Methodology for optimization of continuous cover forestry with consideration of recreation and the forest and energy industries Методология оптимизации непрерывного неистощительного лесопользования, как для обеспечения рекреационных услуг, так и для переработки в лесной и энергетической промышленности Peter Lohmander & Zazykina Liubov FORESTS OF EURASIA - PODMOSKOVNY VECHERA Moscow State Forest University September 19 - 25, 2010 1 Профессор Петер Ломандер Шведский университет сельского хозяйства (SLU), 90183 Умео, Швеция Электронная почта: [email protected] [email protected] http://www.Lohmander.com Аспирантка Зазыкина Любовь Московский государственный университет леса (МГУЛ) 1-ая институтская ул., Мытищи, Московская обл., Россия Электронная почта: [email protected] 2 Professor Peter Lohmander Department of Forest Economics, Faculty of Forest Science, Swedish University of Agricultural Sciences (SLU), SE – 901 83 Umea, Sweden Профессор Петер Ломандер Шведский университет сельского хозяйства (SLU), 90183 Умео, Швеция [email protected] [email protected] [email protected] [email protected] Web: http://www.Lohmander.com Web: http://www.Lohmander.com [email protected] [email protected] 3 Forests are used for many different purposes. It is important to consider these simultaneously. A new methodological approach to optimization of forest management with consideration of recreation and the forest and energy industries has been developed. It maximizes the total present value of continuous cover forest management and takes all relevant costs and revenues into account, including set up costs. Леса используются и могут использоваться в разных целях. Важно учесть все эти цели одновременно, разработан новый методологический подход к оптимизации лесопользовании с учетом обеспечения рекреационных услуг, переработки в лесной и энергетической промышленности. Он максимизирует общую текущую дисконтированную стоимость непрерывного неистощительного лесопользования и учитывает все затраты будущего периода и доходы, включая начальные затраты. 4 In several regions, in particular close to large cities, such as Paris and Moscow, the economic importance of recreation forestry is very high in relation to the economic results obtained from traditional “production oriented” forest management. This does however not automatically imply that production of timber, pulpwood and energy assortments can not be combined with rational recreation forestry. В некоторых районах, в особенности вблизи больших городов, таких как Париж или Москва, экономическая важность рекреационного лесопользования очень высока, по сравнению с экономическими результатами полученными при традиционным лесопользовании. Однако, это не означает автоматически, что рациональное рекреационное лесопользование не может быть скомбинировано с производством пиломатериалов, целлюлозы и энергии. 5 The optimization model includes one section where the utility of recreation, which may be transformed to the present value of net revenues from recreation, is added to the traditional objective function of the present value of the production of timber, pulpwood and energy assortments. In typical cases, individuals interested in recreation prefer forests with low density. Использование рекреационных услуг , которое может быть преобразовано в величину чистых доходов, от этих услуг и обавлено к традиционным целевым доходам от производства пиломатериалов, целлюлозы и энергии. В типичных случаях, предпочитаются леса под рекреацию с низкой плотностью насаждений, это означает, что лесопользование является оптимальным, когда учитываются все цели при осуществлении более частых рубок ухода в отличие от лесопользования, которое направлено только на производство пиломатериалов целлюлозы и энергии. 