68th International Symposium on Molecular Spectroscopy Hot Spot Generation in Energetic Materials by Applying Weak Energies Ming-Wei Chen, Sizhu You, Kenneth K. Suslick and Dana D. Dlott 6/18/2012 Introduction and Motivation From a cold hammer to a fireball: How does it happen? Mechanical Energy Chemical Energy http://www.bbc.co.uk/news/science-environment-11485672 Mechanical Energy (Shock, impact, friction) Warm EM Cold EM Without Energy Concentration process With Energy Concentration process Hot Spot Generation ∆Hrxn > Hdissipation Computed critical conditions for hot spot growth in HMX and TATB Growing hot spot (causes detonation) go ∆Hrxn < Hdissipation Dying hot spot (no rxn or gradual burning) no go Tarver, C. M.; Chidester, S. K.; Nichols, A. L., J. P. Chem., 100 , 5794 (1996). MIR Camera objective lenses High-speed MCT MIR camera Object “Telescope orientation” Sensor type: mercury cadmium telluride (MCT, >90% quantum efficiency) PC “Microscope orientation” Spectral response range: 3.7-4.8 µm. Pixel pitch: 15 µm. Frame speed: up to 120fps. Vis. NIR SWIR MIR LWIR FIR THz λ(μm)= 0.39 0.75 1.4 3 8 15 100 1000 laser 500ms Dichroic mirror shutter To camera 50ms Salt window Sample Salt window IMAQ Periscope Protection window Beam dump CO2 laser driver AOM (diffraction not shown) CO2 laser PC High-speed MCT Mid-IR camera f/2.0 camera lenses Pulse/delay generator RDX (1,3,5-Trinitroperhydro1,3,5-triazine) T(K) νLaser = 974.6cm-1 50ms 100ms 300ms 400ms 500ms 1000ms ~500μm 2W Gradual heating 20W Decomposition temperature: ~440K 312K 300K colder warmer 313K 300K Energy concentrated on the vertex edge. 310K 900 920 940 960 980 1000 1020 1040 1060 1080 1100 300K ~500μm RDX FTIR spec. 900 920 940 960 980 1000 1020 1040 1060 1080 1100 frequency (cm-1) Laser Photons Concentrate in Crystal Refractive index = 1.49 @ 10.6μm ab D θair n D tan 180 tan 90 air sin 180 nRDX a β θRDX b θair θRDX I e L I0 Simulations α(ω) = attenuation coeff. L = path length T(K) ~30THz Laser radiation ~30THz Laser radiation 313K 300K 100µm 500µm α(ω)=1000cm-1 500µm vs. α=100cm-1 % of incident photon flux Summary and Future Works Summary: A thermal/MIR imaging microscope apparatus has been built, and can be used in the laser and ultrasound experiments. Under laser exposure, the hotspot was found due to the concentrated laser photons in crystal. The thermal emission is related to the laser photon flux. Future works: Complete the theory to interpret the observation in laser experiment. Clarify the mechanisms of energy concentration. Extend the application of apparatus for studying different materials. Acknowledgement • Dr. Dana D. Dlott • The Dlott research group • Funding from the Office of Naval Research THANKS FOR YOUR ATTENTION!!! Ultrasonic Experiment Sample holder Ultrasonic horn 20 kHz, 750 W 13 mm tip size Holder base sample with hole Sapphire IR window Four springs connecting holder and horn Ultrasonic Energy Concentration: wrapped Ultrasonic condition: 20% amplitude, 30 N cm-2 static pressure W. PEG-600 wrapped vs. naked NH4NO3 N. 1 mm naked Bkg 033 540 K Interfacial delamination enhances the energy concentration procedure in the ultrasonic experiment. → Crystal-polymer surface property is essential to the hotspot generation. 05 523 W. 001 023 460 K 051 002 513 N. 013 052 003 380 K 053 004 503 1 mm 0.07 s 0.12 s 0.10 s 300 K 006 054 005 Oxidizer & Fuel: sucrose and KClO3, wrapped in one PEG-600 droplet Before Before After 004 003 002 001 Ultrasound can be used to trigger the chemical reaction of solid. KClO3 sucrose 1 mm Bkg 033 540 K 05 523 001 023 460 K 051 002 513 013 052 003 380 K 053 004 503 1 mm 0.07 s 0.08 s 0.09 s 300 K 006 054 005 004 003 002 001
© Copyright 2026 Paperzz