Presented in 16th International Seminar on Double Layer Capacitors & Hybrid Energy Storage Devices December 4 - 6, 2006 Latest developments in Carbide Derived Carbon for energy storage applications M. Lätt*, J. Leis, M. Arulepp, H. Kuura, E. Lust Tartu Technologies Ltd., 185 Riia St., 51014 Tartu, Estonia University of Tartu, 2 Jakobi St., 51014 Tartu, Estonia www.skeletonnanolab.com Carbide-Derived Carbon (CDC) • CDC is made by chemically extracting the metal or metalloid from carbide crystal lattice MxC+ xy/2 Cl2 ___ > xMCly + C • Carbon particles retain the shape and size of precursor carbide. The structure and porosity of carbon is significantly influenced by the structure and chemical composition of carbide. Pore structure characteristics of different CDC materials Carbide • TiC • TiC/TiO2 • SiC • NbC • ZrC • Mo2C • B4C • Al4C3 SBET [m2g-1] 1100 - 1500 1300 - 1800 800 - 1400 1200 - 2000 1500 - 2000 1200 - 2200 800 - 1800 1100 - 1400 Peak pore size [Å] 7-9 8 - 13 7-8 8-10 8-10 8 - 40 9 - 20 8 - 20 Pore size distribution of different CDC materials 350 C(SiC) C'(TiC) C(Al4C3) B4C C(Mo2C) Incremental Pore Area / m g 2 -1 300 250 200 150 100 50 0 1 10 Pore Width / Angstrom 100 Possible applications for CDC • ADSORPTION • • • • H2, CH4, NH3 etc. LMW gas storage Separation of toxic components from mixtures Purification of inert gas Water desalination • ELECTRONICS • • Electron field emission (e.g. flat panel displays) Semiconductors • ENERGY STORAGE • • • Batteries Fuel cells Supercapacitors H2 storage Carbide Derived Carbon can store over 4 %wt. of Hydrogen @ 6 atm. & 77K (ρC ~ 0.72 g/cm3) • Energy density • • • • Gasoline Propane Ethanol Liq H2 Wh/Kg 9000 6600 6100 2600 Stored H2 1100 • • • • • • • 150 Bar H 2 Lithium Fly wheel Liq. N2 Pb-battery Comp air NormP H2 405 250 210 65 40 17 2.7 *without container Wh/l 13500 13900 7850 39000* 1560 39000* 350 120 55 25 34 39000* Field emission CDC vs. vs. SWCNT • CDCs possess a combination of unique properties that make them highly programmable for a variety of purposes, including flat panel displays Breakthrough in pure EDLC? J. Chmiola, Chmiola, G. Yushin, Yushin, Y. Gogotsi, Gogotsi, C. Portet, Portet, P. Simon, and P. L. Taberna Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Nanometer. Science, 313, 1760-1763 (2006) Supercapacitor R&D in Tartu Technologies 1999 2006 1600 1200 F 800 400 550 0 1600 Dependence of specific EDL capacitance on pore structure of SkeletonC CDC NbC 10 14 CDC ZrC ZrC Capacitan ce , µ F/cm 2 9 Average pore size 8 Average Pore Size (2V p /SD F T ), Å CDC Mo2C 13 NbC TiC 12 11 10 7 9 500 6 400 600 800 1000 600 700 800 900 Chlorination Temperature, °C Chlorination Temperature, °C APS = 2Vp/SDFT [Å [Å] 1000 1100 Specific capacitance / F g -1 ; F cm -3 Dependence of specific EDL capacitance on pore structure of SkeletonC 120 F/g 110 ZrC 100 ZrC 90 NbC 80 NbC F/cm3 70 60 50 10 11 12 APS / Angstrom 13 14 APS = 2Vp/SDFT [Å [Å] Capacitance of SkeletonC based EDLC with different electrolytes * Skeleton electrolyte - acetonitrile free electrolyte particularly made by proper mixing of well known and widely used electrolyte solvents Volumetric Capacitance / F cm * 2.7V & ~25F EDLC -3 16 * TEA/PC TEMA/PC TEMA/Skeleton electrolyte 14 Skeleton electrolyte TEMA/PC TEA/PC 12 10 8 6 4 2 0 0 * Patent pending 2 4 6 Applied Current / A 8 10 Power perfomance with different electrolytes at variable temperatures 3.5 * TEA/PC TEMA/PC TEMA/Skeleton electrolyte 10-sec power, W cm -3 3.0 * ~25F EDLC * CCD 2.7V - 