6 This means that forest management that is optimal when all objectives are considered, typically is characterized by larger thinning harvests than forest management that only focuses on the production of timber, pulpwood and energy assortments. же влияние на оптимизацию лесопользования, как увеличивающаяся важность рекреационных услуг в зонах близких, к большим городам. 7 The results also show that large set up costs have the same type of effect on optimal forest management as an increasing importance of recreation, close to large cities. Both of these factors imply that the harvest volumes per occation increase and that the time interval between harvests increases. Even rather small set up costs imply that the continuous cover forest management schedule gives a rather large variation in the optimal stock level over time. Оба этих фактора подразумевают, что объем вырубок на ед. времени увеличиваются , а так же увеличивается сам временной интервал между вырубками. Сравнительные малые начальные затраты означают что апланированное непрерывное неистощительное лесопользование дает относительно много вариаций оптимального уровня запаса древесины во времени. 8 Typical Forest Stock Development Without Harvesting 400 350 m3 / ha 300 250 200 150 100 50 0 0 20 40 60 80 100 120 Time (Years) 9 Growth dx 2 x ax bx dt x Stock (m3 / ha) Compare: Verhulst, Pierre-François (1838). "Notice sur la loi que la population poursuit dans son accroissement". Correspondance mathématique et physique 10: pp. 113–121. 10 Growth 6 m3/ha/year 5 4 3 2 1 0 0 50 100 150 200 250 300 350 400 450 Stock (m3/ha) = x dx 1 1 2 Growth x x x dt 20 8000 11 Stock = x(t) 400 350 m3 / ha 300 250 200 150 100 50 0 0 20 40 60 80 100 120 Time (Years) = t dx 1 1 2 x x x dt 20 8000 12 A separable differential equation dx 2 x ax bx dt 1 dx dt 2 ax bx 13 1 dx dt 2 ax bx c D 1 1 2 x (a bx) x(a bx) ax bx c(a bx) Dx 1 2 x(a bx) ax bx 14 c(a bx) Dx 1 2 x(a bx) ax bx ca cbx Dx 1 ca (cb D) x 1 1 c a b D cb a 15 1 dx dt 2 ax bx c D dx dt x (a bx) 1 b a a dx dt (a bx ) x 1 b dx a dt x (a bx) 16 1 b dx a dt x (a bx) 1 b dx a dt x x (a bx) t 0 0 x1 t1 17 x1 t1 1 1 x x a dx t a dt 0 0 ( x) b 1 1 dx a dt x x (h x) t 0 0 x1 t1 a h b a h b 18 1 1 dx a dt x x (h x) t 0 0 x1 t1 a h b LN ( x) LN (h x)x at t x1 t1 0 0 LN ( x1 ) LN (h x1 ) LN ( x0 ) LN (h x0 ) a(t1 t0 ) x1 (h x0 ) LN aT x0 (h x1 ) T t1 t0 19 x1 (h x0 ) LN aT x0 (h x1 ) T t1 t0 x1 (h x0 ) aT e x0 (h x1 ) aT x0 e x1 (h x1 ) (h x0 ) aT x0 e x1 (h x1 ) (h x0 ) 20 aT x0 e x1 (h x1 ) (h x0 ) x0e x0e x1 1 h (h x0 ) (h x0 ) aT aT aT x0 e h (h x0 ) x1 aT x0 e 1 (h x0 ) 21 x0 e aT h (h x0 ) x1 x0 e aT 1 (h x0 ) 1 x1 (h x0 ) aT 1 e hx0 h 1 x1 1 1 aT 1 e h x0 h 22 x1 1 1 1 1 aT e h x0 h 23 Stock (m3/ha) Time (Years) 24 Stock Development 140 120 m3 / ha 100 80 60 40 20 0 0 10 20 30 40 50 60 70 80 Time (Years) 25 The Present Value Function c ph1 (t , h0 ) (.) c ph0 rt e 1 Profit from the first