.245 0.243 0.237 0.231 0.222 0.213 0.208 0.205 0.199 0.200 0.197 0.198 0.198 0.584 0.537 0.482 0.470 0.485 0.529 0.582 0.613 0.637 0.624 0.594 0.561 0.486 0.395 0.358 0.378 0.415 0.405 0.385 0.364 0.350 0.340 0.333 0.323 0.323 0.304 0.306 0.304 0.309 0.307 0.302 0.302 0.299 0.306 0.314 0.320 0.316 0.317 0.316 0.313 0.317 0.311 0.310 0.298 0.288 0.279 0.275 0.264 0.264 0.261 0.262 0.263 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.770 0.777 0.783 0.788 0.794 0.798 0.803 0.806 0.810 0.814 0.817 0.820 0.822 0.825 0.827 0.830 0.832 0.834 0.836 0.838 0.840 0.841 0.843 0.845 0.846 0.848 0.849 0.851 0.852 0.853 0.854 0.856 0.857 0.858 0.859 0.860 0.861 0.862 0.863 0.864 0.865 0.866 0.867 0.868 0.869 0.870 0.870 0.871 0.872 0.873 0.874 0.874 0.501 0.493 0.485 0.477 0.469 0.462 0.454 0.447 0.440 0.432 0.425 0.418 0.412 0.405 0.398 0.392 0.386 0.379 0.373 0.367 0.362 0.356 0.350 0.345 0.339 0.334 0.329 0.324 0.319 0.314 0.310 0.305 0.301 0.296 0.292 0.288 0.283 0.279 0.275 0.271 0.268 0.264 0.260 0.257 0.253 0.249 0.246 0.243 0.239 0.236 0.233 0.230 0.594 0.583 0.572 0.562 0.552 0.543 0.534 0.526 0.517 0.509 0.502 0.494 0.487 0.479 0.472 0.465 0.459 0.452 0.445 0.439 0.433 0.426 0.420 0.414 0.408 0.403 0.397 0.391 0.386 0.380 0.375 0.370 0.365 0.360 0.355 0.350 0.345 0.340 0.335 0.331 0.326 0.322 0.318 0.313 0.309 0.305 0.301 0.297 0.293 0.289 0.285 0.281 18.1 16.9 15.1 13.5 13.0 12.3 12.0 12.7 11.6 10.0 11.1 12.6 12.3 12.0 11.6 9.5 8.5 10.0 10.8 9.8 9.6 9.4 8.0 8.5 9.0 6.9 6.3 8.5 9.5 8.1 6.1 5.7 7.2 8.3 7.8 6.7 6.3 7.2 8.0 7.0 6.1 6.4 6.8 6.9 6.7 5.9 6.3 7.7 7.6 6.4 6.6 7.9 25.4 29.4 31.0 29.5 27.5 28.1 25.1 21.2 27.4 32.7 24.8 16.5 15.6 14.3 15.1 23.5 25.9 16.6 11.6 15.6 15.7 14.8 19.5 17.9 15.2 21.4 20.6 10.6 7.4 16.0 24.9 22.0 13.1 11.6 16.7 17.5 14.3 11.7 11.3 13.0 11.2 9.3 10.9 11.8 12.2 14.1 11.6 6.7 6.4 9.9 9.4 4.0 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1064 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 17. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Zn calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Zn DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.838 0.831 0.837 0.849 0.856 0.861 0.858 0.858 0.856 0.859 0.860 0.856 0.854 0.854 0.856 0.860 0.863 0.861 0.862 0.863 0.862 0.859 0.853 0.849 0.847 0.847 0.847 0.851 0.863 0.868 0.870 0.871 0.869 0.866 0.867 0.871 0.873 0.873 0.872 0.872 0.875 0.877 0.879 0.880 0.880 0.881 0.195 0.183 0.168 0.163 0.164 0.167 0.169 0.168 0.165 0.162 0.164 0.164 0.159 0.153 0.147 0.145 0.147 0.145 0.144 0.144 0.144 0.146 0.143 0.136 0.131 0.122 0.114 0.103 0.101 0.104 0.104 0.107 0.107 0.103 0.099 0.095 0.096 0.095 0.093 0.089 0.086 0.084 0.083 0.082 0.080 0.079 0.263 0.253 0.230 0.219 0.216 0.217 0.221 0.220 0.216 0.212 0.214 0.215 0.211 0.204 0.196 0.190 0.191 0.190 0.188 0.188 0.188 0.192 0.191 0.184 0.178 0.166 0.156 0.141 0.133 0.136 0.136 0.138 0.139 0.136 0.130 0.124 0.124 0.124 0.121 0.115 0.111 0.108 0.107 0.106 0.103 0.101 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.875 0.876 0.877 0.877 0.878 0.879 0.879 0.880 0.881 0.882 0.882 0.883 0.883 0.884 0.885 0.885 0.886 0.887 0.887 0.888 0.888 0.889 0.890 0.890 0.891 0.891 0.892 0.893 0.893 0.894 0.894 0.895 0.895 0.896 0.896 0.897 0.898 0.898 0.899 0.899 0.900 0.900 0.901 0.901 0.902 0.902 0.227 0.224 0.221 0.218 0.215 0.212 0.210 0.207 0.204 0.202 0.199 0.196 0.194 0.192 0.189 0.187 0.184 0.182 0.180 0.178 0.175 0.173 0.171 0.169 0.167 0.165 0.163 0.161 0.159 0.157 0.155 0.154 0.152 0.150 0.148 0.146 0.145 0.143 0.141 0.140 0.138 0.137 0.135 0.134 0.132 0.131 0.278 0.274 0.270 0.267 0.263 0.260 0.256 0.253 0.250 0.246 0.243 0.240 0.237 0.234 0.231 0.228 0.225 0.222 0.219 0.217 0.214 0.211 0.209 0.206 0.203 0.201 0.198 0.196 0.193 0.191 0.189 0.186 0.184 0.182 0.180 0.177 0.175 0.173 0.171 0.169 0.167 0.165 0.163 0.161 0.159 0.157 7.3 5.9 6.6 8.1 7.6 6.1 6.1 7.1 7.8 6.9 5.0 4.6 5.8 6.4 5.7 5.3 5.1 5.7 7.5 7.5 5.4 4.8 5.4 5.5 5.8 5.8 5.3 5.2 5.2 5.3 5.3 4.8 5.0 5.8 5.2 3.9 3.9 5.0 5.4 4.7 4.1 4.9 5.1 4.6 4.7 5.2 5.2 10.5 5.9 −0.5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1065 TABLE 18. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Mo calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Mo DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −245.480 −90.107 −38.529 −14.020 −0.141 4.460 4.258 1.759 −2.094 −2.053 −1.119 0.053 −0.124 −0.536 −1.829 −9.162 −12.729 −14.486 −13.564 −12.066 −10.568 −8.084 −5.450 −6.134 −4.952 −3.765 −2.754 −1.894 −1.126 −0.341 0.749 1.165 0.348 −0.051 −0.138 −0.254 −0.156 0.069 0.329 0.729 0.725 −0.156 −0.803 −1.139 −1.369 −1.926 −1.256 −0.869 −0.631 −0.440 −0.333 −0.317 66.346 31.720 25.541 23.209 25.336 30.154 32.189 34.183 29.695 26.661 24.459 23.949 24.665 25.181 27.525 28.691 23.656 18.351 14.703 10.204 6.528 4.427 3.450 3.860 2.241 1.555 1.192 0.995 0.891 0.848 1.118 2.416 3.003 2.765 2.652 2.412 2.151 2.015 1.995 2.357 2.994 3.530 3.031 2.828 2.371 1.572 0.899 0.818 0.748 0.731 0.785 0.758 0.001 0.003 0.012 0.032 0.039 0.032 0.031 0.029 0.034 0.037 0.041 0.042 0.041 0.040 0.036 0.032 0.033 0.034 0.037 0.041 0.042 0.052 0.083 0.073 0.076 0.094 0.132 0.217 0.432 1.014 0.618 0.336 0.329 0.362 0.376 0.410 0.462 0.496 0.488 0.387 0.316 0.283 0.308 0.304 0.316 0.254 0.377 0.574 0.781 1.004 1.080 1.123 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −565.328 −164.779 −171.790 −194.298 −138.958 −98.839 −72.983 −55.691 −43.596 −34.810 −28.233 −23.191 −19.258 −16.151 −13.680 −11.712 −10.150 −8.918 −7.951 −6.587 −5.657 −4.892 −4.173 −3.479 −2.822 −2.215 −1.661 −1.160 −0.702 −0.274 0.135 0.269 −0.730 −0.810 −0.709 −0.710 −0.770 −0.840 −0.890 −0.904 −0.882 −0.832 −0.760 −0.678 −0.590 −0.504 −0.421 −0.346 −0.278 −0.217 −0.163 −0.115 85.961 141.347 223.146 103.268 43.207 22.220 13.377 9.033 6.679 5.327 4.534 4.079 3.839 3.742 3.739 3.793 3.873 3.952 4.003 3.958 3.691 3.282 2.848 2.470 2.179 1.978 1.860 1.817 1.849 1.973 2.272 3.035 3.219 2.652 2.501 2.439 2.352 2.218 2.048 1.859 1.672 1.497 1.344 1.212 1.102 1.011 0.937 0.875 0.821 0.774 0.730 0.686 0.000 0.003 0.003 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.006 0.007 0.010 0.014 0.019 0.025 0.033 0.042 0.051 0.067 0.081 0.095 0.112 0.136 0.171 0.224 0.299 0.391 0.473 0.497 0.439 0.327 0.295 0.345 0.370 0.378 0.384 0.394 0.411 0.435 0.468 0.510 0.564 0.629 0.705 0.792 0.888 0.989 1.092 1.197 1.305 1.417 −0.1 −0.1 −0.1 −0.1 −0.2 −0.2 −0.3 −0.6 −1.2 −1.9 −2.1 −1.6 −1.0 −0.5 −0.3 −0.1 −0.1 −0.1 −0.2 −0.2 0.4 1.3 1.7 2.1 3.1 4.6 6.4 8.8 11.5 13.0 12.8 11.8 10.4 9.7 10.2 10.8 10.5 10.8 11.6 11.7 11.5 11.7 12.5 13.8 14.8 15.4 16.4 18.6 21.0 22.1 23.2 25.0 0.7 1.0 1.3 1.6 2.0 1.7 2.6 5.6 11.8 21.3 30.1 33.7 32.8 30.2 28.1 27.3 28.0 30.1 33.1 40.0 45.2 48.7 52.4 56.9 62.2 68.4 74.0 77.8 78.1 75.9 73.5 71.3 68.3 64.2 59.9 57.8 57.8 55.1 51.1 50.6 52.1 52.0 50.5 48.7 47.3 47.2 47.5 45.0 40.9 39.5 38.3 34.8 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1066 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 18. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Mo calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Mo DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 −0.226 −0.294 −0.245 −0.059 0.072 0.174 0.262 0.338 0.358 0.399 0.430 0.482 0.550 0.614 0.714 0.817 0.915 0.960 0.971 1.028 1.084 1.201 1.310 1.480 1.709 2.175 2.817 2.377 1.597 0.861 0.356 −0.574 −0.324 −0.692 −0.537 −0.578 −0.434 −0.253 −0.148 −0.058 0.021 0.081 0.130 0.186 0.237 0.286 0.365 0.458 0.477 0.461 0.443 0.387 0.730 0.685 0.441 0.358 0.339 0.337 0.333 0.358 0.371 0.337 0.325 0.282 0.252 0.222 0.189 0.202 0.242 0.340 0.308 0.328 0.289 0.283 0.307 0.296 0.317 0.405 1.185 2.272 2.700 2.795 2.889 2.022 1.972 1.384 1.092 0.916 0.610 0.483 0.429 0.379 0.341 0.319 0.286 0.258 0.241 0.215 0.202 0.228 0.313 0.347 0.376 0.400 1.249 1.234 1.731 2.722 2.825 2.341 1.855 1.476 1.396 1.234 1.118 0.904 0.689 0.522 0.347 0.285 0.271 0.328 0.297 0.282 0.229 0.186 0.170 0.130 0.105 0.083 0.127 0.210 0.274 0.327 0.341 0.458 0.494 0.578 0.737 0.780 1.089 1.625 2.084 2.575 2.924 2.949 2.895 2.552 2.107 1.680 1.162 0.872 0.960 1.041 1.112 1.292 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 −0.069 −0.024 0.021 0.067 0.114 0.162 0.211 0.260 0.309 0.358 0.406 0.455 0.503 0.550 0.598 0.647 0.695 0.745 0.797 0.852 0.911 0.975 1.049 1.139 1.264 1.406 1.124 1.299 1.359 1.168 0.858 0.776 0.801 0.782 0.671 0.517 0.410 0.376 0.386 0.408 0.423 0.425 0.417 0.408 0.405 0.414 0.435 0.470 0.524 0.554 0.373 0.431 0.643 0.600 0.558 0.516 0.477 0.441 0.408 0.378 0.352 0.328 0.308 0.291 0.276 0.263 0.253 0.246 0.240 0.237 0.237 0.240 0.246 0.258 0.277 0.309 0.375 0.652 0.621 0.665 0.908 1.179 1.160 1.012 0.980 1.041 1.099 1.071 0.965 0.848 0.760 0.707 0.677 0.656 0.633 0.600 0.560 0.519 0.483 0.458 0.458 0.596 0.483 0.425 1.537 1.664 1.791 1.905 1.982 1.998 1.936 1.797 1.606 1.393 1.185 0.998 0.839 0.707 0.600 0.514 0.444 0.388 0.343 0.306 0.277 0.253 0.235 0.222 0.216 0.272 0.377 0.312 0.340 0.428 0.557 0.622 0.612 0.614 0.663 0.757 0.878 0.986 1.046 1.061 1.062 1.073 1.102 1.140 1.172 1.178 1.143 1.064 0.946 0.900 1.296 1.159 26.4 27.8 30.0 31.1 31.3 32.6 33.7 32.6 30.5 28.6 26.7 24.5 22.5 20.4 18.3 16.9 16.2 14.7 13.2 12.6 11.4 9.9 9.0 8.5 7.7 7.2 7.5 8.0 8.3 8.1 7.8 8.2 9.0 9.6 9.6 9.9 10.9 11.6 11.7 12.6 13.9 14.4 14.5 14.9 15.4 15.5 15.7 16.4 16.7 16.1 15.5 15.6 31.8 29.5 26.1 22.3 18.6 14.4 10.8 10.4 11.3 10.6 10.6 11.7 12.0 12.2 13.3 13.5 12.3 12.8 12.8 10.7 10.6 12.2 11.6 9.5 9.5 10.0 8.5 6.4 6.8 9.0 9.8 8.6 6.3 5.7 8.0 8.6 5.7 4.5 4.5 3.3 2.3 2.2 2.6 2.1 1.3 0.8 0.5 −0.1 −1.1 −0.8 0.7 0.7 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1067 TABLE 18. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Mo calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Mo DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.355 0.359 0.367 0.374 0.378 0.397 0.408 0.407 0.416 0.426 0.455 0.485 0.510 0.509 0.504 0.506 0.519 0.538 0.556 0.575 0.592 0.600 0.605 0.616 0.623 0.628 0.639 0.650 0.664 0.652 0.659 0.665 0.677 0.686 0.692 0.689 0.694 0.698 0.702 0.707 0.714 0.723 0.731 0.739 0.746 0.752 0.339 0.303 0.279 0.266 0.238 0.214 0.211 0.204 0.170 0.140 0.125 0.115 0.126 0.137 0.124 0.110 0.086 0.076 0.067 0.065 0.067 0.073 0.068 0.066 0.067 0.062 0.057 0.055 0.064 0.064 0.057 0.050 0.047 0.048 0.053 0.051 0.046 0.043 0.040 0.035 0.030 0.027 0.027 0.027 0.029 0.032 1.406 1.373 1.313 1.262 1.192 1.054 0.998 0.983 0.843 0.699 0.559 0.463 0.458 0.492 0.458 0.408 0.310 0.258 0.215 0.194 0.189 0.200 0.183 0.171 0.170 0.155 0.138 0.129 0.145 0.150 0.130 0.113 0.101 0.101 0.110 0.108 0.095 0.088 0.081 0.070 0.058 0.052 0.050 0.048 0.052 0.056 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.458 0.466 0.462 0.452 0.441 0.434 0.432 0.435 0.443 0.453 0.465 0.478 0.490 0.502 0.514 0.525 0.535 0.545 0.554 0.562 0.571 0.579 0.586 0.594 0.601 0.608 0.615 0.621 0.628 0.635 0.641 0.648 0.654 0.660 0.666 0.672 0.678 0.684 0.690 0.695 0.701 0.706 0.711 0.716 0.721 0.726 0.417 0.417 0.413 0.404 0.386 0.363 0.337 0.310 0.286 0.264 0.245 0.229 0.215 0.203 0.192 0.183 0.174 0.167 0.159 0.153 0.146 0.140 0.134 0.128 0.122 0.117 0.111 0.106 0.102 0.097 0.092 0.088 0.084 0.080 0.077 0.073 0.070 0.067 0.064 0.061 0.058 0.056 0.054 0.051 0.049 0.047 1.086 1.066 1.075 1.099 1.123 1.134 1.122 1.085 1.028 0.959 0.887 0.816 0.750 0.691 0.639 0.592 0.551 0.514 0.480 0.449 0.421 0.395 0.370 0.347 0.325 0.305 0.286 0.268 0.251 0.235 0.220 0.206 0.193 0.181 0.170 0.160 0.150 0.141 0.133 0.125 0.118 0.111 0.105 0.100 0.094 0.089 16.1 16.6 16.8 16.2 15.5 15.8 16.6 16.9 16.6 15.6 14.9 15.4 15.7 14.3 13.3 13.9 14.4 13.1 11.4 11.1 11.3 10.8 10.0 9.6 9.8 9.6 8.6 8.1 8.6 8.7 7.5 6.9 7.2 7.4 7.2 7.1 6.8 5.9 5.3 5.3 6.0 6.1 5.3 4.7 4.8 5.1 −0.5 −1.6 −2.5 −1.6 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1068 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 19. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pd calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Pd DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −142.506 −68.572 −44.612 −33.219 −27.262 −22.162 −18.074 −14.881 −12.544 −10.462 −8.655 −7.296 −6.170 −5.219 −4.601 −3.939 −3.234 −2.537 −2.579 −2.392 −1.845 −1.299 −0.761 −0.061 0.564 0.885 1.402 1.220 1.386 1.259 1.453 1.518 1.424 1.435 1.510 1.460 1.291 1.260 1.175 1.045 0.981 1.012 1.034 1.150 1.270 1.435 1.714 1.541 0.863 0.310 −0.231 −0.145 109.816 73.262 53.255 40.430 31.145 23.870 18.900 15.321 12.957 10.558 9.171 8.093 7.163 6.605 5.948 5.352 4.865 4.849 4.860 3.892 3.100 2.519 2.004 1.633 1.735 1.682 1.866 2.129 2.232 2.119 2.075 2.224 2.283 2.219 2.292 2.390 2.380 2.326 2.384 2.323 2.181 2.077 1.971 1.916 1.948 1.989 2.215 2.760 3.244 3.203 2.737 2.228 0.003 0.007 0.011 0.015 0.018 0.022 0.028 0.034 0.040 0.048 0.058 0.068 0.080 0.093 0.105 0.121 0.143 0.162 0.161 0.187 0.238 0.314 0.436 0.612 0.521 0.465 0.343 0.354 0.323 0.349 0.323 0.307 0.315 0.318 0.304 0.305 0.325 0.332 0.338 0.358 0.381 0.389 0.398 0.384 0.360 0.331 0.282 0.276 0.288 0.309 0.363 0.447 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −545.897 −238.405 −130.490 −80.442 −53.195 −36.727 −26.030 −18.742 −13.660 −10.153 −7.884 −6.616 −6.063 −5.859 −5.670 −5.326 −4.816 −4.203 −3.560 −2.411 −1.676 −1.115 −0.471 0.132 0.625 1.002 1.262 1.403 1.423 1.326 1.127 0.863 0.581 0.327 0.135 0.019 −0.026 −0.012 0.044 0.123 0.209 0.282 0.321 0.306 0.229 0.103 −0.033 −0.137 −0.185 −0.178 −0.134 −0.069 30.623 9.671 4.781 3.262 2.826 2.866 3.183 3.708 4.406 5.229 6.070 6.745 7.042 6.861 6.295 5.555 4.825 4.209 3.741 3.223 2.966 2.596 2.309 2.213 2.256 2.392 2.590 2.827 3.072 3.293 3.450 3.512 3.465 3.322 3.110 2.867 2.626 2.410 2.234 2.105 2.027 1.998 2.012 2.049 2.077 2.057 1.967 1.817 1.640 1.467 1.320 1.205 0.000 0.000 0.000 0.001 0.001 0.002 0.005 0.010 0.021 0.040 0.061 0.076 0.082 0.084 0.088 0.094 0.104 0.119 0.140 0.199 0.256 0.325 0.416 0.450 0.412 0.356 0.312 0.284 0.268 0.261 0.262 0.269 0.281 0.298 0.321 0.349 0.381 0.415 0.448 0.473 0.488 0.491 0.485 0.477 0.476 0.485 0.508 0.547 0.602 0.672 0.750 0.827 0.0 0.0 0.0 0.0 0.0 −0.1 −0.4 −1.0 −2.2 −2.9 −1.9 0.4 2.1 2.6 2.5 2.3 2.1 2.1 2.4 3.9 6.6 9.4 11.9 13.5 13.6 11.9 10.0 9.7 9.9 9.3 8.9 8.7 8.4 8.7 9.2 9.3 9.5 9.7 9.9 10.5 11.2 11.6 11.5 11.3 11.7 11.9 11.4 11.4 12.2 12.7 13.3 14.4 0.6 0.9 1.3 1.6 1.9 2.3 4.6 11.9 27.6 49.4 65.6 68.8 65.1 61.3 60.5 63.2 68.4 75.0 81.6 89.0 88.4 86.2 83.3 76.6 68.4 63.2 59.7 54.2 48.3 45.5 43.5 41.4 39.8 36.8 34.3 33.5 32.5 31.8 32.1 30.7 27.7 25.8 26.2 26.9 25.6 24.8 25.5 24.9 23.6 23.5 23.0 20.6 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1069 TABLE 19. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pd calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Pd DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 −0.245 −0.220 −0.207 −0.260 −0.199 −0.136 −0.047 0.131 0.221 0.312 0.368 0.321 0.388 0.527 0.630 0.541 0.371 0.349 0.199 0.123 −0.099 0.016 0.089 0.185 0.285 0.367 0.457 0.518 0.509 0.540 0.535 0.581 0.607 0.598 0.578 0.539 0.549 0.560 0.582 0.564 0.579 0.619 0.634 0.690 0.672 0.667 0.672 0.687 0.672 0.671 0.725 0.788 2.044 1.831 1.739 1.507 1.338 1.158 1.017 0.948 0.922 0.936 0.992 0.955 0.871 0.870 1.018 1.185 1.157 1.160 1.119 1.129 0.868 0.669 0.565 0.476 0.433 0.414 0.412 0.461 0.478 0.495 0.471 0.472 0.507 0.534 0.574 0.510 0.493 0.446 0.476 0.447 0.414 0.403 0.388 0.434 0.418 0.438 0.424 0.423 0.439 0.407 0.375 0.403 0.482 0.538 0.567 0.644 0.731 0.852 0.982 1.035 1.026 0.961 0.887 0.941 0.958 0.841 0.710 0.698 0.783 0.790 0.866 0.875 1.137 1.494 1.727 1.824 1.612 1.352 1.090 0.958 0.981 0.923 0.927 0.843 0.810 0.830 0.865 0.927 0.905 0.871 0.842 0.864 0.817 0.739 0.703 0.653 0.667 0.689 0.671 0.650 0.681 0.660 0.562 0.515 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.000 0.062 0.112 0.148 0.178 0.213 0.255 0.304 0.357 0.406 0.449 0.481 0.499 0.502 0.490 0.467 0.440 0.416 0.401 0.397 0.406 0.425 0.452 0.485 0.521 0.559 0.597 0.635 0.669 0.698 0.719 0.729 0.725 0.709 0.687 0.668 0.660 0.666 0.683 0.707 0.734 0.756 0.765 0.748 0.709 0.669 0.649 0.652 0.669 0.692 0.714 0.734 1.121 1.062 1.017 0.975 0.929 0.879 0.832 0.794 0.769 0.757 0.758 0.768 0.784 0.801 0.811 0.809 0.792 0.760 0.718 0.669 0.619 0.573 0.533 0.500 0.474 0.456 0.446 0.444 0.450 0.464 0.485 0.509 0.533 0.547 0.548 0.534 0.510 0.485 0.464 0.454 0.456 0.474 0.504 0.537 0.551 0.533 0.496 0.458 0.431 0.416 0.411 0.414 0.892 0.939 0.972 1.003 1.038 1.074 1.098 1.098 1.070 1.025 0.976 0.935 0.907 0.897 0.904 0.927 0.965 1.012 1.062 1.105 1.129 1.126 1.091 1.031 0.956 0.876 0.802 0.740 0.692 0.660 0.644 0.644 0.659 0.683 0.710 0.730 0.733 0.715 0.681 0.643 0.611 0.595 0.601 0.633 0.683 0.729 0.744 0.722 0.681 0.639 0.605 0.583 15.7 16.4 16.7 17.5 18.8 19.3 18.7 19.1 20.5 20.6 19.6 19.0 18.7 18.4 18.5 18.4 17.7 17.4 17.8 18.2 18.4 18.6 18.4 18.0 17.8 17.5 17.0 16.5 15.9 15.1 14.5 14.5 14.2 13.1 12.7 13.0 12.6 12.1 12.3 12.6 12.0 11.3 11.6 11.8 11.1 10.5 10.9 11.5 10.9 10.4 10.9 11.2 18.3 17.7 17.7 16.1 13.2 11.6 12.7 11.9 8.4 6.9 7.4 7.0 6.9 6.7 5.4 4.4 5.2 6.0 4.9 3.4 2.9 2.6 2.1 1.1 0.7 0.8 0.9 1.0 1.4 2.0 1.8 0.8 0.9 2.7 3.1 1.4 1.0 1.8 1.2 0.1 0.8 1.9 1.0 −0.1 0.8 1.8 0.5 −0.9 0.2 0.9 −0.9 −2.1 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1070 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 19. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pd calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Pd DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.912 1.041 0.318 0.463 0.525 0.552 0.537 0.562 0.642 0.771 0.465 0.541 0.569 0.567 0.603 0.653 0.624 0.575 0.588 0.574 0.599 0.595 0.620 0.603 0.613 0.546 0.511 0.525 0.546 0.571 0.585 0.605 0.594 0.601 0.602 0.607 0.616 0.626 0.637 0.650 0.660 0.663 0.667 0.668 0.672 0.676 0.415 1.098 0.603 0.453 0.420 0.417 0.387 0.327 0.303 0.348 0.588 0.359 0.358 0.332 0.302 0.308 0.412 0.353 0.330 0.315 0.305 0.292 0.294 0.327 0.324 0.325 0.277 0.223 0.195 0.183 0.175 0.179 0.176 0.165 0.157 0.142 0.131 0.123 0.114 0.110 0.110 0.110 0.110 0.104 0.098 0.090 0.413 0.480 1.296 1.080 0.929 0.871 0.883 0.774 0.602 0.487 1.046 0.851 0.792 0.768 0.665 0.592 0.737 0.776 0.725 0.735 0.676 0.665 0.625 0.695 0.673 0.804 0.819 0.686 0.581 0.510 0.469 0.450 0.459 0.424 0.407 0.366 0.330 0.302 0.273 0.253 0.246 0.244 0.240 0.227 0.212 0.193 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.750 0.761 0.766 0.765 0.758 0.745 0.727 0.706 0.684 0.663 0.645 0.634 0.632 0.649 0.528 0.544 0.562 0.574 0.584 0.594 0.604 0.613 0.621 0.629 0.635 0.640 0.644 0.647 0.648 0.648 0.646 0.644 0.641 0.638 0.635 0.631 0.629 0.627 0.625 0.625 0.625 0.627 0.629 0.632 0.635 0.639 0.423 0.436 0.452 0.469 0.485 0.499 0.509 0.513 0.511 0.503 0.490 0.474 0.460 0.472 0.491 0.399 0.370 0.350 0.334 0.320 0.309 0.300 0.294 0.288 0.284 0.281 0.279 0.278 0.276 0.274 0.272 0.269 0.265 0.259 0.253 0.246 0.237 0.228 0.219 0.209 0.199 0.188 0.178 0.169 0.159 0.151 0.570 0.567 0.571 0.583 0.599 0.621 0.647 0.674 0.702 0.727 0.747 0.757 0.752 0.732 0.944 0.876 0.817 0.775 0.737 0.703 0.672 0.645 0.622 0.603 0.587 0.575 0.566 0.560 0.556 0.554 0.553 0.552 0.550 0.547 0.542 0.535 0.526 0.513 0.498 0.481 0.461 0.440 0.418 0.395 0.372 0.349 10.7 10.4 10.5 10.2 9.8 10.0 10.6 10.9 10.2 9.7 10.5 11.5 11.5 11.1 11.2 11.4 11.6 11.8 12.3 12.3 11.4 11.2 11.8 11.7 10.9 10.7 11.1 11.1 10.7 10.4 10.4 10.1 9.7 9.3 9.2 9.7 10.0 9.6 9.4 9.2 8.8 8.7 8.9 8.7 8.3 8.1 −1.2 −1.1 −2.0 −1.8 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1071 TABLE 20. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ag calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Ag DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −315.856 −140.655 −77.567 −47.965 −31.729 −21.829 −15.290 −10.668 −7.155 −4.194 −1.376 −0.239 0.183 0.294 −0.472 −0.778 −1.011 −1.089 −1.076 −0.883 −0.578 −0.252 0.173 0.536 0.881 0.890 0.978 1.120 1.161 1.129 1.187 1.299 1.438 1.497 1.360 1.165 0.908 0.803 0.762 0.760 0.780 0.814 0.839 0.864 0.925 1.027 1.199 1.425 1.267 1.063 0.347 0.260 64.244 19.452 8.304 4.299 2.528 1.634 1.147 0.875 0.747 0.794 1.655 3.255 4.126 5.126 5.480 5.124 4.824 4.404 4.008 3.292 2.739 2.287 1.980 1.852 1.850 1.941 1.857 1.796 1.876 1.830 1.745 1.702 1.767 1.917 2.113 2.209 2.107 1.940 1.793 1.668 1.567 1.491 1.440 1.367 1.302 1.245 1.259 1.444 1.951 2.234 2.008 1.612 0.001 0.001 0.001 0.002 0.002 0.003 0.005 0.008 0.014 0.044 0.357 0.306 0.242 0.194 0.181 0.191 0.199 0.214 0.233 0.283 0.349 0.432 0.501 0.498 0.441 0.426 0.422 0.401 0.385 0.396 0.392 0.371 0.340 0.324 0.335 0.354 0.400 0.440 0.472 0.496 0.512 0.517 0.518 0.523 0.511 0.478 0.416 0.351 0.361 0.365 0.484 0.604 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −381.046 −167.668 −92.057 −56.909 −37.787 −26.256 −18.776 −13.650 −9.980 −7.253 −5.158 −3.488 −2.104 −0.893 0.242 1.387 2.507 2.474 −1.599 −2.937 −1.497 −0.666 −0.153 0.193 0.441 0.627 0.769 0.878 0.956 1.002 1.012 0.980 0.905 0.793 0.664 0.542 0.449 0.394 0.378 0.392 0.430 0.483 0.548 0.620 0.697 0.775 0.850 0.906 0.915 0.831 0.637 0.413 52.998 17.070 8.164 4.990 3.618 2.959 2.629 2.467 2.399 2.390 2.422 2.489 2.598 2.773 3.074 3.658 4.957 7.803 9.249 4.175 2.939 2.589 2.435 2.347 2.289 2.250 2.227 2.221 2.232 2.259 2.298 2.339 2.368 2.366 2.317 2.219 2.084 1.932 1.780 1.639 1.516 1.414 1.332 1.272 1.236 1.227 1.252 1.320 1.432 1.564 1.633 1.559 0.000 0.001 0.001 0.002 0.003 0.004 0.007 0.013 0.023 0.041 0.075 0.136 0.232 0.327 0.323 0.239 0.161 0.116 0.105 0.160 0.270 0.362 0.409 0.423 0.421 0.412 0.401 0.389 0.379 0.370 0.365 0.364 0.368 0.380 0.399 0.425 0.459 0.497 0.538 0.577 0.610 0.633 0.642 0.635 0.614 0.582 0.547 0.515 0.496 0.499 0.531 0.599 0.0 0.0 0.0 0.0 0.1 0.0 0.0 −0.1 −0.2 −0.3 0.8 6.1 15.6 22.0 19.3 11.4 4.9 2.0 1.4 3.8 7.4 9.4 11.0 13.1 13.9 12.7 11.5 11.8 12.2 11.7 11.4 11.3 11.4 11.9 11.9 11.3 11.2 11.6 12.2 13.3 14.3 14.5 14.2 14.4 15.1 15.2 14.4 13.3 13.0 13.2 13.4 13.3 0.1 0.2 0.2 0.3 0.4 0.3 0.5 1.2 4.0 13.1 34.9 73.6 120.2 158.5 175.1 165.3 142.2 119.3 103.7 96.5 105.4 110.9 106.4 97.5 87.8 77.9 67.2 55.5 46.3 41.9 38.9 35.6 32.9 30.1 27.8 26.8 26.1 25.4 24.2 21.9 19.9 19.4 19.0 18.0 17.2 16.1 15.5 16.9 18.1 16.6 14.6 14.2 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1072 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 20. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ag calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Ag DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.356 0.328 0.251 0.150 0.213 0.319 0.513 0.680 0.800 0.764 0.789 0.807 0.803 0.867 0.805 0.804 0.715 0.556 0.504 0.481 0.404 0.457 0.552 0.642 0.708 0.753 0.738 0.675 0.680 0.697 0.679 0.649 0.629 0.606 0.621 0.620 0.652 0.647 0.661 0.639 0.627 0.633 0.632 0.584 0.614 0.665 0.590 0.554 0.569 0.454 0.485 0.519 1.423 1.410 1.314 1.113 0.904 0.729 0.630 0.656 0.739 0.821 0.807 0.858 0.829 0.890 0.953 0.980 1.087 1.022 0.934 0.868 0.776 0.625 0.559 0.549 0.575 0.616 0.698 0.677 0.646 0.686 0.666 0.679 0.648 0.617 0.580 0.554 0.552 0.565 0.560 0.561 0.524 0.540 0.551 0.523 0.480 0.525 0.539 0.500 0.529 0.459 0.354 0.339 0.661 0.673 0.734 0.883 1.048 1.151 0.955 0.735 0.623 0.653 0.634 0.618 0.623 0.577 0.613 0.610 0.642 0.755 0.829 0.881 1.013 1.042 0.905 0.769 0.691 0.650 0.676 0.741 0.734 0.717 0.736 0.769 0.795 0.825 0.803 0.801 0.756 0.765 0.747 0.776 0.785 0.779 0.783 0.852 0.790 0.731 0.844 0.898 0.876 1.101 0.981 0.883 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.272 0.238 0.270 0.329 0.396 0.463 0.528 0.589 0.647 0.702 0.754 0.803 0.847 0.879 0.889 0.865 0.803 0.727 0.675 0.659 0.670 0.694 0.722 0.751 0.779 0.803 0.826 0.845 0.861 0.874 0.884 0.891 0.895 0.896 0.894 0.888 0.880 0.868 0.855 0.839 0.823 0.805 0.788 0.770 0.754 0.739 0.726 0.714 0.705 0.697 0.692 0.688 1.376 1.179 1.019 0.900 0.813 0.751 0.706 0.674 0.653 0.641 0.640 0.650 0.673 0.711 0.764 0.821 0.854 0.839 0.784 0.718 0.661 0.618 0.588 0.569 0.557 0.552 0.551 0.553 0.558 0.566 0.575 0.585 0.596 0.608 0.620 0.631 0.641 0.649 0.655 0.659 0.660 0.658 0.654 0.646 0.637 0.625 0.611 0.596 0.580 0.563 0.546 0.530 0.699 0.815 0.917 0.981 0.994 0.964 0.909 0.841 0.773 0.709 0.654 0.609 0.575 0.557 0.556 0.577 0.622 0.680 0.732 0.756 0.746 0.716 0.678 0.641 0.608 0.581 0.559 0.542 0.530 0.522 0.517 0.515 0.515 0.519 0.524 0.532 0.541 0.552 0.565 0.579 0.593 0.609 0.624 0.639 0.654 0.667 0.679 0.689 0.696 0.701 0.703 0.703 13.4 13.7 14.4 16.0 17.7 17.9 17.2 17.4 17.8 17.1 15.6 15.0 14.7 13.9 13.3 13.1 13.0 13.4 13.7 13.3 13.3 13.7 13.6 13.2 13.4 13.8 12.8 11.6 11.9 12.3 12.0 11.5 11.1 10.8 11.1 11.3 10.8 10.3 10.2 10.5 10.6 10.6 10.3 10.2 10.5 10.7 10.5 10.4 10.3 10.1 10.0 10.4 14.8 15.1 13.7 10.8 8.6 9.1 9.7 7.2 4.5 5.0 6.6 6.0 5.1 6.0 6.5 5.7 5.5 5.1 4.7 5.2 4.7 3.4 3.6 4.3 3.0 1.3 2.7 4.2 2.8 1.5 1.6 1.6 1.5 1.8 1.2 0.9 1.7 1.9 1.6 1.3 0.9 0.4 0.5 1.0 0.9 0.3 −0.9 −1.7 −1.1 −0.2 −0.4 −2.1 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1073 TABLE 20. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ag calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Ag DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.549 0.596 0.623 0.667 0.659 0.667 0.652 0.654 0.672 0.691 0.705 0.728 0.748 0.717 0.703 0.739 0.666 0.542 0.582 0.609 0.635 0.667 0.722 0.696 0.669 0.669 0.684 0.702 0.734 0.718 0.691 0.674 0.672 0.677 0.686 0.694 0.705 0.710 0.713 0.709 0.701 0.688 0.688 0.690 0.696 0.705 0.287 0.280 0.265 0.288 0.299 0.308 0.305 0.283 0.273 0.265 0.283 0.263 0.310 0.334 0.334 0.334 0.428 0.325 0.240 0.219 0.194 0.180 0.185 0.247 0.228 0.204 0.186 0.180 0.185 0.224 0.229 0.209 0.189 0.173 0.162 0.155 0.151 0.153 0.155 0.159 0.159 0.145 0.130 0.114 0.099 0.090 0.748 0.645 0.579 0.545 0.570 0.571 0.589 0.557 0.518 0.484 0.491 0.439 0.473 0.534 0.551 0.509 0.683 0.815 0.606 0.522 0.439 0.377 0.333 0.453 0.457 0.417 0.370 0.343 0.323 0.396 0.432 0.420 0.387 0.354 0.327 0.306 0.290 0.290 0.290 0.302 0.308 0.292 0.266 0.234 0.200 0.179 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.685 0.684 0.685 0.686 0.688 0.691 0.694 0.697 0.701 0.705 0.709 0.713 0.717 0.720 0.724 0.727 0.730 0.733 0.735 0.737 0.739 0.741 0.742 0.743 0.744 0.744 0.744 0.744 0.744 0.744 0.743 0.743 0.742 0.741 0.741 0.740 0.739 0.738 0.737 0.737 0.736 0.736 0.735 0.735 0.735 0.734 0.514 0.498 0.483 0.469 0.456 0.444 0.432 0.422 0.412 0.403 0.395 0.388 0.381 0.375 0.369 0.364 0.359 0.355 0.351 0.347 0.343 0.340 0.336 0.333 0.330 0.327 0.323 0.320 0.317 0.314 0.310 0.307 0.303 0.299 0.295 0.291 0.287 0.283 0.278 0.274 0.269 0.264 0.260 0.255 0.250 0.245 0.700 0.695 0.688 0.679 0.669 0.658 0.647 0.635 0.623 0.611 0.600 0.589 0.578 0.568 0.559 0.551 0.543 0.535 0.529 0.522 0.517 0.512 0.507 0.503 0.498 0.495 0.491 0.488 0.484 0.481 0.478 0.475 0.471 0.468 0.464 0.461 0.457 0.452 0.448 0.443 0.438 0.433 0.427 0.421 0.415 0.409 11.2 11.0 9.9 9.7 10.5 10.7 10.5 10.5 10.5 10.4 10.1 10.2 11.1 11.3 10.3 9.8 10.2 10.0 9.3 9.4 10.2 9.6 8.0 8.1 9.6 9.4 7.7 7.6 9.1 9.3 8.1 7.4 8.3 9.3 8.6 7.7 8.1 8.7 8.6 7.9 7.5 7.6 7.9 8.4 8.7 8.0 −3.8 −3.1 −0.6 −0.7 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1074 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 21. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ta calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Ta DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −288.473 −121.442 −60.953 −33.328 −19.051 −10.073 −3.000 2.022 4.715 5.365 4.746 3.321 1.950 1.509 1.898 2.753 3.887 5.040 4.191 −8.114 −9.550 −7.493 −5.120 −3.453 −2.236 −1.292 −1.679 −2.052 −2.040 −1.814 −1.631 −1.191 −1.126 −1.015 −0.682 −0.442 −0.473 −0.459 −0.830 −1.062 −1.199 −0.926 −0.775 −0.863 −0.548 −0.275 −0.061 −0.058 0.113 0.221 0.264 0.273 64.569 21.888 12.115 9.805 8.694 7.549 7.375 9.025 11.395 13.703 15.239 15.867 15.133 13.908 12.912 12.549 13.000 14.948 18.390 19.484 10.263 6.282 4.382 3.647 3.355 3.977 4.366 3.972 3.294 2.807 2.536 2.317 2.223 1.965 1.834 2.011 2.057 2.147 2.285 1.921 1.441 1.080 1.185 0.741 0.519 0.429 0.564 0.500 0.462 0.497 0.561 0.506 0.001 0.001 0.003 0.008 0.020 0.048 0.116 0.106 0.075 0.063 0.060 0.060 0.065 0.071 0.076 0.076 0.071 0.060 0.052 0.044 0.052 0.066 0.096 0.145 0.206 0.227 0.200 0.199 0.219 0.251 0.279 0.341 0.358 0.402 0.479 0.474 0.462 0.445 0.387 0.399 0.410 0.534 0.591 0.573 0.910 1.652 1.752 1.973 2.040 1.681 1.460 1.529 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −541.808 −238.276 −131.924 −82.720 −56.042 −40.018 −29.690 −22.689 −17.770 −14.223 −11.623 −9.695 −8.259 −7.187 −6.385 −5.782 −5.325 −4.970 −4.686 −4.237 −3.855 −3.482 −3.101 −2.707 −2.292 −1.829 −1.213 −1.837 −2.140 −1.634 −1.325 −1.115 −0.971 −0.879 −0.824 −0.791 −0.764 −0.730 −0.683 −0.621 −0.545 −0.459 −0.367 −0.280 −0.236 −0.252 −0.230 −0.156 −0.073 0.008 0.083 0.154 64.899 33.368 22.804 17.751 14.864 13.041 11.818 10.962 10.343 9.880 9.518 9.217 8.947 8.687 8.422 8.141 7.839 7.517 7.177 6.462 5.745 5.070 4.464 3.943 3.516 3.205 3.182 4.357 2.705 2.328 2.169 2.072 1.999 1.932 1.856 1.763 1.651 1.526 1.395 1.268 1.152 1.052 0.976 0.932 0.920 0.866 0.748 0.647 0.577 0.525 0.485 0.455 0.000 0.001 0.001 0.002 0.004 0.007 0.012 0.017 0.024 0.033 0.042 0.052 0.060 0.068 0.075 0.082 0.087 0.093 0.098 0.108 0.120 0.134 0.151 0.172 0.200 0.235 0.274 0.195 0.227 0.288 0.336 0.374 0.405 0.429 0.450 0.472 0.499 0.533 0.578 0.636 0.709 0.798 0.898 0.984 1.020 1.064 1.221 1.459 1.707 1.904 2.001 1.974 −0.1 −0.1 −0.1 −0.1 −0.2 −0.2 −0.2 −0.2 0.1 1.0 2.0 2.3 2.2 2.0 2.0 2.0 2.1 2.3 2.6 3.2 3.7 4.0 4.3 5.0 6.1 6.4 6.5 7.4 7.8 8.0 9.3 10.0 9.6 9.7 11.2 13.0 13.8 14.1 14.5 14.9 15.8 17.6 19.3 20.5 21.7 23.1 24.4 26.0 29.0 32.1 34.0 35.1 0.7 1.0 1.4 1.7 2.0 2.1 3.0 6.0 12.3 22.7 33.7 40.1 40.6 37.6 34.6 33.1 33.1 34.1 35.6 39.1 41.8 43.2 44.5 45.9 46.8 49.6 52.3 52.0 53.5 56.2 55.5 56.3 61.4 64.5 62.6 60.7 62.6 65.0 65.9 67.0 66.9 64.6 62.2 59.9 57.8 56.6 55.5 50.7 42.4 36.0 32.2 25.8 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1075 TABLE 21. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ta calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Ta DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.366 0.416 0.462 0.592 0.098 0.273 0.384 0.468 0.544 0.612 0.668 0.750 0.830 0.887 0.929 0.987 1.054 1.112 1.200 1.324 1.488 1.664 2.073 1.963 1.311 1.550 1.849 1.897 1.766 1.486 1.160 0.969 0.624 −0.122 −0.776 −0.595 −0.309 −0.140 −0.024 0.052 0.103 0.152 0.213 0.273 0.295 0.326 0.327 0.339 0.308 0.328 0.326 0.315 0.510 0.516 0.536 0.688 0.643 0.379 0.311 0.276 0.243 0.231 0.201 0.182 0.188 0.200 0.210 0.195 0.191 0.196 0.168 0.160 0.188 0.245 0.395 1.311 0.874 0.787 0.894 1.376 1.663 2.003 2.114 2.036 2.895 1.957 1.999 1.042 0.791 0.702 0.609 0.566 0.555 0.490 0.468 0.468 0.446 0.468 0.451 0.451 0.442 0.401 0.398 0.365 1.295 1.175 1.070 0.835 1.521 1.739 1.273 0.937 0.685 0.540 0.413 0.305 0.259 0.242 0.231 0.193 0.167 0.153 0.114 0.090 0.084 0.087 0.089 0.235 0.352 0.260 0.212 0.251 0.283 0.322 0.364 0.401 0.330 0.509 0.435 0.724 1.097 1.370 1.639 1.752 1.740 1.862 1.769 1.595 1.559 1.440 1.452 1.417 1.524 1.493 1.503 1.569 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.220 0.282 0.341 0.395 0.443 0.479 0.499 0.505 0.511 0.529 0.558 0.595 0.635 0.675 0.714 0.754 0.792 0.831 0.869 0.907 0.946 0.984 1.021 1.056 1.086 1.107 1.112 1.090 1.033 0.945 0.842 0.754 0.699 0.677 0.680 0.698 0.724 0.751 0.777 0.799 0.813 0.819 0.812 0.792 0.757 0.711 0.657 0.603 0.555 0.517 0.491 0.477 0.431 0.413 0.402 0.398 0.401 0.411 0.421 0.418 0.398 0.368 0.339 0.316 0.300 0.289 0.282 0.279 0.280 0.284 0.291 0.303 0.319 0.341 0.370 0.408 0.457 0.520 0.594 0.677 0.754 0.804 0.810 0.773 0.711 0.645 0.589 0.547 0.521 0.509 0.509 0.520 0.540 0.568 0.599 0.631 0.659 0.675 0.677 0.662 0.632 0.591 0.545 0.497 1.842 1.650 1.446 1.265 1.124 1.032 0.988 0.973 0.949 0.887 0.795 0.696 0.608 0.536 0.478 0.432 0.396 0.368 0.347 0.331 0.320 0.314 0.314 0.318 0.329 0.347 0.374 0.411 0.461 0.523 0.593 0.663 0.715 0.738 0.728 0.695 0.655 0.618 0.590 0.573 0.567 0.572 0.588 0.616 0.654 0.702 0.760 0.825 0.894 0.959 1.013 1.047 35.2 34.1 31.7 28.7 27.2 26.3 24.5 22.6 21.7 20.8 19.5 18.9 18.4 16.9 15.0 13.7 12.9 11.9 10.8 9.9 8.9 8.8 9.4 9.0 7.8 7.8 9.3 9.8 9.1 8.8 9.4 10.4 10.6 10.5 11.3 11.7 11.0 10.9 11.4 11.4 11.6 11.8 11.1 10.1 9.9 11.0 12.1 11.3 10.6 12.1 13.1 12.4 18.6 15.4 17.2 18.7 14.0 9.9 12.2 14.7 13.6 13.0 12.8 10.0 7.7 9.0 11.3 11.3 9.2 8.2 8.3 8.4 8.9 7.0 3.6 5.3 10.1 9.8 5.8 5.8 9.0 9.1 7.2 6.9 8.3 7.9 5.0 4.7 7.7 7.2 2.9 1.0 1.1 0.8 1.7 3.7 4.7 3.4 1.3 2.5 4.1 2.2 2.3 4.2 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1076 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 21. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Ta calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Ta DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.314 0.339 0.368 0.400 0.425 0.422 0.432 0.450 0.466 0.490 0.518 0.553 0.545 0.540 0.541 0.568 0.587 0.593 0.598 0.603 0.615 0.622 0.640 0.661 0.681 0.674 0.659 0.645 0.647 0.659 0.662 0.674 0.692 0.698 0.702 0.707 0.715 0.721 0.727 0.729 0.736 0.740 0.741 0.742 0.746 0.751 0.322 0.279 0.252 0.235 0.235 0.233 0.202 0.192 0.167 0.154 0.143 0.150 0.184 0.159 0.138 0.126 0.126 0.134 0.125 0.120 0.114 0.105 0.098 0.097 0.114 0.132 0.137 0.123 0.101 0.099 0.088 0.076 0.074 0.078 0.077 0.073 0.073 0.072 0.072 0.070 0.069 0.071 0.071 0.068 0.064 0.062 1.591 1.445 1.267 1.094 0.994 1.002 0.887 0.802 0.683 0.583 0.493 0.458 0.556 0.500 0.441 0.372 0.349 0.362 0.336 0.318 0.290 0.263 0.233 0.218 0.239 0.280 0.301 0.285 0.235 0.224 0.196 0.165 0.152 0.159 0.155 0.144 0.141 0.137 0.135 0.130 0.126 0.129 0.128 0.123 0.115 0.110 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.472 0.475 0.483 0.494 0.507 0.521 0.536 0.550 0.564 0.578 0.592 0.604 0.616 0.628 0.638 0.649 0.658 0.667 0.676 0.684 0.692 0.699 0.706 0.712 0.718 0.724 0.730 0.735 0.740 0.745 0.749 0.754 0.758 0.762 0.765 0.769 0.772 0.776 0.779 0.782 0.785 0.787 0.790 0.793 0.795 0.798 0.452 0.411 0.374 0.342 0.315 0.291 0.270 0.253 0.237 0.224 0.213 0.203 0.194 0.187 0.180 0.174 0.169 0.164 0.159 0.156 0.152 0.149 0.146 0.143 0.140 0.138 0.136 0.134 0.132 0.130 0.128 0.126 0.124 0.123 0.121 0.120 0.118 0.117 0.115 0.114 0.113 0.111 0.110 0.108 0.107 0.106 1.058 1.042 1.003 0.948 0.884 0.817 0.751 0.689 0.633 0.583 0.539 0.500 0.466 0.435 0.409 0.386 0.365 0.347 0.331 0.316 0.303 0.291 0.280 0.271 0.262 0.254 0.246 0.239 0.233 0.227 0.221 0.216 0.211 0.206 0.202 0.198 0.194 0.190 0.186 0.183 0.179 0.176 0.173 0.169 0.166 0.164 12.9 14.5 15.0 14.3 13.8 14.8 14.8 12.8 12.2 13.4 13.3 11.7 10.6 10.3 10.5 10.0 9.4 9.5 9.7 8.9 7.9 8.5 9.6 9.0 7.5 6.8 7.5 7.9 7.0 6.2 6.4 6.5 5.5 5.0 5.6 6.0 5.5 4.7 4.9 5.6 5.3 4.3 4.1 4.9 5.0 4.1 1.6 −2.1 −2.3 0.1 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1077 TABLE 22. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of W calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 W DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −156.936 −50.462 −21.027 −8.119 1.527 6.747 6.848 5.737 5.081 5.268 5.303 3.868 2.568 2.255 2.454 2.866 3.041 3.621 3.042 −10.483 −11.305 −9.064 −7.398 −5.512 −4.155 −2.766 −2.084 −0.783 −1.313 −1.402 −1.747 −1.720 −1.805 −1.384 −1.591 −1.567 −1.046 −0.671 −0.316 −0.112 0.086 −0.450 −1.021 −1.133 −1.265 −0.985 −1.429 −1.229 −0.980 −0.721 −0.448 −0.298 54.751 30.936 29.63 23.739 21.326 23.220 24.892 24.423 22.972 21.961 21.915 22.053 20.794 19.453 18.511 18.417 18.631 19.774 23.437 22.284 12.727 8.316 6.286 4.547 3.564 3.571 3.408 3.754 3.995 4.281 3.927 3.580 3.225 2.803 2.708 2.165 1.833 1.761 1.859 2.031 2.365 2.960 2.548 2.290 1.819 1.647 1.607 0.981 0.743 0.584 0.536 0.611 0.002 0.009 0.022 0.038 0.047 0.040 0.037 0.039 0.042 0.043 0.043 0.044 0.047 0.051 0.053 0.053 0.052 0.049 0.042 0.037 0.044 0.055 0.067 0.089 0.119 0.175 0.214 0.255 0.226 0.211 0.213 0.227 0.236 0.287 0.275 0.303 0.412 0.496 0.523 0.491 0.422 0.330 0.338 0.351 0.371 0.447 0.348 0.397 0.491 0.678 1.098 1.321 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −591.677 −213.138 −153.784 −135.890 −90.863 −60.175 −39.721 −25.668 −18.551 −21.449 −23.295 −18.804 −12.725 −8.725 −15.518 −14.260 −10.131 −7.494 −8.485 −10.067 −6.983 −5.094 −4.315 −3.808 −3.130 −2.433 −1.874 −1.506 −1.331 −1.310 −1.374 −1.444 −1.467 −1.429 −1.340 −1.224 −1.104 −0.997 −0.914 −0.861 −0.833 −0.822 −0.814 −0.799 −0.770 −0.725 −0.666 −0.596 −0.518 −0.436 −0.351 −0.262 58.689 72.950 114.349 52.032 22.973 14.008 11.889 13.929 19.871 23.118 16.895 11.390 10.101 14.450 15.600 8.807 7.253 8.646 10.712 6.051 4.077 3.967 3.963 3.547 3.110 2.903 2.896 2.995 3.111 3.167 3.115 2.959 2.735 2.495 2.275 2.095 1.958 1.859 1.785 1.720 1.652 1.568 1.467 1.351 1.226 1.102 0.985 0.877 0.782 0.699 0.628 0.570 0.000 0.001 0.003 0.002 0.003 0.004 0.007 0.016 0.027 0.023 0.020 0.024 0.038 0.051 0.032 0.031 0.047 0.066 0.057 0.044 0.062 0.095 0.115 0.131 0.160 0.202 0.243 0.266 0.272 0.270 0.269 0.273 0.284 0.302 0.326 0.356 0.388 0.418 0.444 0.465 0.483 0.500 0.521 0.548 0.585 0.633 0.697 0.780 0.889 1.030 1.213 1.448 −0.1 −0.1 −0.1 −0.2 −0.2 −0.2 −0.3 −0.4 −0.6 −0.2 0.7 1.4 1.6 1.4 1.2 1.0 0.9 1.0 1.1 1.4 1.5 1.9 2.6 2.9 3.2 4.3 5.7 6.7 7.2 7.5 7.4 7.2 7.5 8.0 8.0 8.1 8.7 9.2 9.7 10.7 11.2 10.8 10.7 11.7 12.9 13.3 14.1 15.4 16.8 18.6 20.2 21.7 0.8 1.1 1.5 1.9 2.3 2.2 2.9 5.5 10.5 17.5 23.7 26.8 27.0 25.6 24.1 23.3 23.4 24.4 26.0 30.2 34.9 38.6 42.4 50.0 58.1 61.3 62.3 64.1 66.0 66.2 66.1 67.3 67.7 67.2 67.3 67.6 67.9 69.2 68.6 64.3 61.2 62.3 63.6 61.6 60.9 63.2 63.0 61.0 60.6 60.2 57.5 52.7 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1078 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 22. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of W calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued W DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 −0.249 −0.256 −0.203 −0.120 −0.039 0.121 0.249 0.321 0.374 0.438 0.523 0.645 0.654 0.688 0.710 0.772 0.851 0.835 0.763 0.827 0.851 0.950 0.874 1.008 1.161 1.362 1.688 2.033 1.819 1.496 1.216 0.903 0.882 0.267 0.008 −0.420 −0.127 0.033 0.114 0.191 0.333 0.392 0.483 0.582 0.710 0.797 0.770 0.788 0.715 0.512 0.502 0.082 0.624 0.586 0.522 0.394 0.335 0.254 0.280 0.309 0.306 0.288 0.260 0.316 0.359 0.374 0.379 0.366 0.408 0.606 0.431 0.428 0.391 0.402 0.379 0.289 0.266 0.262 0.336 0.810 1.374 1.661 1.728 1.703 1.800 2.138 1.804 1.028 0.747 0.650 0.587 0.465 0.438 0.414 0.389 0.384 0.415 0.602 0.634 0.770 0.872 0.955 0.942 1.209 1.382 1.433 1.664 2.322 2.944 3.204 1.997 1.554 1.310 1.049 0.761 0.612 0.646 0.610 0.585 0.501 0.458 0.569 0.561 0.494 0.446 0.378 0.418 0.262 0.187 0.136 0.113 0.169 0.264 0.332 0.387 0.458 0.448 0.461 0.554 0.833 1.302 1.533 1.643 1.841 1.447 1.275 1.012 0.790 0.614 0.604 0.637 0.635 0.685 0.813 0.826 0.824 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 −0.166 −0.059 −0.165 −0.100 −0.009 0.066 0.131 0.191 0.247 0.299 0.349 0.397 0.442 0.486 0.529 0.570 0.610 0.650 0.690 0.730 0.770 0.811 0.853 0.896 0.942 0.991 1.042 1.097 1.153 1.204 1.233 1.207 1.078 0.857 0.662 0.583 0.603 0.672 0.618 0.486 0.560 0.632 0.689 0.733 0.768 0.795 0.813 0.822 0.821 0.809 0.786 0.753 0.529 0.547 0.582 0.422 0.368 0.335 0.310 0.290 0.272 0.257 0.244 0.234 0.224 0.217 0.211 0.206 0.203 0.201 0.201 0.202 0.205 0.210 0.217 0.229 0.244 0.265 0.295 0.338 0.399 0.488 0.614 0.779 0.941 1.000 0.913 0.764 0.648 0.620 0.720 0.556 0.439 0.401 0.391 0.396 0.409 0.430 0.456 0.486 0.519 0.552 0.581 0.604 1.721 1.807 1.590 2.244 2.715 2.871 2.734 2.406 2.016 1.651 1.345 1.102 0.913 0.766 0.651 0.561 0.490 0.434 0.388 0.352 0.322 0.299 0.281 0.267 0.258 0.252 0.252 0.256 0.268 0.289 0.324 0.378 0.460 0.577 0.718 0.827 0.827 0.741 0.800 1.019 0.867 0.715 0.624 0.570 0.540 0.526 0.524 0.533 0.550 0.575 0.608 0.648 24.4 27.5 28.9 29.9 32.8 37.1 39.7 39.2 36.4 33.0 31.2 29.0 25.7 22.8 20.4 18.4 16.8 14.5 12.5 12.0 12.3 11.6 10.3 9.7 9.2 8.9 8.9 8.4 7.5 7.3 7.7 8.1 8.4 8.7 8.5 9.0 10.7 11.4 11.1 11.1 11.8 12.9 13.0 11.5 10.2 10.3 10.9 10.9 10.3 9.9 9.6 9.6 46.2 39.5 35.3 31.7 23.7 11.1 0.7 −1.7 2.4 5.6 1.6 −0.7 2.9 5.1 5.3 5.3 5.1 5.9 6.9 6.2 5.0 5.6 6.5 6.8 6.9 5.2 3.2 3.9 5.2 4.4 3.6 4.9 5.9 5.9 6.8 5.5 2.2 3.3 6.3 6.1 4.2 2.1 1.7 3.9 5.2 3.6 1.3 1.1 1.3 0.0 −0.4 0.8 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1079 TABLE 22. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of W calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued W DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.011 0.124 0.186 0.225 0.262 0.274 0.320 0.360 0.381 0.405 0.403 0.457 0.490 0.493 0.498 0.481 0.489 0.483 0.476 0.489 0.500 0.509 0.520 0.535 0.546 0.561 0.560 0.571 0.586 0.597 0.604 0.610 0.614 0.632 0.618 0.604 0.617 0.640 0.650 0.656 0.668 0.674 0.676 0.683 0.693 0.703 0.643 0.516 0.459 0.412 0.369 0.348 0.300 0.286 0.282 0.267 0.259 0.235 0.243 0.261 0.270 0.263 0.265 0.248 0.223 0.206 0.191 0.184 0.168 0.158 0.151 0.153 0.150 0.132 0.127 0.129 0.123 0.126 0.118 0.128 0.144 0.115 0.090 0.083 0.087 0.082 0.081 0.083 0.081 0.076 0.072 0.076 1.555 1.831 1.869 1.869 1.802 1.772 1.560 1.354 1.253 1.136 1.130 0.888 0.812 0.837 0.842 0.874 0.856 0.842 0.806 0.730 0.668 0.628 0.561 0.508 0.472 0.452 0.446 0.386 0.354 0.347 0.324 0.326 0.301 0.308 0.357 0.303 0.231 0.199 0.203 0.189 0.179 0.179 0.174 0.161 0.149 0.152 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.712 0.667 0.622 0.582 0.549 0.525 0.510 0.502 0.501 0.505 0.512 0.522 0.533 0.545 0.558 0.571 0.584 0.596 0.608 0.620 0.631 0.642 0.652 0.662 0.671 0.680 0.688 0.696 0.703 0.711 0.717 0.724 0.730 0.736 0.741 0.746 0.751 0.756 0.760 0.764 0.768 0.772 0.776 0.779 0.782 0.785 0.616 0.617 0.605 0.582 0.550 0.514 0.475 0.437 0.401 0.369 0.339 0.313 0.290 0.270 0.252 0.237 0.224 0.212 0.202 0.193 0.185 0.179 0.173 0.167 0.163 0.159 0.155 0.152 0.149 0.146 0.144 0.142 0.140 0.138 0.137 0.135 0.134 0.133 0.132 0.131 0.130 0.129 0.128 0.127 0.126 0.125 0.695 0.748 0.804 0.859 0.911 0.952 0.978 0.986 0.974 0.943 0.899 0.845 0.787 0.729 0.673 0.620 0.573 0.530 0.492 0.458 0.429 0.402 0.379 0.359 0.341 0.325 0.311 0.299 0.288 0.278 0.269 0.260 0.253 0.246 0.240 0.235 0.230 0.225 0.221 0.217 0.214 0.210 0.207 0.204 0.201 0.198 9.5 9.4 9.7 10.9 11.8 11.6 11.4 11.7 12.5 13.0 12.6 12.3 12.4 12.1 11.4 11.0 10.9 11.3 11.5 10.7 9.9 9.5 9.5 9.6 9.4 8.4 7.7 7.7 7.2 7.0 7.9 7.8 6.3 6.0 7.0 7.0 6.4 6.7 6.9 6.5 5.7 4.6 4.7 5.5 4.9 4.2 2.1 2.2 1.1 −1.0 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1080 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 23. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pt calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Pt DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −123.344 −32.952 −44.891 −40.081 −33.179 −26.710 −21.394 −17.271 −13.732 −11.458 −9.901 −8.355 −7.181 −6.385 −5.611 −4.607 −3.868 −3.223 −2.493 −1.352 −0.141 0.686 1.560 1.086 1.316 0.686 0.775 −0.128 −0.506 −0.289 −0.071 0.132 0.126 0.508 0.649 0.830 0.860 0.830 0.830 0.799 0.964 1.196 1.456 1.805 1.928 1.358 1.423 0.385 −0.684 −0.553 −0.500 −0.715 72.533 101.354 81.698 57.069 40.443 29.831 23.502 18.644 15.691 13.892 11.956 10.503 9.459 8.469 7.295 6.473 5.880 5.274 4.740 4.070 3.883 3.817 4.288 4.800 4.863 5.058 4.839 5.073 4.098 3.496 3.088 3.176 2.571 2.513 2.448 2.479 2.539 2.523 2.479 2.313 2.160 2.130 2.187 2.402 3.003 3.406 3.868 4.657 3.630 3.095 2.768 2.752 0.004 0.009 0.009 0.012 0.015 0.019 0.023 0.029 0.036 0.043 0.050 0.058 0.067 0.075 0.086 0.103 0.119 0.138 0.165 0.221 0.257 0.254 0.206 0.198 0.192 0.194 0.201 0.197 0.240 0.284 0.324 0.314 0.388 0.382 0.382 0.363 0.353 0.358 0.363 0.386 0.386 0.357 0.317 0.266 0.236 0.253 0.228 0.213 0.266 0.313 0.350 0.340 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −635.547 −294.704 −165.622 −103.964 −69.907 −49.132 −35.496 −26.009 −19.067 −13.748 −9.570 −6.797 −7.017 −7.938 −6.730 −5.354 −4.825 −4.448 −3.694 −2.255 −1.320 −0.756 −0.433 −0.261 −0.168 −0.077 −0.353 −0.442 −0.583 −0.505 −0.445 −0.382 −0.309 −0.227 −0.136 −0.039 0.062 0.162 0.257 0.337 0.387 0.387 0.313 0.156 −0.061 −0.279 −0.439 −0.520 −0.533 −0.500 −0.442 −0.372 216.023 68.276 29.962 16.097 10.023 7.046 5.511 4.755 4.506 4.718 5.574 7.492 9.412 8.097 6.530 6.182 6.126 5.495 4.904 4.480 4.444 4.487 4.519 4.511 4.462 4.425 4.617 4.178 3.845 3.558 3.330 3.122 2.933 2.766 2.622 2.503 2.412 2.352 2.327 2.339 2.391 2.476 2.573 2.639 2.623 2.503 2.301 2.069 1.846 1.652 1.490 1.358 0.000 0.001 0.001 0.001 0.002 0.003 0.004 0.007 0.012 0.022 0.045 0.073 0.068 0.063 0.074 0.092 0.101 0.110 0.130 0.178 0.207 0.217 0.219 0.221 0.224 0.226 0.215 0.237 0.254 0.276 0.295 0.316 0.337 0.359 0.380 0.399 0.414 0.423 0.425 0.419 0.408 0.394 0.383 0.378 0.381 0.395 0.419 0.455 0.500 0.554 0.617 0.685 0.0 0.0 −0.1 −0.1 −0.1 −0.1 −0.2 −0.3 −0.5 −0.4 0.4 1.6 2.3 2.3 2.3 2.5 3.0 3.7 4.3 4.9 5.7 6.9 6.8 6.0 5.9 6.4 6.3 5.8 5.9 6.6 7.4 8.2 9.2 9.5 8.8 8.5 9.1 9.8 10.1 10.3 10.2 9.8 9.5 9.5 9.6 9.5 9.4 9.3 9.6 10.4 11.4 12.0 0.4 0.6 0.8 1.0 1.3 1.3 1.9 4.2 9.9 20.3 32.0 39.7 42.6 42.8 42.8 43.8 46.3 50.4 56.2 69.7 74.6 67.6 61.5 61.2 61.5 58.7 55.9 56.0 56.5 54.3 50.8 48.1 45.4 44.1 44.7 44.4 42.5 39.4 36.7 35.3 35.2 34.8 33.5 32.3 30.9 29.3 29.5 31.3 32.1 30.6 28.5 28.6 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1081 TABLE 23. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pt calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Pt DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 −0.983 −0.890 −0.733 −0.651 −0.384 −0.139 0.023 −0.039 0.023 −0.051 −0.025 0.128 0.426 0.386 0.131 −0.204 −0.372 −0.341 −0.305 −0.194 −0.084 0.078 0.147 0.184 0.196 0.283 0.324 0.324 0.371 0.401 0.375 0.372 0.405 0.409 0.419 0.442 0.480 0.479 0.480 0.497 0.523 0.567 0.609 0.555 0.579 0.610 0.554 0.558 0.612 0.677 0.701 0.764 2.315 1.867 1.628 1.430 1.163 1.145 1.251 1.301 1.277 1.269 1.088 0.986 1.114 1.383 1.628 1.513 1.211 0.979 0.809 0.673 0.563 0.537 0.552 0.573 0.517 0.511 0.550 0.533 0.511 0.545 0.577 0.515 0.507 0.499 0.484 0.469 0.439 0.471 0.447 0.426 0.399 0.395 0.439 0.441 0.415 0.439 0.444 0.376 0.333 0.348 0.346 0.339 0.366 0.436 0.511 0.579 0.775 0.861 0.799 0.768 0.783 0.787 0.918 0.997 0.783 0.671 0.611 0.649 0.755 0.911 1.082 1.373 1.737 1.825 1.693 1.582 1.691 1.497 1.350 1.370 1.281 1.191 1.219 1.276 1.203 1.199 1.182 1.129 1.037 1.043 1.039 0.994 0.923 0.827 0.778 0.878 0.818 0.777 0.881 0.830 0.686 0.600 0.567 0.485 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 −0.298 −0.223 −0.150 −0.080 −0.013 0.051 0.111 0.167 0.216 0.254 0.271 0.258 0.218 0.170 0.140 0.137 0.155 0.184 0.217 0.251 0.284 0.315 0.345 0.374 0.400 0.425 0.449 0.472 0.492 0.511 0.528 0.542 0.553 0.562 0.569 0.577 0.587 0.598 0.610 0.624 0.639 0.654 0.670 0.685 0.701 0.718 0.734 0.752 0.771 0.791 0.813 0.840 1.250 1.161 1.089 1.030 0.983 0.947 0.921 0.907 0.905 0.917 0.940 0.963 0.965 0.930 0.867 0.794 0.728 0.673 0.629 0.593 0.564 0.539 0.519 0.501 0.486 0.473 0.462 0.453 0.446 0.440 0.436 0.432 0.428 0.423 0.415 0.405 0.394 0.382 0.371 0.361 0.352 0.344 0.338 0.332 0.328 0.324 0.322 0.320 0.320 0.321 0.324 0.329 0.757 0.831 0.901 0.965 1.017 1.053 1.070 1.066 1.045 1.013 0.982 0.969 0.986 1.040 1.125 1.222 1.313 1.382 1.421 1.430 1.415 1.382 1.336 1.283 1.226 1.169 1.112 1.059 1.011 0.968 0.931 0.900 0.876 0.855 0.836 0.815 0.789 0.760 0.728 0.695 0.662 0.630 0.601 0.573 0.547 0.523 0.500 0.479 0.459 0.441 0.423 0.405 12.3 13.1 14.3 15.3 15.9 16.9 17.9 18.4 18.2 18.2 18.4 18.2 18.2 18.8 19.0 18.1 18.1 20.0 21.4 20.6 20.2 21.3 22.3 21.9 20.5 19.3 19.0 19.3 19.7 19.2 17.9 17.0 16.8 16.0 15.0 15.1 15.5 15.0 14.4 13.7 12.9 12.6 12.7 12.6 12.1 11.8 11.4 10.8 10.3 10.1 10.2 10.2 30.2 29.1 25.7 23.9 23.6 21.7 18.3 15.8 15.4 16.1 15.6 14.0 11.5 8.7 8.0 10.5 10.3 4.8 1.2 3.1 3.9 0.6 −3.4 −4.1 −1.1 2.2 1.5 −2.2 −4.7 −4.2 −1.6 0.0 −2.0 −2.4 0.5 0.1 −2.9 −3.2 −1.9 −0.3 1.6 1.9 0.5 −0.4 0.3 1.1 0.9 1.1 2.0 2.3 1.1 0.2 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1082 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 23. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pt calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Pt DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.903 1.276 0.477 0.326 0.420 0.465 0.487 0.491 0.498 0.508 0.526 0.561 0.605 0.571 0.537 0.566 0.555 0.554 0.534 0.553 0.558 0.571 0.580 0.588 0.600 0.631 0.674 0.799 0.572 0.543 0.576 0.583 0.581 0.589 0.603 0.637 0.571 0.592 0.635 0.625 0.631 0.643 0.669 0.618 0.624 0.634 0.329 0.656 1.148 0.631 0.510 0.474 0.457 0.431 0.412 0.376 0.356 0.342 0.350 0.439 0.362 0.355 0.349 0.351 0.319 0.304 0.286 0.277 0.267 0.264 0.237 0.224 0.223 0.265 0.455 0.290 0.265 0.264 0.246 0.227 0.220 0.226 0.228 0.178 0.166 0.207 0.178 0.177 0.199 0.194 0.168 0.155 0.356 0.318 0.743 1.251 1.168 1.076 1.024 1.010 0.987 0.942 0.883 0.793 0.717 0.847 0.863 0.796 0.812 0.816 0.824 0.762 0.728 0.687 0.655 0.635 0.571 0.499 0.442 0.373 0.852 0.765 0.660 0.646 0.618 0.570 0.534 0.494 0.604 0.466 0.385 0.477 0.413 0.398 0.409 0.463 0.403 0.363 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.874 0.923 1.015 1.052 0.569 0.692 0.748 0.772 0.776 0.762 0.733 0.694 0.655 0.623 0.603 0.594 0.593 0.597 0.605 0.615 0.625 0.635 0.645 0.654 0.663 0.671 0.678 0.685 0.691 0.697 0.703 0.707 0.712 0.716 0.720 0.723 0.726 0.729 0.732 0.734 0.737 0.739 0.741 0.742 0.744 0.746 0.339 0.360 0.423 0.828 0.543 0.431 0.430 0.449 0.476 0.502 0.521 0.525 0.513 0.487 0.455 0.421 0.390 0.363 0.341 0.322 0.307 0.295 0.284 0.276 0.269 0.262 0.257 0.252 0.248 0.245 0.241 0.238 0.236 0.233 0.231 0.228 0.226 0.224 0.222 0.220 0.217 0.215 0.213 0.211 0.209 0.206 0.386 0.366 0.349 0.462 0.877 0.648 0.577 0.563 0.575 0.603 0.644 0.693 0.741 0.779 0.797 0.795 0.775 0.743 0.706 0.669 0.634 0.601 0.573 0.547 0.525 0.506 0.489 0.473 0.460 0.448 0.437 0.428 0.419 0.411 0.404 0.397 0.390 0.385 0.379 0.374 0.368 0.364 0.359 0.354 0.349 0.345 9.5 8.8 8.9 8.8 8.0 7.8 8.3 8.6 8.7 8.9 9.3 9.3 8.9 9.0 9.6 10.3 10.5 9.9 9.6 10.4 10.9 10.0 9.0 9.5 10.5 10.2 9.1 8.4 8.3 8.4 8.7 8.6 7.8 7.6 8.0 8.1 7.4 6.7 7.2 7.6 7.2 6.8 6.5 6.5 6.9 6.3 1.3 1.6 −0.4 −0.9 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1083 TABLE 24. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Au calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Au DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −289.567 −126.211 −67.156 −39.078 −23.319 −13.471 −6.685 −3.447 −2.222 −1.594 −0.992 −0.804 −0.873 −0.860 −0.875 −0.788 −0.353 0.150 0.608 0.829 1.382 1.892 0.873 0.862 0.075 0.197 −0.027 −0.045 0.218 0.586 0.710 1.026 0.868 0.976 0.936 0.719 0.710 0.749 0.822 0.918 0.957 0.979 1.123 1.265 1.549 1.333 1.224 0.924 0.410 0.206 −0.246 −0.328 59.936 18.250 7.925 4.353 3.240 3.246 4.448 6.621 7.642 7.866 7.826 7.923 7.627 7.164 6.684 5.930 5.329 4.966 4.916 4.688 4.384 5.251 5.129 5.182 4.448 4.113 3.736 3.166 2.715 2.532 2.411 2.460 2.629 2.418 2.663 2.480 2.302 2.157 2.050 2.002 2.013 1.915 1.856 1.878 1.981 2.627 2.851 3.245 2.595 2.691 2.502 2.084 0.001 0.001 0.002 0.003 0.006 0.017 0.069 0.119 0.121 0.122 0.126 0.125 0.129 0.138 0.147 0.166 0.187 0.201 0.200 0.207 0.207 0.169 0.189 0.188 0.225 0.243 0.268 0.316 0.366 0.375 0.382 0.346 0.343 0.356 0.334 0.372 0.397 0.414 0.420 0.413 0.405 0.414 0.394 0.366 0.313 0.303 0.296 0.285 0.376 0.369 0.396 0.468 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −404.801 −184.411 −101.906 −62.665 −41.020 −27.810 −19.125 −13.069 −8.644 −5.295 −2.745 −0.957 −0.164 −0.693 −2.154 −3.269 −3.440 −2.997 −2.340 −1.087 −0.233 0.118 0.001 −0.297 −0.447 −0.400 −0.257 −0.100 0.033 0.132 0.198 0.238 0.260 0.273 0.284 0.297 0.318 0.347 0.385 0.435 0.494 0.563 0.642 0.726 0.806 0.854 0.808 0.588 0.240 −0.020 −0.098 −0.064 127.357 40.136 17.819 9.848 6.436 4.844 4.117 3.878 3.982 4.395 5.158 6.339 7.883 9.258 9.472 8.378 6.919 5.754 4.989 4.311 4.272 4.495 4.630 4.429 3.991 3.552 3.219 2.988 2.828 2.711 2.615 2.526 2.437 2.344 2.246 2.145 2.045 1.947 1.856 1.774 1.705 1.654 1.626 1.633 1.687 1.807 1.994 2.164 2.144 1.904 1.614 1.381 0.001 0.001 0.002 0.002 0.004 0.006 0.011 0.021 0.044 0.093 0.151 0.154 0.127 0.107 0.100 0.104 0.116 0.137 0.164 0.218 0.233 0.222 0.216 0.225 0.247 0.278 0.309 0.334 0.354 0.368 0.380 0.392 0.406 0.421 0.438 0.457 0.478 0.498 0.517 0.532 0.541 0.542 0.532 0.511 0.483 0.452 0.431 0.430 0.461 0.525 0.617 0.723 0.0 −0.1 −0.1 −0.1 −0.1 −0.2 −0.2 −0.3 0.5 3.6 7.8 8.9 7.2 5.1 3.7 3.3 3.4 4.1 5.0 6.7 7.0 6.2 6.0 6.6 6.8 6.7 7.5 8.7 9.3 9.4 9.8 10.4 10.2 9.7 10.2 11.0 11.2 11.3 11.8 12.2 12.9 12.6 11.7 11.7 12.2 12.2 11.6 11.0 10.9 11.2 11.4 11.9 0.7 1.0 1.3 1.7 2.0 2.2 3.7 9.4 23.3 47.0 70.0 79.1 74.3 64.3 56.8 54.4 56.3 61.6 68.3 78.4 79.5 75.4 69.4 64.1 62.8 63.6 61.0 54.8 49.8 48.5 46.2 41.6 39.5 38.7 36.0 32.5 30.7 29.6 28.3 26.0 22.6 21.8 23.1 21.6 19.0 17.9 18.0 19.1 20.1 20.1 19.7 18.7 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1084 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 24. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Au calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Au DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 −0.293 −0.164 −0.069 0.052 0.291 0.373 0.396 0.485 0.522 0.590 0.783 0.895 0.590 0.363 0.331 0.189 0.015 −0.022 0.115 0.212 0.279 0.357 0.404 0.329 0.407 0.427 0.454 0.428 0.430 0.396 0.381 0.340 0.384 0.434 0.422 0.444 0.469 0.522 0.502 0.482 0.465 0.460 0.413 0.441 0.440 0.421 0.414 0.408 0.442 0.470 0.475 0.486 1.690 1.513 1.333 1.111 1.093 1.152 1.105 1.084 1.161 1.032 1.113 1.384 1.614 1.543 1.436 1.446 1.265 1.014 0.865 0.819 0.792 0.763 0.828 0.800 0.739 0.759 0.753 0.792 0.762 0.769 0.740 0.708 0.607 0.626 0.597 0.581 0.563 0.557 0.610 0.618 0.585 0.609 0.560 0.523 0.542 0.492 0.470 0.429 0.386 0.379 0.352 0.349 0.574 0.653 0.748 0.898 0.854 0.786 0.802 0.769 0.717 0.730 0.601 0.509 0.547 0.614 0.661 0.680 0.791 0.985 1.136 1.144 1.123 1.075 0.976 1.069 1.038 1.001 0.974 0.977 0.996 1.028 1.068 1.148 1.176 1.078 1.116 1.087 1.049 0.955 0.977 1.006 1.047 1.046 1.158 1.118 1.113 1.174 1.199 1.224 1.121 1.040 1.008 0.976 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.012 0.097 0.179 0.256 0.327 0.394 0.455 0.514 0.567 0.614 0.650 0.665 0.645 0.583 0.497 0.426 0.390 0.389 0.407 0.434 0.463 0.492 0.518 0.542 0.564 0.582 0.597 0.609 0.619 0.627 0.632 0.635 0.637 0.638 0.638 0.638 0.639 0.640 0.643 0.645 0.649 0.653 0.658 0.663 0.668 0.674 0.680 0.686 0.691 0.697 0.702 0.708 1.214 1.097 1.013 0.951 0.906 0.874 0.854 0.844 0.847 0.864 0.897 0.945 1.001 1.039 1.032 0.976 0.896 0.818 0.755 0.706 0.670 0.643 0.622 0.607 0.596 0.588 0.582 0.577 0.573 0.569 0.565 0.560 0.554 0.547 0.539 0.530 0.519 0.508 0.497 0.485 0.474 0.463 0.453 0.443 0.433 0.424 0.416 0.408 0.401 0.395 0.389 0.383 0.823 0.905 0.957 0.980 0.976 0.951 0.912 0.865 0.815 0.769 0.731 0.708 0.706 0.732 0.786 0.861 0.938 0.997 1.026 1.028 1.010 0.981 0.949 0.916 0.886 0.859 0.837 0.819 0.805 0.794 0.787 0.781 0.778 0.775 0.773 0.770 0.766 0.760 0.753 0.744 0.734 0.723 0.710 0.697 0.683 0.669 0.655 0.641 0.628 0.615 0.603 0.592 13.4 14.8 15.0 15.0 15.9 17.2 17.5 17.1 16.6 15.9 15.7 15.8 15.4 14.7 14.5 15.0 15.3 15.2 15.8 16.2 16.0 16.2 16.6 16.5 16.2 15.9 15.3 14.9 15.0 14.9 14.7 14.6 14.2 13.8 13.4 12.9 13.2 13.6 13.3 12.8 12.5 12.5 12.3 12.2 12.5 12.5 11.9 11.4 11.4 11.3 11.2 11.0 16.7 15.9 17.9 19.0 15.0 10.0 9.5 10.5 9.8 9.2 8.8 8.3 7.7 7.7 8.4 7.2 6.0 5.5 4.5 4.6 5.5 4.2 2.1 1.5 1.5 0.7 0.8 1.9 1.4 −0.1 −1.1 −1.0 −1.2 −1.5 −0.5 0.8 −0.8 −3.2 −3.8 −2.6 −0.9 −0.8 −1.6 −2.4 −3.2 −3.2 −1.9 −0.7 −0.4 −1.1 −1.9 −2.0 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1085 TABLE 24. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Au calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Au DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.488 0.547 0.576 0.602 0.608 0.632 0.651 0.662 0.700 0.756 0.700 0.637 0.600 0.597 0.612 0.640 0.511 0.500 0.543 0.557 0.548 0.540 0.556 0.576 0.575 0.576 0.589 0.599 0.613 0.622 0.624 0.636 0.652 0.670 0.674 0.682 0.686 0.695 0.705 0.681 0.674 0.676 0.692 0.717 0.690 0.667 0.305 0.282 0.294 0.298 0.299 0.287 0.313 0.305 0.319 0.347 0.435 0.446 0.422 0.390 0.371 0.441 0.404 0.328 0.290 0.296 0.290 0.262 0.238 0.228 0.229 0.211 0.196 0.187 0.177 0.177 0.165 0.155 0.148 0.151 0.154 0.157 0.158 0.159 0.180 0.180 0.165 0.152 0.136 0.148 0.186 0.158 0.921 0.744 0.703 0.661 0.652 0.595 0.600 0.574 0.539 0.501 0.640 0.738 0.784 0.768 0.725 0.729 0.953 0.919 0.765 0.745 0.753 0.727 0.649 0.595 0.598 0.561 0.508 0.474 0.435 0.423 0.397 0.361 0.331 0.320 0.323 0.320 0.318 0.313 0.341 0.363 0.343 0.317 0.274 0.275 0.365 0.337 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.713 0.718 0.722 0.726 0.730 0.734 0.738 0.741 0.744 0.747 0.749 0.752 0.754 0.756 0.757 0.759 0.760 0.761 0.762 0.763 0.764 0.765 0.765 0.766 0.766 0.766 0.766 0.766 0.766 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.768 0.768 0.768 0.378 0.373 0.369 0.365 0.361 0.357 0.354 0.351 0.347 0.344 0.342 0.339 0.336 0.333 0.331 0.328 0.325 0.323 0.320 0.318 0.315 0.312 0.310 0.307 0.304 0.301 0.298 0.295 0.292 0.289 0.286 0.282 0.279 0.276 0.273 0.269 0.266 0.262 0.259 0.255 0.252 0.248 0.244 0.241 0.237 0.234 0.581 0.571 0.561 0.552 0.544 0.536 0.528 0.522 0.515 0.509 0.504 0.498 0.493 0.489 0.484 0.480 0.476 0.472 0.468 0.465 0.461 0.458 0.454 0.451 0.448 0.444 0.441 0.437 0.434 0.431 0.427 0.423 0.420 0.416 0.412 0.408 0.404 0.399 0.395 0.391 0.386 0.382 0.377 0.372 0.367 0.362 11.0 11.1 10.7 10.3 10.2 10.0 9.9 9.8 9.4 9.1 9.5 9.8 9.0 8.0 8.2 9.2 9.1 8.3 8.3 8.4 8.0 7.9 8.2 8.5 8.6 8.2 7.7 7.8 8.2 8.3 7.9 7.4 7.6 8.0 7.7 7.2 7.5 7.6 7.1 7.1 7.4 7.2 6.5 6.3 6.8 6.9 −1.8 −2.1 −2.1 −1.9 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1086 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 25. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pb calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Pb DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −296.591 −124.313 −60.575 −32.451 −17.019 −5.973 −6.995 −9.950 −8.887 −13.705 −15.826 −13.482 −10.804 −9.180 −9.354 −8.770 −7.919 −7.022 −6.157 −4.614 −3.316 −2.261 −1.418 −1.028 −0.942 −0.816 −0.645 −0.649 −0.542 −0.428 −0.298 −0.164 −0.031 0.097 0.211 0.323 0.416 0.505 0.617 0.754 0.955 0.907 0.888 0.896 0.946 0.984 0.896 0.851 0.833 0.817 0.796 0.781 63.202 20.144 12.326 11.877 12.106 16.910 23.855 21.094 20.849 21.232 13.909 9.569 7.496 7.491 6.516 5.055 3.889 2.997 2.323 1.439 0.983 0.809 0.909 1.259 1.294 1.188 1.185 1.060 0.909 0.772 0.649 0.549 0.468 0.408 0.364 0.328 0.306 0.271 0.232 0.219 0.314 0.460 0.475 0.470 0.478 0.560 0.616 0.592 0.570 0.547 0.527 0.465 0.001 0.001 0.003 0.010 0.028 0.053 0.039 0.039 0.041 0.033 0.031 0.035 0.043 0.053 0.050 0.049 0.050 0.051 0.054 0.062 0.082 0.140 0.320 0.477 0.505 0.572 0.651 0.686 0.812 0.990 1.272 1.672 2.128 2.317 2.058 1.548 1.148 0.825 0.535 0.355 0.311 0.445 0.468 0.459 0.426 0.437 0.521 0.551 0.560 0.565 0.579 0.563 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −415.274 −227.300 −137.764 −90.129 −61.967 −44.707 −38.383 −31.461 −24.905 −20.026 −16.357 −13.523 −11.284 −9.479 −8.001 −6.774 −5.742 −4.865 −4.113 −2.898 −1.972 −1.273 −0.777 −0.495 −0.435 −0.549 −0.704 −0.779 −0.740 −0.622 −0.463 −0.292 −0.124 0.036 0.185 0.325 0.457 0.583 0.704 0.825 0.947 1.075 1.211 1.357 1.503 1.594 1.448 0.870 0.317 0.190 0.277 0.404 308.901 113.945 52.871 28.889 18.467 15.392 13.143 7.515 4.858 3.493 2.668 2.125 1.749 1.484 1.293 1.158 1.063 1.001 0.966 0.961 1.034 1.179 1.391 1.641 1.856 1.931 1.813 1.562 1.277 1.024 0.824 0.672 0.559 0.476 0.415 0.371 0.341 0.322 0.314 0.317 0.334 0.368 0.428 0.534 0.718 1.039 1.504 1.782 1.489 1.050 0.765 0.616 0.001 0.002 0.002 0.003 0.004 0.007 0.008 0.007 0.008 0.008 0.010 0.011 0.013 0.016 0.020 0.025 0.031 0.041 0.054 0.103 0.208 0.392 0.548 0.559 0.511 0.479 0.479 0.513 0.586 0.713 0.922 1.251 1.704 2.089 2.009 1.524 1.049 0.727 0.528 0.406 0.331 0.285 0.260 0.251 0.259 0.287 0.345 0.453 0.642 0.922 1.155 1.134 0.1 0.2 0.2 0.3 0.4 0.3 0.1 −0.2 −1.0 −2.3 −3.0 −1.9 0.3 2.3 3.4 3.5 3.2 2.8 2.5 3.6 7.4 12.8 18.2 22.6 24.3 25.2 27.2 30.0 32.9 32.9 30.3 33.2 45.7 61.6 66.7 59.0 48.3 38.3 29.9 25.2 22.7 19.7 16.1 14.0 15.7 19.5 21.0 19.7 18.5 18.9 20.8 24.3 0.3 0.5 0.6 0.8 1.0 0.9 2.2 6.4 16.6 34.8 52.6 59.0 54.7 47.4 43.0 43.1 46.8 52.7 59.5 72.8 84.5 96.4 103.8 98.7 92.2 92.1 96.6 98.6 93.9 94.0 99.3 88.0 56.2 18.8 4.6 15.6 24.6 28.8 31.9 28.3 22.2 19.1 20.9 26.2 26.7 20.6 19.1 23.4 23.4 19.7 17.8 11.6 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1087 TABLE 25. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pb calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Pb DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.803 0.827 0.873 0.905 0.954 0.999 0.951 0.906 0.958 1.062 1.083 1.050 1.051 1.069 1.135 1.157 1.160 1.189 1.180 1.165 1.161 1.146 1.133 1.112 1.063 1.067 1.086 0.989 0.937 0.978 0.923 0.996 0.983 0.952 0.966 0.906 0.935 0.952 1.053 0.850 0.756 0.704 0.778 0.816 0.748 0.762 0.772 0.876 0.611 0.432 0.576 0.701 0.422 0.377 0.355 0.346 0.336 0.390 0.412 0.373 0.274 0.284 0.373 0.379 0.363 0.324 0.333 0.389 0.403 0.431 0.484 0.499 0.527 0.546 0.573 0.597 0.613 0.571 0.634 0.675 0.584 0.592 0.549 0.532 0.589 0.575 0.591 0.593 0.559 0.568 0.691 0.669 0.725 0.562 0.522 0.551 0.518 0.558 0.490 0.625 0.695 0.520 0.315 0.338 0.513 0.456 0.400 0.369 0.328 0.339 0.384 0.389 0.275 0.235 0.284 0.304 0.294 0.260 0.238 0.261 0.267 0.269 0.297 0.311 0.324 0.338 0.356 0.375 0.407 0.390 0.401 0.471 0.479 0.453 0.476 0.417 0.449 0.465 0.461 0.506 0.471 0.462 0.436 0.572 0.661 0.693 0.594 0.568 0.626 0.625 0.586 0.540 0.812 1.137 0.731 0.559 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.520 0.609 0.669 0.695 0.690 0.669 0.651 0.648 0.662 0.689 0.724 0.760 0.798 0.833 0.867 0.898 0.926 0.952 0.974 0.992 1.006 1.016 1.021 1.021 1.016 1.008 0.996 0.982 0.968 0.955 0.944 0.936 0.932 0.931 0.933 0.937 0.942 0.949 0.955 0.960 0.963 0.963 0.959 0.951 0.939 0.923 0.905 0.886 0.867 0.851 0.839 0.830 0.548 0.528 0.536 0.555 0.567 0.556 0.521 0.473 0.424 0.381 0.348 0.324 0.309 0.300 0.297 0.298 0.304 0.313 0.325 0.340 0.357 0.376 0.395 0.414 0.431 0.445 0.456 0.462 0.464 0.461 0.455 0.447 0.437 0.428 0.420 0.414 0.411 0.410 0.413 0.418 0.426 0.436 0.448 0.459 0.469 0.476 0.479 0.477 0.470 0.459 0.446 0.431 0.961 0.812 0.730 0.702 0.711 0.735 0.750 0.735 0.685 0.614 0.540 0.475 0.422 0.383 0.354 0.333 0.320 0.312 0.309 0.309 0.313 0.320 0.330 0.341 0.353 0.367 0.380 0.392 0.403 0.410 0.414 0.415 0.413 0.408 0.401 0.395 0.389 0.384 0.381 0.381 0.385 0.391 0.400 0.412 0.426 0.441 0.457 0.471 0.483 0.491 0.494 0.493 26.0 23.4 20.7 21.3 22.6 20.9 17.7 17.7 20.4 19.8 16.1 14.5 15.4 15.9 15.2 13.2 11.5 11.7 12.7 12.2 10.7 10.9 12.2 11.7 10.1 10.0 11.7 12.1 9.7 8.7 10.9 13.1 12.6 10.7 9.5 11.0 13.5 12.7 10.5 10.2 10.5 10.4 10.6 10.9 11.2 10.9 10.5 11.8 12.8 11.6 10.4 11.5 4.7 8.8 14.4 12.1 7.1 6.7 9.6 5.9 −1.8 0.5 10.0 10.8 5.2 3.9 5.2 8.8 12.3 10.4 5.3 3.8 5.4 6.1 6.9 8.8 7.9 4.4 0.7 2.3 8.8 8.6 2.1 −2.1 −2.2 −0.6 2.4 0.7 −6.1 −4.6 0.9 0.3 0.0 1.3 −0.2 −2.0 −2.6 −1.8 −1.1 −4.7 −5.7 −1.6 1.7 −1.5 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1088 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 25. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Pb calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Pb DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.732 0.600 0.486 0.599 0.687 0.715 0.755 0.722 0.740 0.776 0.796 0.820 0.759 0.652 0.682 0.708 0.696 0.704 0.639 0.669 0.699 0.683 0.693 0.718 0.721 0.721 0.708 0.723 0.739 0.749 0.761 0.759 0.764 0.752 0.765 0.788 0.803 0.801 0.777 0.777 0.780 0.790 0.784 0.778 0.780 0.780 0.424 0.462 0.358 0.205 0.217 0.228 0.255 0.280 0.244 0.246 0.271 0.313 0.399 0.326 0.262 0.276 0.257 0.268 0.248 0.193 0.196 0.186 0.165 0.158 0.159 0.168 0.145 0.128 0.120 0.117 0.123 0.122 0.122 0.120 0.093 0.094 0.110 0.123 0.135 0.110 0.105 0.105 0.109 0.104 0.089 0.084 0.592 0.806 0.983 0.510 0.419 0.404 0.402 0.467 0.401 0.372 0.383 0.406 0.543 0.613 0.490 0.478 0.467 0.473 0.527 0.399 0.373 0.373 0.326 0.293 0.292 0.306 0.277 0.237 0.215 0.203 0.207 0.207 0.203 0.206 0.157 0.148 0.168 0.188 0.217 0.179 0.169 0.165 0.174 0.169 0.145 0.137 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.824 0.822 0.822 0.825 0.828 0.833 0.837 0.841 0.845 0.849 0.851 0.853 0.853 0.852 0.850 0.847 0.842 0.837 0.830 0.823 0.814 0.806 0.797 0.787 0.778 0.769 0.760 0.752 0.745 0.738 0.732 0.727 0.722 0.719 0.716 0.714 0.713 0.712 0.713 0.713 0.714 0.716 0.718 0.720 0.723 0.726 0.416 0.401 0.388 0.377 0.368 0.360 0.355 0.351 0.349 0.348 0.348 0.350 0.352 0.354 0.356 0.359 0.362 0.364 0.365 0.366 0.365 0.364 0.362 0.358 0.354 0.348 0.341 0.333 0.325 0.316 0.306 0.296 0.286 0.275 0.264 0.254 0.243 0.233 0.223 0.213 0.204 0.195 0.186 0.178 0.170 0.163 0.488 0.480 0.469 0.458 0.448 0.438 0.429 0.422 0.417 0.414 0.412 0.412 0.413 0.416 0.420 0.425 0.430 0.437 0.444 0.451 0.458 0.466 0.473 0.479 0.484 0.488 0.491 0.493 0.492 0.490 0.487 0.481 0.474 0.464 0.454 0.442 0.429 0.415 0.400 0.385 0.370 0.354 0.339 0.323 0.309 0.294 13.3 12.9 10.5 9.9 11.9 13.6 12.6 10.3 9.7 11.6 13.0 11.3 9.6 10.7 11.3 10.5 10.4 11.2 11.2 10.8 11.4 11.2 10.0 10.0 11.3 12.0 12.2 11.8 10.7 10.2 11.3 12.4 10.9 9.6 10.9 12.9 12.4 10.8 10.0 9.3 9.5 10.2 9.5 9.0 10.1 11.4 −8.8 −7.8 2.5 4.7 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1089 TABLE 26. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Bi calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲 Bi DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −178.373 −78.799 −42.858 −25.888 −16.419 −10.360 −5.745 −1.787 −4.159 −3.687 −3.447 −3.770 −3.191 −2.519 −1.834 −1.117 −0.279 0.784 0.003 −1.268 −0.822 −0.332 0.168 0.690 1.340 0.715 −0.326 0.120 1.349 −0.972 −0.213 0.040 0.099 0.200 0.291 0.346 0.415 0.490 0.536 0.562 0.598 0.631 0.663 0.696 0.736 0.768 0.799 0.833 0.853 0.876 0.911 0.952 36.667 11.133 4.797 2.546 1.589 1.200 1.340 3.737 5.981 4.322 4.687 3.356 2.453 1.870 1.423 1.181 1.120 1.733 3.492 1.975 1.206 0.807 0.654 0.646 1.215 1.983 1.988 0.753 1.637 0.961 0.526 0.499 0.434 0.355 0.310 0.277 0.224 0.198 0.210 0.184 0.157 0.144 0.124 0.101 0.093 0.082 0.075 0.076 0.075 0.066 0.056 0.053 0.001 0.002 0.003 0.004 0.006 0.011 0.039 0.218 0.113 0.134 0.138 0.132 0.151 0.190 0.264 0.447 0.841 0.479 0.286 0.359 0.566 1.060 1.434 0.723 0.371 0.446 0.490 1.296 0.364 0.515 1.634 1.990 2.193 2.139 1.717 1.410 1.008 0.708 0.634 0.525 0.411 0.344 0.274 0.205 0.169 0.138 0.116 0.109 0.102 0.085 0.068 0.059 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 −416.687 −185.820 −103.181 −64.569 −43.467 −30.669 −22.307 −16.528 −12.362 −9.282 −7.013 −5.452 −4.584 −4.306 −4.270 −4.120 −3.772 −3.324 −2.875 −2.165 −1.758 −1.555 −1.414 −1.247 −1.046 −0.834 −0.637 −0.476 −0.359 −0.284 −0.240 −0.210 −0.177 −0.132 −0.076 −0.010 0.060 0.132 0.202 0.270 0.334 0.394 0.450 0.503 0.552 0.599 0.642 0.684 0.724 0.762 0.801 0.840 73.052 22.209 9.673 5.253 3.374 2.507 2.126 2.025 2.125 2.401 2.851 3.442 4.040 4.372 4.250 3.815 3.340 2.971 2.731 2.514 2.421 2.279 2.049 1.785 1.548 1.367 1.244 1.167 1.116 1.070 1.012 0.935 0.842 0.742 0.645 0.558 0.482 0.418 0.365 0.321 0.285 0.255 0.230 0.209 0.192 0.178 0.166 0.156 0.148 0.142 0.137 0.134 0.000 0.001 0.001 0.001 0.002 0.003 0.004 0.007 0.014 0.026 0.050 0.083 0.108 0.116 0.117 0.121 0.132 0.149 0.174 0.228 0.270 0.299 0.331 0.376 0.444 0.533 0.637 0.735 0.812 0.873 0.935 1.018 1.138 1.306 1.528 1.791 2.041 2.173 2.094 1.824 1.478 1.157 0.899 0.705 0.561 0.455 0.376 0.317 0.271 0.235 0.208 0.186 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.2 2.7 4.1 4.7 4.6 4.5 4.7 5.3 6.4 7.7 9.8 10.4 11.3 13.1 14.9 17.1 20.1 22.7 24.5 26.5 29.6 32.6 34.6 36.6 40.1 44.2 47.4 50.5 53.6 54.0 51.0 46.6 40.8 34.3 29.5 26.1 22.5 18.7 15.7 13.4 11.5 10.6 9.5 0.4 0.7 0.9 1.1 1.3 1.5 2.3 5.2 11.7 22.6 34.3 42.4 46.6 48.5 50.5 53.7 58.1 63.8 70.0 82.2 90.3 91.8 93.7 100.8 106.1 104.9 102.0 101.1 99.0 90.6 80.1 73.2 67.6 57.2 45.7 39.4 32.3 21.4 14.8 14.2 14.2 15.8 18.4 18.2 15.8 15.2 15.8 14.6 14.6 15.9 13.1 9.7 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1090 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL TABLE 26. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Bi calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Bi DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 1.003 1.110 1.123 0.902 0.862 0.922 0.892 0.894 0.913 0.906 0.916 0.921 0.932 0.934 0.954 1.002 1.029 1.043 1.059 1.069 1.068 1.073 1.051 1.055 1.068 1.067 1.076 1.093 1.104 1.104 1.117 1.108 1.109 1.087 1.082 1.082 1.087 1.065 1.053 1.052 1.016 1.005 1.003 1.015 0.992 0.993 0.999 0.970 0.948 0.916 0.876 0.825 0.053 0.071 0.329 0.364 0.193 0.187 0.207 0.166 0.159 0.142 0.129 0.121 0.101 0.095 0.053 0.052 0.071 0.082 0.097 0.116 0.129 0.145 0.147 0.141 0.144 0.145 0.145 0.152 0.166 0.177 0.196 0.216 0.230 0.254 0.242 0.251 0.267 0.279 0.287 0.306 0.306 0.295 0.280 0.295 0.299 0.294 0.315 0.349 0.338 0.351 0.336 0.302 0.052 0.058 0.240 0.385 0.247 0.211 0.247 0.200 0.185 0.169 0.151 0.141 0.114 0.108 0.058 0.052 0.067 0.075 0.086 0.100 0.112 0.124 0.131 0.124 0.124 0.125 0.123 0.125 0.133 0.142 0.153 0.169 0.180 0.203 0.197 0.204 0.213 0.230 0.241 0.255 0.272 0.269 0.258 0.264 0.279 0.274 0.287 0.329 0.334 0.364 0.382 0.391 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 0.881 0.927 0.987 1.075 1.089 0.745 0.850 0.926 0.984 1.029 1.037 0.958 0.867 0.860 0.889 0.922 0.952 0.979 1.002 1.023 1.042 1.060 1.076 1.091 1.104 1.117 1.127 1.136 1.143 1.147 1.147 1.143 1.136 1.124 1.107 1.088 1.067 1.046 1.027 1.011 0.998 0.989 0.984 0.981 0.981 0.983 0.985 0.988 0.992 0.996 0.999 1.001 0.134 0.138 0.153 0.208 0.487 0.316 0.188 0.173 0.188 0.230 0.307 0.369 0.319 0.240 0.193 0.170 0.159 0.155 0.154 0.157 0.161 0.167 0.175 0.184 0.195 0.208 0.222 0.238 0.255 0.274 0.294 0.314 0.334 0.353 0.368 0.379 0.385 0.385 0.381 0.373 0.362 0.351 0.339 0.328 0.319 0.311 0.305 0.300 0.297 0.296 0.296 0.297 0.169 0.157 0.153 0.173 0.342 0.482 0.248 0.194 0.187 0.207 0.262 0.350 0.374 0.301 0.234 0.193 0.171 0.158 0.150 0.146 0.145 0.145 0.147 0.151 0.155 0.161 0.168 0.176 0.186 0.197 0.210 0.224 0.239 0.254 0.270 0.285 0.299 0.310 0.317 0.321 0.321 0.318 0.313 0.306 0.299 0.293 0.286 0.281 0.277 0.274 0.273 0.272 8.0 7.4 7.5 7.5 8.3 9.7 10.4 9.6 8.4 8.2 8.2 8.3 8.6 9.0 8.9 7.8 7.2 7.3 6.8 5.9 5.6 5.7 5.7 4.9 4.4 5.4 6.5 6.0 4.9 5.0 6.3 6.9 5.8 5.2 5.7 5.4 5.1 6.2 7.4 7.3 6.4 6.4 7.1 6.9 6.3 6.9 7.7 7.3 6.1 5.8 6.3 6.2 11.2 10.8 6.3 4.9 7.9 10.2 9.4 9.0 8.7 7.0 7.5 9.7 9.0 4.6 2.3 4.7 5.7 3.5 4.0 6.8 7.3 6.3 5.7 7.5 9.5 6.6 3.1 4.4 6.9 5.8 1.5 0.6 5.0 5.9 3.2 4.4 5.8 2.1 −1.7 −0.9 2.0 1.4 −1.0 −0.3 1.4 0.2 −2.3 −1.6 1.7 3.5 2.8 2.1 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions OPTICAL CONSTANTS FOR 17 METALS 1091 TABLE 26. Values of the real 共1兲 and imaginary 共2兲 parts of the complex dielectric constant and the ELF 共Im兵−1 / 共兲其兲 of Bi calculated with DFT and derived from REELS data. The last two columns contain values for the volume and surface single-scattering loss distributions the DIIMFP 共wb兲 and the DSEP 共ws兲—Continued Bi DFT REELS E 共eV兲 1 2 ELF E 共eV兲 1 2 ELF wb 共meV−1兲 ws 共arb. un.