1.35V 2.5 2.0 1.5 Skeleton electrolyte 1.0 TEMA/PC 0.5 TEA/PC 0.0 -40 -20 0 20 40 60 80 Temperature , °C A method for manufacturing the nanoporous SkeletonC material US patent application US11/407,202 (2006) TiO2 + 2C + 2Cl 2 à TiCl4 +2CO Coal Stage B. Synthesis of titanium oxide (TiO 2) TiO2 B CO powder from TiCl4 TiCl4 + O2 à TiO 2 + 2Cl2 C Cl2 TiC powder using the high-temperature reduction O2 of TiO 2 with carbon (charcoal, lampblack) D TiCl4 TiO2 + 3C à TiC + 2CO SkeletonC A TiO2 ore Stage A. Beneficiation of the ore (rutile) through the chlorination process. Stage C. Synthesis of titanium carbide (TiC) Stage D. Synthesis of SkeletonC using the hightemperature chlorination of titanium carbide powder TiC + 2Cl2 à C + TiCl4 Porosity parameters and apparent density of SkeletonC 1 3000 d = 0.422x - 0.473 0.8 BET 2000 Ws 0.6 Vt 1500 Vm 1000 0.4 BET = (-1.47x + 5.64)1000 d 2 3 -1 R = 0.994 2500 Pore volume of SkeletonC [cm g ] 2 -1 BET surface of SkeletonC [m g ] 2 R = 0.989 0.2 500 2 2.2 2.4 2.6 2.8 3 3.2 3.4 x (C/TiO 2 mole ratio) Porosity parameters and apparent density of SkeletonC examples 15 vs. C/TiO2 mole ratio; carbide synthesised at 1600°C. Hypothetical reaction: TiO2 + 2C à TiC + CO2 Experimentally is confirmed that carbothermal reduction of TiO2 requires T > 1000 °C. It is also known that at temperatures above 1000°C the Boudouard’ equilibrium: C+CO2 à 2CO is strongly shifted to right side and therefore the mass-balance of TiC formation: TiO2 + 3C à TiC + 2CO What happens if less amount of carbon is involved in reaction? TiO2 + (3-x)C à TiC1-x + 2CO or TiO2 + (3-x)C à (1-x/3)TiC + x/3TiO2 + (2-2x/3)CO Relationship of EDL performance and CDC synthesis parameters 2.5 3 132 130 2 128 126 124 122 120 1.5 0 5 10 15 20 Specific capacitance, F/g (KOH) 250 134 Specific power, W/cm Specific capacitance, F/g (PC) 136 200 150 100 0.4 0.6 0.8 1 x in TiCx %TiO2 in TiC/TiO2 CDC based capacitor with AN free electrolyte TECHNICAL DATA Capacitance ( 25 0 C ) Voltage Current Series Resistance Energy (at UR) Power Leakage Current (8h, 25°C) Temperature TiC Derived Carbon 100 F/cm3 125 F/g Stored energy 13.3 Wh/L Wh/L carbon load in capacitor 48% vol. DCC Rated UR Surge Rated Peak ESR DC ESR 100Hz Stored Specific At rated current Matched Impedance Operating 1600 2.85 3.00 300 700 0.60 0.55 6.5 8.0 2.6 15.0 10 -30...+85 F V V A A mΩ mΩ kJ Wh/kg kW/kg kW/kg mA °C 1.8 Ah 13.3 Wh/L 4.3 kW/L 24.9 kW/L Ragone plot of the advanced Supercap Tartu Technologies Supercapacitor 1600F, 2.85V m=225gm V=136cm3 Today of Tartu Technologies 90 60 400 30 0 200 3 2 1 0 100 0 25 MW SW CDC CNT CNT Pore Width / Angstrom Usable energy Wh/L at 2.7V 10 8 5 international patent applications 2005 Y. data 6 ~25 peer-reviewed articles in scientific journals 4 Collaboration with Toyota, Honeywell, Samsung etc. 0 es s Pa na so ni c 2 N 3 national patent applications iG l. M ax w el Ta l rt u Te h. 15 CDC H2 wt. % 1atm, 77K ac h 5 NActC SActC As Pore Area / m g 2 -1 NbC derived SkeletonC 300 Capacitance F/cm 3 in organic Future of CDC materials • Is it good enough compared to the natural or synthetic active carbons? • Is it rare? • Is it expensive? Acknowledgment • Marko Lätt wants to thank Doctoral School of Materials Science and Technology at University of Tartu for financial support. • This work was partly carried out within the Estonian Science Foundation grant no. 6455. • Our colleagues at Tartu Technologies are thanked for the kind assistance in preparation of this paper.
© Copyright 2026 Paperzz