harvest Present value of an infinite series of profits from the later harvest Stock Development 140 120 m3 / ha 100 80 60 40 20 0 0 10 20 30 40 Time (Years) 50 60 70 80 26 c ph0 c ph1 (t , h0 ) e 1 rt Initial stock level Rate of interest Harvest interval 27 * * * 28 Present Value (SEK/ha) y=250 y=200 y=150 y = First Harvest Volume (m3/ha) Harvest Interval (Years) 29 C = 500 Vertical Scale = Present Value (SEK/ha) Harvest Interval (Years) First Harvest Volume (m3/ha) 30 C = 500 First Harvest Volume (m3/ha) Vertical Scale = Present Value (SEK/ha) Harvest Interval (Years) 31 C = 500 First Harvest Volume (m3/ha) Vertical Scale = Present Value (SEK/ha) Harvest Interval (Years) 32 C = 500 First Harvest Volume (m3/ha) Vertical Scale = Present Value (SEK/ha) Harvest Interval (Years) 33 Stock Level Directly After Harvest (m3/ha) C = 100 First Harvest Volume (m3/ha) 34 C = 100 Vertical Scale = Present Value (SEK/ha) Stock Level Directly After Harvest (m3/ha) Harvest Interval (Years) 35 C = 100 C = 500 36 Vertical Scale = Present Value (SEK/ha) C = 100 C = 500 Stock Level Directly After Harvest (m3/ha) Harvest Interval (Years) 37 C = 2000 38 C = 2000 Stock Level Directly After Harvest (m3/ha) Vertical Scale = Present Value (SEK/ha) Harvest Interval (Years) 39 Vertical Scale = Present Value (SEK/ha) C = 100 C = 2000 Harvest Interval (Years) Stock Level Directly After Harvest (m3/ha) 40 Vertical Scale = Present Value (SEK/ha) C = 100 C = 500 Harvest Interval (Years) Stock Level Directly After Harvest (m3/ha) 41 REM REM CCF0403 REM Peter Lohmander REM OPEN "outCCF.dat" FOR OUTPUT AS #1 PRINT #1, " x1 t h1 PV" FOR x1 = 10 TO 150 STEP 20 FOR t = 1 TO 31 STEP 5 c = 500 p = 200 r = .03 s = .05 x0 = 300 h0 = x0 - x1 x2 = 1 / (1 / 400 + (1 / x1 - 1 / 400) * EXP(-.05 * t)) h1 = x2 - x1 multip = 1 / (EXP(r * t) - 1) pv0 = -c + p * h0 pv1 = -c + p * h1 PV = pv0 + pv1 * multip PRINT #1, USING "####"; x1; PRINT #1, USING "####"; t; PRINT #1, USING "####"; h1; PRINT #1, USING "#######"; PV NEXT t NEXT x1 CLOSE #1 END 42 x1 t h1 PV 90 90 90 90 90 90 90 1 4 6 23 11 44 16 67 21 91 26 116 31 141 48299 61906 62679 62441 61755 60768 59561 110 110 110 110 110 110 110 1 4 6 25 11 49 16 73 21 98 26 123 31 146 47561 60776 61115 60419 59276 57858 56266 130 130 130 130 130 130 130 1 4 6 28 11 52 16 77 21 102 26 125 31 148 46144 58919 58802 57656 56094 54309 52414 43 REM REM OCC0403 REM Peter Lohmander REM OPEN "outOCC.dat" FOR OUTPUT AS #1 PRINT #1, " C X1opt topt PVopt h1opt x2opt" FOR c = 0 TO 3000 STEP 100 FOPT = -999999 x1opt = 0 topt = 0 pvopt = 0 h1opt = 0 x2opt = 0 44 FOR x1 = 10 TO 150 STEP 5 FOR t = 1 TO 61 STEP 1 p = 200 r = .03 s = .05 x0 = 300 h0 = x0 - x1 x2 = 1 / (1 / 400 + (1 / x1 - 1 / 400) * EXP(-.05 * t)) h1 = x2 - x1 multip = 1 / (EXP(r * t) - 1) pv0 = -c + p * h0 pv1 = -c + p * h1 PV = pv0 + pv1 * multip IF PV > pvopt THEN x1opt = x1 IF PV > pvopt THEN topt = t IF PV > pvopt THEN h1opt = h1 IF PV > pvopt THEN x2opt = x2 IF PV > pvopt THEN pvopt = PV NEXT t NEXT x1 PRINT #1, USING "######"; c; x1opt; topt; pvopt; h1opt; x2opt NEXT c CLOSE #1 END 45 X1opt(C) Optimal Stock Level Directly After Harvest (m3/ha) 90 80 70 X1opt 60 50 40 30 20 10 0 0 500 1000 1500 2000 C 2500 3000 3500 Set up Cost (SEK/ha) 46 Optimal Stock Level Directly Before Thinning Harvest (m3/ha) x2opt(C) 180 160 140 x2opt 120 100 80 60 40 