兲 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 0.845 0.870 0.859 0.882 0.872 0.888 0.865 0.863 0.815 0.837 0.838 0.840 0.845 0.845 0.843 0.846 0.840 0.862 0.875 0.856 0.838 0.855 0.850 0.849 0.856 0.852 0.856 0.864 0.859 0.853 0.847 0.857 0.862 0.860 0.857 0.862 0.865 0.867 0.875 0.880 0.881 0.883 0.883 0.881 0.883 0.885 0.248 0.243 0.227 0.228 0.223 0.230 0.234 0.256 0.216 0.191 0.186 0.176 0.164 0.171 0.157 0.153 0.136 0.136 0.133 0.170 0.129 0.123 0.129 0.115 0.113 0.115 0.101 0.105 0.105 0.102 0.090 0.084 0.084 0.083 0.073 0.069 0.065 0.059 0.055 0.057 0.058 0.058 0.058 0.055 0.052 0.050 0.319 0.298 0.287 0.275 0.276 0.273 0.292 0.315 0.304 0.259 0.253 0.239 0.221 0.230 0.214 0.207 0.188 0.179 0.170 0.223 0.179 0.165 0.175 0.157 0.151 0.155 0.136 0.138 0.140 0.138 0.124 0.113 0.112 0.112 0.099 0.093 0.087 0.079 0.072 0.073 0.074 0.074 0.074 0.071 0.066 0.063 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 1.004 1.005 1.005 1.005 1.003 1.001 0.997 0.992 0.987 0.980 0.973 0.965 0.956 0.947 0.938 0.929 0.920 0.911 0.902 0.894 0.887 0.880 0.874 0.869 0.864 0.860 0.857 0.854 0.853 0.851 0.850 0.850 0.850 0.850 0.851 0.851 0.852 0.854 0.855 0.856 0.858 0.859 0.861 0.862 0.864 0.865 0.299 0.302 0.306 0.310 0.314 0.319 0.324 0.328 0.332 0.336 0.339 0.341 0.342 0.342 0.342 0.340 0.337 0.333 0.329 0.324 0.317 0.311 0.304 0.297 0.289 0.281 0.274 0.266 0.258 0.251 0.244 0.237 0.231 0.224 0.218 0.213 0.208 0.203 0.198 0.194 0.189 0.186 0.182 0.179 0.176 0.173 0.273 0.274 0.277 0.280 0.285 0.289 0.295 0.300 0.307 0.313 0.319 0.326 0.332 0.337 0.343 0.347 0.351 0.355 0.357 0.358 0.358 0.357 0.355 0.352 0.348 0.343 0.338 0.332 0.326 0.319 0.312 0.305 0.297 0.290 0.283 0.276 0.270 0.263 0.257 0.251 0.245 0.240 0.235 0.230 0.226 0.222 6.3 6.9 6.7 6.1 6.4 6.9 7.0 7.3 7.3 7.0 7.0 7.0 6.7 6.8 7.3 7.1 6.4 6.3 6.4 6.7 7.1 6.9 6.8 6.7 6.5 7.0 7.6 7.0 6.0 6.2 7.5 7.7 6.8 6.2 6.4 6.8 6.8 6.4 6.3 6.5 6.0 5.7 6.3 6.4 5.6 5.2 0.9 −0.6 1.0 2.9 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 1092 WERNER, GLANTSCHNIG, AND AMBROSCH-DRAXL 10. Appendix C: Values of Optical Constants Derived from DFT and REELS This appendix contains values of optical constants calculated by means of DFT and derived from REELS data as given in Tables 11–26. 11. References E. D. Palik, Handbook of Optical Constants of Solids I 共Academic, New York, 1985兲; Handbook of Optical Constants of Solids II 共Academic, New York, 1991兲. 2 B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 共1993兲. 3 C. T. Chantler, J. Phys. Chem. Ref. Data 24, 71 共1995兲. 4 C. T. Chantler, J. Phys. Chem. Ref. Data 29, 597 共2000兲. 5 R. F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope 共Plenum, New York, 1985兲. 6 W. S. M. Werner and P. Schattschneider, J. Electron Spectrosc. Relat. Phenom. 143, 65 共2005兲. 7 D. Y. Smith, in Handbook of Optical Constants of Solids I 共Academic, New York, 1985兲, Vol. 1, Chap. 3; Handbook of Optical Constants of Solids II 共Academic, New York, 1991兲, Vol. 1, Chap. 3. 8 W. S. M. Werner, Phys. Rev. B 74, 075421 共2006兲. 9 W. S. M. Werner, Surf. Sci. 600, L250 共2006兲. 10 A. Jablonski, F. Salvat, and C. J. Powell, J. Phys. Chem. Ref. Data 33, 409 共2004兲. 11 L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski, Electrodynamics of Continuous Media, 2nd ed. 共Pergamom, Oxford, New York, 1984兲, translated by J. B. Sykes, J. S. Bell, and M. J. Kearsley. 12 R. H. Ritchie, Phys. Rev. 106, 874 共1957兲. 13 H. Starke, Ann. Phys. 302, 49 共1898兲. 14 A. A. Campbell-Swinton, Proc. R. Soc. London 64, 377 共1899兲. 15 J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 共2000兲. 16 G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 共2002兲. 17 C. Ambrosch-Draxl and J. O. Sofo, Comput. Phys. Commun. 175, 1 共2006兲. 18 W. Olovsson, I. Tanaka, T. Mizoguchi, P. Puschnig, and C. AmbroschDraxl, Phys. Rev. B 79, 041101共R兲 共2009兲. 19 W. Kohn, Rev. Mod. Phys. 71, 1253 共1999兲. 20 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, an augmented plane wave and local orbitals program for calculating crystal properties, Karlheinz Schwarz, Techn. Universität Wien, 共TU Vienna, 2001兲. 21 O. K. Andersen, Phys. Rev. B 12, 3060 共1975兲. 22 D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method 共Kluwer Academic, Boston, 1994兲. 23 C. Ambrosch-Draxl, Phys. Scr., T T109, 48 共2004兲. 24 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 共1996兲. 25 A. H. MacDonald, W. E. Pickett, and D. D. Koelling, J. Phys. C 13, 2675 共1980兲. 26 P. E. Böchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 共1994兲. 27 P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 共1972兲. 28 S. Hummel, A. Gross, and W. S. M. Werner, Surf. Interface Anal. 41, 357 共2009兲. 29 M. R. Went and M. Vos, Phys. Rev. B 74, 205407 共2006兲. 30 F. Salvat and R. Mayol, Comput. Phys. Commun. 74, 358 共1993兲. 31 W. S. M. Werner, Surf. Interface Anal. 31, 141 共2001兲. 32 C. J. Tung, Y. F. Chen, C. M. Kwei, and T. L. Chou, Phys. Rev. B 49, 16684 共1994兲. 33 W. Smekal, W. S. M. Werner, C. S. Fadley, and M. A. van Hove, J. Electron Spectrosc. Relat. Phenom. 137, 183 共2004兲. 1 W. S. M. Werner, Phys. Rev. B 71, 115415 共2005兲. W. S. M. Werner, Surf. Sci. 526, L159 共2003兲. W. S. M. Werner, C. Eisenmenger-Sittner, J. Zemek, and P. Jiricek, Phys. Rev. B 67, 155412 共2003兲. 37 W. S. M. Werner, Surf. Interface Anal. 35, 347 共2003兲. 38 W. S. M. Werner, H. Störi, and H. Winter, Surf. Sci. 518, L569 共2002兲. 39 W. S. M. Werner, Phys. Rev. B 55, 14925 共1997兲. 40 W. S. M. Werner, Surf. Sci. 588, 26 共2005兲. 41 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 共Cambridge University Press, Cambridge, 1986兲. 42 S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 21, 165 共1994兲. 43 W. S. M. Werner, W. Smekal, C. Tomastik, and H. Störi, Surf. Sci. 486, L461 共2001兲. 44 W. S. M. Werner, Surf. Sci. 601, 2125 共2007兲. 45 W. S. M. Werner, Surf. Sci. 共accepted for publication兲. 46 Y. F. Chen, C. M. Kwei, and C. J. Tung, Phys. Rev. B 48, 4373 共1993兲. 47 W. S. M. Werner and M. Hayek, Surf. Interface Anal. 22, 79 共1994兲. 48 C. J. Powell and A. Jablonski, J. Phys. Chem. Ref. Data 28, 19 共1999兲. 49 R. Oswald, Ph.D. thesis, Eberhard-Karls-Universitäat Tübingen, 1992. 50 R. Schmid, Ph.D. thesis, University of Tübingen, 1982. 51 W. S. M. Werner, C. Tomastik, T. Cabela, G. Richter, and H. Störi, J. Electron Spectrosc. Relat. Phenom. 113, 127 共2001兲. 52 A. Dubus, A. Jabłonski, and S. Tougaard, Prog. Surf. Sci. 63, 135 共2000兲. 53 M. Vos 共private communication兲. 54 F. Salvat, Phys. Rev. A 68, 012708 共2003兲. 55 F. Yubero and S. Tougaard, Phys. Rev. B 46, 2486 共1992兲. 56 F. Yubero, J. M. Sanz, B. Ramskov, and S. Tougaard, Phys. Rev. B 53, 9719 共1996兲. 57 N. Pauly, S. Tougaard, and F. Yubero, Phys. Rev. B 73, 035402 共2006兲. 58 W. S. M. Werner, M. R. Went, and M. Vos, Surf. Sci. 601, L109 共2007兲. 59 G. Williams, X-ray Data Booklet 共Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 2001兲. 60 M. R. Went, M. Vos, and W. S. M. Werner, Surf. Sci. 602, 2069 共2008兲. 61 M. Novak, Ph.D. thesis, University of Debrecen, 2008. 62 H. Winter and J. Burgdörfer, Slow Heavy Particle Induced Electron Emission from Solid Surfaces, Springer Tracts in Modern Physics Vol. 225 共Springer, New York, 2007兲. 63 D. R. Penn, Phys. Rev. B 35, 482 共1987兲. 64 C. J. Tung, R. H. Ritchie, J. C. Ashley, and V. E. Anderson, Oak Ridge National Laboratory No. Report No. 5188, 1976. 65 S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 11, 577 共1988兲. 66 Y. Lin and D. C. Joy, Surf. Interface Anal. 37, 895 共2005兲. 67 L. Reimer, Scanning Electron Microscopy 共Springer, Berlin, 1985兲. 68 A. Jablonski, S. Tanuma, and C. J. Powell, Surf. Interface Anal. 38, 76 共2005兲. 69 S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 37, 978 共2005兲. 70 W. S. M. Werner, Phys. Rev. B 52, 2964 共1995兲. 71 W. S. M. Werner, T. Cabela, J. Zemek, and P. Jiricek, Surf. Sci. 470, 325 共2001兲. 72 S. Tougaard, Surf. Interface Anal. 25, 137 共1997兲. 73 E. D. Palik, Handbook of Optical Constants of Solids 共Academic, New York, 1985兲. 74 C. J. Powell and M. P. Seah, J. Vac. Sci. Technol. 8, 735 共1990兲. 75 C. J. Powell, W. S. M. Werner, and W. Smekal, Appl. Phys. Lett. 89, 252116 共2006兲. 76 S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 17, 927 共1991兲. 77 S. Tanuma 共private communication兲. 78 W. S. M. Werner, C. Tomastik, T. Cabela, G. Richter, and H. Störi, Surf. Sci. 470, L123 共2000兲. 79 Y. F. Chen, Surf. Sci. 519, 115 共2002兲. 34 35 36 J. Phys. Chem. Ref. Data, Vol. 38, No. 4, 2009 Downloaded 20 Mar 2013 to 129.6.105.191. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions
© Copyright 2025 Paperzz