Simple Fixed-Point Iteration • Rearrange the function so that x is on the left side of the equation: f ( x) 0 g ( x) x xi 1 g ( xi ) • Bracketing methods are “convergent”. • Fixed-point methods may sometime “diverge”, depending on the stating point (initial guess) and how the function behaves. Simple Fixed-Point Iteration Examples: 1. f ( x) x 2 x 2 x0 g ( x) x 2 2 or g ( x) x 2 or 2. 3. 3. 2 g ( x) 1 x f(x) = x 2-2x+3 x = g(x)=(x2+3)/2 f(x) = sin x x = g(x)= sin x + x f(x) = e-x- x x = g(x)= e-x Simple Fixed-Point Iteration Convergence • x = g(x) can be expressed as a pair of equations: y1= x y2= g(x)…. (component equations) • Plot them separately. Simple Fixed-Point Iteration Convergence x i 1 g (x i ) 1 Suppose that the true root: x r g (x r ) 2 Subtracting 1 from 2 x r x i 1 g (x r ) g (x i ) (3) Simple Fixed-Point Iteration Convergence Derivative mean value theorem: If g(x) are continuous in [a,b] then there exist at least one value of x= within the interval such that: g ' g b g a b a i.e. there exist one point where the slope parallel to the line joining (a & b) Simple Fixed-Point Iteration Convergence x r x i 1 g (x r ) g (x i ) Let a x i and b x r g ' g x r g x i xr xi g x r g x i x r x i g ' then x r x i 1 x r x i g ' E t ,i 1 g ' E t ,i If g ' 1.0 the error decreases with each iteration If g ' 1.0 the error increases with each iteration Simple Fixed-Point Iteration Convergence • Fixed-point iteration converges if : g (x ) 1 (slope of the line f (x ) x ) • When the method converges, the error is roughly proportional to or less than the error of the previous step, therefore it is called “linearly convergent.” Simple Fixed-Point Iteration-Convergence Example: Simple Fixed-Point Iteration f(x) = e-x - x f(x) f(x)=e-x - x 1. f(x) is manipulated so that we get x=g(x) g(x) = e-x 2. Thus, the formula predicting the new value of x is: xi+1 = e-xi 3. Guess xo = 0 4. The iterations continues till the approx. error reaches a certain limiting value Root f(x) x f1(x) = x g(x) = e-x x Example: Simple Fixed-Point Iteration i xi g(xi) 0 1 2 3 4 5 6 7 8 9 10 0 1.0 0.367879 0.692201 0.500473 0.606244 0.545396 0.579612 0.560115 0.571143 0.564879 1.0 0.367879 0.692201 0.500473 0.606244 0.545396 0.579612 0.560115 0.571143 0.564879 ea% et% 100 171.8 46.9 38.3 17.4 11.2 5.90 3.48 1.93 1.11 76.3 35.1 22.1 11.8 6.89 3.83 2.2 1.24 0.705 0.399 Example: Simple Fixed-Point Iteration i xi g(xi) 0 1 2 3 4 5 6 7 8 9 10 0 1.0 0.367879 0.692201 0.500473 0.606244 0.545396 0.579612 0.560115 0.571143 0.564879 1.0 0.367879 0.692201 0.500473 0.606244 0.545396 0.579612 0.560115 0.571143 0.564879 ea% et% 100 171.8 46.9 38.3 17.4 11.2 5.90 3.48 1.93 1.11 76.3 35.1 22.1 11.8 6.89 3.83 2.2 1.24 0.705 0.399
© Copyright 2025 Paperzz