20 0 0 500 1000 1500 2000 C 2500 3000 3500 Set up Cost (SEK/ha) 47 h1opt(C) Optimal Thinning Harvest Volumes per occation (m3/ha) 140 120 h1opt 100 80 60 40 20 0 0 500 1000 1500 2000 C 2500 3000 3500 Set up Cost (SEK/ha) 48 Optimal Harvest Interval (Years) topt(C) 45 40 35 topt 30 25 20 15 10 5 0 0 500 1000 1500 2000 C 2500 3000 3500 Set up Cost (SEK/ha) 49 Optimal Present Value (SEK/ha) PVopt(C) 66000 65000 PVopt 64000 63000 62000 61000 60000 59000 0 500 1000 1500 2000 C 2500 3000 3500 Set up Cost (SEK/ha) 50 What happens to the optimal forest management schedule if we also consider the value of recreation? 51 Alekseevskiy forest •Source: Zazykina, L., Lohmander, P., The utility of recreation as a function , of site characteristics: Methodological suggestions and a preliminary analysis, Proceedings of the II international workshop on Ecological tourism, rends and perspectives on development in the global world, Saint Petersburg Forest Technical Academy, April 15-16, 2010 , http://www.Lohmander.com/SPb201004/Zazykina_Lohmander_SPbFTA_2010.pdf http://www.Lohmander.com/SPb201004/Zazykina_Lohmander_SPbFTA_2010.doc 52 • Source: Zazykina, L., Lohmander, P., The utility of recreation as a function , of site characteristics: Methodological suggestions and a preliminary analysis, Proceedings of the II international workshop on Ecological tourism, rends and perspectives on development in the global world, Saint Petersburg Forest Technical Academy, April 15-16, 2010 , http://www.Lohmander.com/SPb201004/Zazykina_Lohmander_SPbFTA_2010.pdf http://www.Lohmander.com/SPb201004/Zazykina_Lohmander_SPbFTA_2010.doc 53 Interpretations and observations: #1: Several alternative interpretations are possible! #2: Furthermore, the results are most likely sensitive to local conditions, weather conditions etc.. 54 Assumptions: The ideal average forest density, from a recreational point of view, is 0.5. Directly before thinning, the density is 0.8 . As a result of a thinning, the density in a stand is reduced in proportion to the harvest volume. The density of a stand is a linear function of time between thinnings. The value of recreation is a quadratic function of average stand density in the forest area. The recreation value is zero if the density is 0 or 1. Under optimal density conditions, the value of recreation, per individual, hectare and year, is 30 EURO. (The value 30 has no empirical background.) 55 Annual Value of Recreation per Visitor 35 30 EURO / Hectare 25 20 15 10 5 0 0 0,2 0,4 0,6 0,8 1 1,2 Stand Density Approximation in the software: • • • • • D = .8 * ((x1 + x2) / (2 * x2)) IF D < 0 THEN D = 0 IF D > 1 THEN D = 1 U = 120 * D - 120 * D * D PVtotU = n / r * U 56 Forest visitors seem to prefer forests with rather high basal area levels during hot periods. N(Y) Regression curve 25 N = Pers 20 15 10 5 0 -5 0 20 40 60 80 Y = m2perha N(Y) = Number of persons per 100 m2 a function of Y = Basal Area (m2/ha), Moscow DURING THE VERY HOT SUMMER OF 2010 57 N 29.6 1.52 Y 0.0148 Y 2 N(Y) Regression curve 25 N = Pers 20 15 10 5 0 -5 0 20 40 60 80 Y = m2perha N Number of persons per 100 m 2 Y Basal area (m2 / ha) 58 59 60 What was the most popular basal area during the hot summer of 2010 from a recreational point of view? 61 Scenic Beauty, SB, as a function of basal area, BA. The graph has been constructed using equation SB = 5.663 – 4.086 BA/t + 16.148 ln (BA), which is found in Hull & Buhyoff (1986). 62 Optimization of present value of roundwood production and recreation 63 • • • • • REM OP100409 REM Peter and Luba REM OPEN "outOP.txt" FOR OUTPUT AS #1 PRINT #1, " n x1opt topt h1opt x2opt pvopt optPV opttotU" • • • • • • • • • • FOR n = 0 TO 550 STEP 55 pvopt = -9999999 optpv = -9999999 x1opt = 0 topt = 0 h1opt = 0 x2opt = 0 c = 50 p = 40 r = .03 64 • FOR x1 = 10 TO 150 STEP 5 • FOR t = 1 TO 100 STEP 1 • x0 = 158 • h0 = x0 - x1 • x2 = 1 / (1 / 316 + (1 / x1 - 1 / 316) * EXP(-.0848 * t)) • h1 = x2 - x1 • multip = 1 / (EXP(r * t) - 1) • pv0 = -c + p * h0 • pv1 = -c + p * h1 • PV = pv0 + pv1 * multip 65 • • • • • D = .8 * ((x1 + x2) / (2 * x2)) IF D < 0 THEN D = 0 IF D > 1 THEN D = 1 U = 120 * D - 120 * D * D PVtotU = n / r * U • TPV = PV + PVtotU • • • • • • • IF TPV > pvopt THEN x1opt = x1 IF TPV > pvopt THEN topt = t IF TPV > pvopt THEN h1opt = h1 IF TPV > pvopt THEN x2opt = x2 IF TPV > pvopt THEN optpv = PV IF TPV > pvopt THEN opttotU = PVtotU IF TPV > pvopt THEN pvopt = TPV • NEXT t • NEXT x1 66 Annual Value of Recreation per Visitor 35 30 EURO / Hectare 25 20 15 10 5 0 0 0,2 0,4 0,6 0,8 1 1,2 Stand Density Approximation in the software: • • • • • D = .8 * ((x1 + x2) / (2 * x2)) IF D < 0 THEN D = 0 IF D > 1 THEN D = 1 U = 120 * D - 120 * D * D PVtotU = n / r * U 67 • PRINT #1, USING "######"; n; x1opt; topt; • PRINT #1, USING "######"; h1opt; x2opt; • PRINT #1, USING "########.##"; pvopt; optpv; opttotU • NEXT n • CLOSE #1 • END 68 Optimal results: (outOP.txt) 69 x1opt Optimal stock level directly after harvest 80 cubic metres per hectare 70 60 50 40 30 20 10 0 0 100 200 300 400 500 600 Visitors per hectare and year 70 x2opt Optimal stock level directly before harvest cubic metres per hectare at the time of harvest 180 160 140 120 100 80 60 40 20 0 0 100 200 300 400 500 600 Visitors per hectare and year 71 h1opt Optimal thinning volume per occation cubic metres per hectare and occation 140 120 100 80 60 40 20 0 0 100 200 300 400 500 600 Visitors per hectare and year 72 topt Optimal time interval between thinnings 25 20 years 15 10 5 0 0 100 200 300 400 500 600 Visitors per hectare and year 73 Present values of forest harvesting and recreation 600000 EURO per hectare 500000 400000 pvopt 300000 optPV opttotU 200000 100000 0 0 100 200 300 400 500 600 Visitors per hectare and year In forest areas with many visitors, close to large cities, the present value of recreation may be much higher than the present value of timber production. 74 Upper and lower optimal stock levels as a function of time and the number of visitors 180 160 cubic metres per hectare 140 120 x0_1 100 x0_2 x55_1 80 x55_2 60 40 20 0 0 50 100 150 200 250 300 Time (years) 75 The case with no visitors 76 The case with many visitors that prefer low density forests 77 Conclusions: A new methodological approach to optimization of forest management with consideration of recreation and the forest and energy industries has been developed. It maximizes the total present value of continuous cover forest management and takes all relevant costs and revenues into account, including set up costs. Optimal solutions to empirically investigated cases have been analysed and reported. 78 Thank you for listening! Questions? 79
© Copyright 2026 Paperzz